
Adaptive Multilevel Monte Carlo Simulation
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Abstract This work generalizes a multilevel forward Euler Monte Carlo method
introduced in [3] for the approximation of expected values depending on the solu-
tion to an Itô stochastic differential equation. The work [3] proposed and analyzed
a forward Euler multilevel Monte Carlo method based on a hierarchy of uniform
time discretizations and control variates to reduce the computational effort required
by a standard, single level, Forward Euler Monte Carlo method. This work intro-
duces an adaptive hierarchy of non uniform time discretizations, generated by an
adaptive algorithm introduced in [10, 9, 2]. This form of the adaptive algorithm
generates stochastic, path dependent, time steps and is based on a posteriori er-
ror expansions first developed in [12]. Our numerical results for a stopped diffu-
sion problem, exhibit savings in the computational cost to achieve an accuracy of
O (TOL), from O

(
TOL−3) using a single level version of the adaptive algorithm to

O
((

TOL−1 log(TOL)
)2
)

.
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1 Introduction

This work develops a multilevel version of an adaptive algorithm for weak approxi-
mation of Itô stochastic differential equations (SDEs)

dX(t) = a(t,X(t))dt +b(t,X(t))dW (t), 0 < t < T, (1)

where X(t;ω) is a stochastic process in Rd , with randomness generated by a k-
dimensional Wiener process with independent components, W (t;ω), on the proba-
bility space (Ω ,F ,P); see [7, 11]. The functions a(t,x)∈Rd and b(t,x)∈Rd×k are
given drift and diffusion fluxes.

Our goal is to, for any given sufficiently well behaved function g : Rd → R,
approximate the expected value E[g(X(T ))] by adaptive multilevel Monte Carlo
methods. A typical example of such an expected value is to compute option prices
in mathematical finance; see [6] and [5]. Other models based on stochastic dynamics
are used for example in molecular dynamics simulations at constant temperature and
for stochastic climate prediction; cf. [1] and [8].

The multilevel Monte Carlo method based on uniform time stepping was intro-
duced by Giles in [3]. He developed a clever control variate type variance reduction
technique for a numerical method, denoted here by X , that approximates the solution
of the SDE (1). The key to the variance reduction in [3] is to compute approximate
solutions, X `, on hierarchies of uniform time meshes with size

∆ t` =C−`∆ t0, C ∈ {2,3, . . .} and ` ∈ {0,1, . . . ,L}, (2)

thereby generating sets of realizations on different mesh levels. After computing
numerical approximations on a mesh hierarchy, the expected value E[g(X(T ))] is
approximated by the multilevel Monte Carlo estimator

E{S`}L`=0

(
g(XL(T ))

)
=

M0

∑
i=1

g(X0(T ;ωi,0))

M0

+
L

∑̀
=1

M`

∑
i=1

g(X `(T ;ωi,`))−g(X `−1(T ;ωi,`))

M`
. (3)

Here {S`}L
`=0 denotes mutually independent sample sets on the respective meshes,

each with M` independent samples. To reduce the variance in the above estimator,
the realization pairs X `(T ;ωi,`) and X `−1(T ;ωi,`) of the summands g(X `(T ;ωi,`))−
g(X `−1(T ;ωi,`)) for each level ` > 0 are generated by the same Brownian path,
Wt(ωi), but they are realized on different temporal grids with uniform time steps,
∆ t` and ∆ t`−1, respectively. The efficiency of this computation relies on an a priori
known order of strong convergence for the numerical method employed on each
level of the hierarchy.

Let TOL > 0 be a desired accuracy in the approximation of E[g(X(T ))]. The
main result of Giles’ work [3] is that the computational cost needed to achieve the
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Mean Square Error (MSE)

E
[(

E{S`}L`=0

(
g(XL(T ))

)
−E[g(X(T ))]

)2
]
= O

(
TOL2) , (4)

when using the Forward Euler method to create the approximate realizations X `(T ;ω),
can be reduced to

O
(
(TOL−1 log(TOL−1))2) ,

with Giles’ multilevel Monte Carlo method; the corresponding complexity using
the standard Monte Carlo method is O

(
TOL−3) since the Forward Euler method

has weak order of convergence 1 and the Monte Carlo sampling order 1/2 by the
Central Limit Theorem. Furthermore, whenever the function g is Lipschitz and for
scalar Itô stochastic differential equations, the computational cost can be further
reduced to O

(
TOL−2) using the first order strong convergence Milstein method. In

addition, the work [4] shows how to apply the Milstein method for several scalar
SDE cases where the Lipschitz condition is not fulfilled and still obtain the cost
O
(
TOL−2).
In this work we use the Forward Euler method with non uniform time steps. Let

0 = t0 < t1 < · · · < tN = T denote a given time discretization, without reference
to its place in the hierarchies, and {0 =W (t0;ω),W (t1;ω), . . . ,W (tN ;ω)} denote a
generated sample of the Wiener process on that discretization. Then the Forward
Euler method computes an approximate solution of (1) by the scheme

X(t0;ω) = X(0),

X(tn+1;ω) = a(X(tn;ω), tn)∆ tn +b(X(tn;ω), tn)∆W (tn;ω), n≥ 0, (5)

where ∆ tn = tn+1− tn and ∆W (tn;ω) = W (tn+1;ω)−W (tn;ω) are the time steps
and Wiener increments, respectively.

The contribution of the present paper to the multilevel Monte Carlo method is
the development of a novel algorithm with adaptive, non uniform time steps. The
algorithm uses adaptive mesh refinements to stochastically create a path dependent
mesh for each realization. The construction and analysis of the adaptive algorithm is
inspired by the work on single level adaptive algorithms for weak approximation of
ordinary stochastic differential equations [9], and uses the adjoint weighted global
error estimates first derived in [12]. The goal of the adaptive algorithm is to choose
the time steps and the number of realizations such that the event

∣∣∣E{S`}L`=0

(
g(XL(T ))

)
−E[g(X(T ))]

∣∣∣≤ TOL, (6)

holds with probability close to one.
It should be noted that in the setting of adaptive mesh refinement there is no

given notion of mesh size, so a hierarchy of meshes can no longer be described
as in the constant time step case (2). Instead, we generate a hierarchy of meshes
by successively increasing the accuracy in our computations: setting the tolerance
levels
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TOL` =
TOL0

2`
, for ` ∈ {0,1, . . . ,L}, (7)

and (by adaptive refinements based on error indicators) finding corresponding
meshes so that for each level ` ∈ {0,1, . . . ,L},

∣∣E[g(X(T ))]−E[g(X `(T ))]
∣∣. TOL`

2
.

The efficiency and accuracy of the multilevel adaptive Monte Carlo algorithm is
illustrated by a numerical example, in the case of the stopped diffusion problems
used to test the single level version of the algorithm in [2]. For this example mul-
tilevel Monte Carlo based on adaptive time steps requires a computational work
O
(
TOL−2 log(TOL−1)2

)
while a direct application of the multilevel Monte Carlo

method based on uniform time steps would be less efficient since the underlying
Euler–Maruyama method has reduced orders of weak and strong convergence for
the barrier problem.

The rest of this paper is organized as follows: Subsection 1.1 introduces the no-
tion of error density and error indicators, and recalls useful results for single level
adaptive forward Euler Monte Carlo methods. Sect. 2 describes the new adaptive
multilevel Monte Carlo algorithm. Sect. 3 presents results from the numerical ex-
periment.

1.1 A Single Level Posteriori Error Expansion

Here we recall previous single level results that are used for constructing the mul-
tilevel algorithm in Sect. 2. In particular, we recall adjoint based error expansions
with computable leading order term. Assume that the process X satisfies (1) and its
approximation, X , is given by (5); then the error expansions in theorems 1.2 and 2.2
of [12] have the form

E[g(X(T ))−g(X(T ))] = E

[
N

∑
n=1

ρn∆ t2
n

]
+ higher order terms, (8)

where ρn∆ t2
n are computable error indicators, that is they provide information for

further improvement of the time mesh and ρn measures the density of the global
error in (8). A typical adaptive algorithm does two things iteratively:

1. if the error indicators satisfy an accuracy condition then it stops; otherwise
2. the algorithm chooses where to refine the mesh based on the error indicators

and then makes an iterative step to 1.

In addition to estimating the global error E[g(X(T ))− g(X(T ))] in the sense of
equation (8), the error indicators ρn∆ t2

n also give simple information on where to
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refine to reach an optimal mesh, based on the almost sure convergence of the density
ρn as we refine the discretization, see Sect. 4 in [10].

In the remaining part of this section we state in Theorem 1 a single level error
expansion from [12].

Given an initial time discretization ∆ t[0](t) and, for the stochastic time steps
algorithm, refining until1

|ρ(t,ω)|
(
∆ t(t)

)2
< constant, (9)

we construct a partition ∆ t(t) by repeated halving of intervals so that it satisfies

∆ t(t) = ∆ t[0](t)/2n for some natural number n = n(t,ω).

The criterion (9) uses an approximate error density function ρ , satisfying for t ∈
[0,T ] and all outcomes ω the uniform upper and lower bounds

ρlow(TOL)≤ |ρ(t,ω)| ≤ ρup(TOL). (10)

The positive functions ρlow and ρup are chosen so that ρup(TOL)→+∞ as TOL→ 0
while ρlow(TOL)→ 0 such that TOL/ρlow(TOL)→ 0. We further make the assump-
tion that for all s, t ∈ [0,T ] the sensitivity of the error density to values of the Wiener
process can be bounded,

|∂W (t)ρ(s,ω)| ≤ Dρup(TOL), (11)

for some positive function Dρup such that Dρup(TOL)→ +∞ as TOL→ 0. For
each realization successive subdivisions of the steps yield the largest time steps
satisfying (9). The corresponding stochastic increments ∆W will have the correct
distribution, with the necessary independence, if the increments ∆W related to the
new steps are generated by Brownian bridges [7], that is the time steps are generated
by conditional expected values of the Wiener process.

We begin now by stating in the next lemma the regularity conditions to be used
in the analysis of the adaptive multilevel algorithms.

Lemma 1 (Regularity). (a) Assume that the following regularity conditions hold:

(1)The functions a(t,x) and b(t,x) are continuous in (t,x) and are twice continu-
ously differentiable with respect to x.

(2)The partial derivatives of first and second order with respect to x of the functions
a and b are uniformly bounded.

(3)The function g is twice continuously differentiable, and together with its partial
derivatives of first and second order it is uniformly bounded.

Then the cost to go function, defined by

u(t,x) = E
[
g(X(T )) | X(t) = x

]
, (12)

1 The precise expression is given in (34) below.
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satisfies the Kolmogorov equation

∂tu(t,x)+ak∂ku(t,x)+dkn∂knu(t,x) = 0, u(T, ·) = g, (13)

where we have used Einstein summation convention2, and where dkn =
1
2 bl

kbl
n.

(b) Furthermore, if the following regularity conditions are satisfied:

(1)The functions ∂β a(t, ·) and ∂β b(t, ·) are bounded uniformly in t for multi-indices
β with 1≤ |β | ≤ 8;

(2)The functions a(·,x), b(·,x) have continuous and uniformly bounded first order
time derivatives;

(3)The function g has spatial derivatives ∂β g, with polynomial growth for |β | ≤ 8;

then the function u has continuous partial derivatives with respect to x up to the
order 8, satisfying the following polynomial growth condition: for all i ∈ {0,1,2}
and α ∈ Nd with i+ |α| ≤ 8 there exists pα,i ∈ N and Cα,i > 0 such that

max
0≤t≤T

∣∣∂ i
t ∂α u(t,x)

∣∣≤ Cα,i
(

1+ |x|pα,i
)
∀x ∈ Rd .

In what follows, Lemma 2 and Theorem 1 show that although the steps adaptively
generated to satisfy (9)–(11) are not adapted to the natural Wiener filtration, the
method indeed converges to the correct limit, which is the same as the limit of the
forward Euler method with adapted time steps.

Lemma 2 (Strong Convergence). For X the solution of (1) suppose that a, b, and
g satisfy the assumptions in Lemma 1, that X is constructed by the forward Euler
method, based on the stochastic time stepping algorithm defined in Sect. 2, with
step sizes ∆ tn satisfying (9)–(11), and that their corresponding ∆Wn are generated
by Brownian bridges. Then

sup
0≤t≤T

E[|X(t)−X(t)|2] = O
(
∆ tsup

)
= O

(
TOL

ρlow(TOL)

)
−→ 0 (14)

as TOL→ 0, where ∆ tsup ≡ supn,ω ∆ tn(ω).

In Theorem 1 and the rest of this work, we will use Einstein summation con-
vention with respect to functional and spatial indices, but not with respect to the
temporal one (usually denoted tn).

Theorem 1 (Single level stochastic time steps error expansion). Given the as-
sumptions in Lemma 2 and a deterministic initial value X(0), the time discretization
error in (8) has the following expansion, based on both the drift and diffusion fluxes
and the discrete dual functions ϕ , ϕ ′, and ϕ ′′ given in (17)–(22), with computable
leading order terms:

2 When an index variable appears twice in a single term this means that a summation over all
possible values of the index takes place; for example ak∂ku(t,x) = ∑d

k=1 ak∂ku(t,x), where d is the
space dimension of the SDE (a,x ∈ Rd).



Adaptive Multilevel Monte Carlo Simulation 223

E[g(X(T ))]−E[g(X(T ))] = E

[
N−1

∑
n=0

ρ̃(tn,ω)(∆ tn)2

]

+O

(( TOL
ρlow(TOL)

)1/2( ρup(TOL)
ρlow(TOL)

)ε
)

E

[
N−1

∑
n=0

(∆ tn)2

]
,

(15)

for any ε > 0 and where

ρ̃(tn,ω)≡ 1
2

((
∂tak +∂ jaka j +∂i jakdi j

)
ϕk(tn+1)

+
(
∂tdkm +∂ jdkma j +∂i jdkmdi j +2∂ jakd jm

)
ϕ
′
km(tn+1)

+
(
2∂ jdkmd jr

)
ϕ
′′
kmr(tn+1)

)
(16)

and the terms in the sum of (16) are evaluated at the a posteriori known points
(tn,X(tn)), i.e.,

∂α a≡ ∂α a(tn,X(tn)), ∂α b≡ ∂α b(tn,X(tn)), ∂α d ≡ ∂α d(tn,X(tn)).

Here ϕ ∈ Rd is the solution of the discrete dual backward problem

ϕi(tn) = ∂ic j(tn,X(tn))ϕ j(tn+1), tn < T,
ϕi(T ) = ∂ig(X(T )),

(17)

with

ci(tn,x)≡ xi +∆ tnai(tn,x)+∆W `
n b`i (tn,x) (18)

and its first and second variation

ϕ
′
i j ≡ ∂x j(tn)ϕi(tn)≡

∂ϕi(tn;X(tn) = x)
∂x j

, (19)

ϕ
′′
ikm(tn) ≡ ∂xm(tn)ϕ

′
ik(tn)≡

∂ϕ ′ik(tn;X(tn) = x)
∂xm

, (20)

which satisfy

ϕ ′ik(tn) = ∂ic j(tn,X(tn))∂kcp(tn,X(tn))ϕ ′jp(tn+1)

+∂ikc j(tn,X(tn))ϕ j(tn+1), tn < T,
ϕ ′ik(T ) = ∂ikg(X(T )),

(21)

and
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ϕ ′′ikm(tn) = ∂ic j(tn,X(tn))∂kcp(tn,X(tn))∂mcr(tn,X(tn))ϕ ′′jpr(tn+1)

+∂imc j(tn,X(tn))∂kcp(tn,X(tn))ϕ ′jp(tn+1)

+∂ic j(tn,X(tn))∂kmcp(tn,X(tn))ϕ ′jp(tn+1)

+∂ikc j(tn,X(tn))∂mcp(tn,X(tn))ϕ ′jp(tn+1)

+∂ikmc j(tn,X(tn))ϕ j(tn+1), tn < T,
ϕ ′′ikm(T ) = ∂ikmg(X(T )),

(22)

respectively.
Observe that the constant in O that appears in (15) may not be uniform with re-
spect to the value ε . Thus, in practice one chooses ε = ε(TOL) to minimize the
contribution of the remainder term to the error expansion (15).

Let us now discuss how to modify the error density ρ̃(tn,ω) in (16) to satisfy
the bounds (10) and at the same time guarantee that ∆ tsup → 0 as TOL→ 0, see
Lemma 2.

Consider, for t ∈ [tn, tn+1) and n = 1, . . . ,N, the piecewise constant function

ρ(t)≡ sign(ρ̃(tn))min
(

max(|ρ̃(tn)|,ρlow(TOL)),ρmax(TOL)
)
, (23)

where
ρlow(TOL) = TOLγ̄ , 0 < γ̄ < α

α+2 , 0 < α < 1
2 ,

ρmax(TOL) = TOL−r, r > 0,
(24)

and with the standard notation for the function sign, that is sign(x) = 1 for x ≥ 0
and −1 for x < 0. The function ρ defined by (23) measures the density of the time
discretization error; it is used in (33) and (34) to guide the mesh refinements. From
now on, with a slight abuse of notation, ρ(tn)= ρn denotes the modified density (23).

Following the error expansion in Theorem 1, the time discretization error is ap-
proximated by

|ET |= |E[g(X(T ))−g(X(T ))]|. E

[
N

∑
n=1

r(n)

]
, (25)

using the error indicator, r(n), defined by

r(n)≡ |ρ(tn)|∆ t2
n , (26)

with the modified error density defined by (23). According to Corollary 4.3 and
Theorem 4.5 in [10], we have the almost sure convergence of the error density to a
limit density denoted by ρ̂ , ρ → ρ̂ as TOL→ 0.

2 Adaptive Algorithms and Multilevel Variance Reduction

In this section we describe the multilevel Monte Carlo algorithm with adaptive
stochastic time steps for approximating E[g(X(T ))].
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Given a tolerance TOL > 0 for which we want the estimate (6) to be fulfilled, we
split the tolerance into a time discretization tolerance and a statistical error tolerance,

TOL = TOLT +TOLS.

The optimal way of choosing TOLT and TOLS in terms of minimizing the com-
putational work can be approximated by Lagrangian optimization. The basis of the
error control is to choose the number of samples large enough to make the estimated
statistical error smaller than TOLS and adaptively refining the time steps, for each
realization, until the estimated time discretization error is smaller than TOLT.

The stochastic time stepping algorithm uses criteria related to (9) with an outer
and an inner loop, described below. Given the value of M0, and mutually indepen-
dent sample sets {S`}L

`=0 where each S` consists of

M` =

⌈
M0

ρlow(TOL0)TOL`

ρlow(TOL`)TOL0

⌉
(27)

independent realisations of the underlying Wiener process, the outer loop uses a
multilevel Monte Carlo technique to estimate E[g(X(T ))] and, if necessary, update
the value M0. Recall that the lower bound for the error density, ρlow, was introduced
in (24). We use the enforced deterministic lower bound

M0 ≥M−1 = const ·TOL−1. (28)

The sample set independence makes it possible to estimate E[g(X(T ))] by the sum
of sample averages

E{S`}L`=0

(
g(XL(T ))

)
= AS0

[
g(X0(T ))

]
+

L

∑̀
=1

AS`

[
g(X `(T ))−g(X `−1(T ))

]
,

AS`
[ f ] := M−1

`

M`

∑
ω∈S`

f (ω),

where the algorithm for constructing g(X `−1(T )) must be identical on levels `
and `− 1 for the telescoping sum to work perfectly; this is described in detail
later in this section and explicitly in Algorithm 2.1. Approximate the variance of
E{S`}L`=0

(
g(XL(T ))

)
by the sum of sample variances

σ
2 =

VS0

[
g(X0(T ))

]

M0
+

L

∑̀
=1

VS`

[
g(X `(T ))−g(X `−1(T ))

]

M`
(29)

and aim to control this variance by choosing M0 sufficiently large so that

σ <
TOLS

CC
. (30)
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If σ > TOLS
CC

, the number of samples M0 is increased in the next batch; in the numer-
ical examples of Sect. 3 the size of the new sample set was set to

⌈
M0,old max

{
2 , min

{
σ

2 (CC/TOLS)
2 , MCH

}}⌉
, (31)

with MCH = 10, but we may use the rule M0,new = 2M0,old as well. The parameter
MCH should not be taken too close to one in order to avoid a large number of
iterations with similar M0 before convergence, yielding a total computational work
much larger than the computational work corresponding to the accepted M0. On the
other hand, MCH should not be too large in order to avoid using an excessively large
M0.

The inner loop, with iteration index ` representing a level in the adaptive mesh hi-
erarchy, generates M` realization pairs3, (X `−1(T ),X `(T )), of (5) approximating (1)
to the accuracy tolerances TOL`−1 and TOL`. These pairs are constructed by suc-
cessive subdivision of an initial grid ∆ t−1. First, the algorithm determines the grid
∆ t`−1 from the initial grid ∆ t−1 by starting out with the tolerance TOL0 = 2LTOLT
for the time discretization error and successively halving that tolerance until it be-
comes TOL`−1 = 2(L−`+1)TOLT while for each new tolerance constructing the new
grid by repeated adaptive subdivision of the previously constructed mesh. This it-
erative procedure in Algorithm 2.1, with index ˜̀= 0, . . . , `− 1, ensures that a grid
∆ t`−1 on level ` is generated in the same way as a grid ∆ t`−1 on level `− 1 and
consequently that E[X `(T )] when computed as the coarser approximation in a pair
(X `(T ),X `+1(T )) is the same as when computed as the finer approximation in a pair
(X `−1(T ),X `(T )). The above mentioned property is necessary for the telescopic ex-
pansion of the time discretization error introduced by Giles in [3]. Second, the algo-
rithm determines the grid ∆ t` by successively subdividing the recently determined
∆ t`−1 according to the refinement criterion (34) until the stopping criterion (33) is
satisfied.

Due to the stochastic nature of SDEs, each realization pair of (X `−1(T ),X `(T ))
may refine the initial grid ∆ t−1 differently. In particular, grids corresponding to dif-
ferent realizations on the same level ` may be different. To take this feature into
account in the grid refinement, we introduce some notation. Let N` and N ` denote
the number of time steps and the approximate average number of time steps for re-
alizations at level `, respectively; see Algorithm 2.2 for details on the approximation
technique and its update through the iteration. Further, denote the grid correspond-
ing to one realization at level ` by

∆ t` = [∆ t`(0), . . . ,∆ t`(N`−1)] , (32)

and its corresponding Wiener increments by

∆W` = [∆W`(0), . . . ,∆W`(N`−1)] .

3 Observe that for the level `= 0 only the realisation of X0(T ) is generated.
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The refinement condition is based on the error indicator r[`], defined in (26), and
uses similar refinements to those defined for the single level method. The stopping
condition for refinement of ∆ t` is

max
1≤n≤N`

r[`](n)<CS
TOL`

N `

. (33)

When inequality (33) is violated, the nth time step of ∆ t` is refined if

r[`](n)≥CR
TOL`

N `

. (34)

Normally, the value for CR would be around 2, and CS > CR following the theory
developed in [10, 9].

The inputs in Algorithm 2.1 are: TOLS, TOLT, initial number of sample real-
isations M0, L, ∆ t−1, initial guesses for the mean number of time steps (N `)

L
`=0

needed for fulfillment of (33), and the three parameters CR, CC, and CS used in the
refinement condition (34) and stopping conditions (30) and (33), respectively. In
this algorithm the mean number of initial time steps are chosen as N ` = cTOL−1

` ,
for `= 0, . . . ,L and a small constant c.
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Algorithm 2.1: Multilevel Monte Carlo with stochastic time stepping

Input : TOLS, TOLT, M0, ∆ t−1, {N `}L
`=0, CR, CS, CC

Output: µ ≈ E [g(X(T ))]

Set k = 0.
while k < 1 or (30) is violated do

Compute M0 new realizations of g
(
X0(T )

)

and their corresponding number of time steps, {N0}M0
1 ,

by generating Wiener increments ∆W−1 on the mesh ∆ t−1 (independently
for each realization) and calling Algorithm 2.3:
ATSSE(∆ t−1,∆W−1,TOLT2L,N 0).

Set µ = AS0

[
g
(
X0(T )

)]
and σ2 =

VS0 [g(X0(T ))]
M0

.
Compute the average number of time steps AS0 [N0].
for `= 1, . . . ,L do

Set M` as in (27)

Compute M` new realizations of g
(
X `−1(T )

)
,

their corresponding number of time steps, {N`−1}M`
1 , and Wiener

increments, ∆W`−1, by generating Wiener steps ∆W−1 on the mesh
∆ t−1 (independently for each realization) and using the loop
for ˆ̀= 0, . . . , `−1 do

compute ∆ t ˆ̀ and ∆W ˆ̀ by calling Algorithm 2.3:
ATSSE(∆ t ˆ̀−1,∆W ˆ̀−1,TOLT 2L− ˆ̀

,N ˆ̀).

end

Compute the corresponding M` realizations of g
(
X `(T )

)

and their number of time steps, N`, by calling Algorithm 2.3:
ATSSE(∆ t`−1,∆W`−1,TOLT 2L−`,N `).

Set µ = µ +AS`

[
g
(
X `(T )

)
−g
(
X `−1(T )

)]
and

σ2 = σ2 +
VS`

[g(X`(T ))−g(X`−1(T ))]
M`

.
Compute the average number of time steps AS`

[N`−1] and AS`
[N`].

end

if σ violates (30) then
Update the number of samples by⌈

M0 max
{

2 , min
{

σ2 (CC/TOLS)
2 , MCH

}}⌉
.

Update the values of {N`}L
`=0 by calling Algorithm 2.2:

UMNT ({M`}L
`=0, {AS`

[N`]}L
`=0, {AS`

[N`−1]}L
`=1).

end
Increase k by 1.

end



Adaptive Multilevel Monte Carlo Simulation 229

Algorithm 2.2: Update for the mean number of time steps, (UMNT)
Input : {M`}L

`=0, {AS`
[N`]}L

`=0, {AS`
[N`−1]}L

`=1
Output: {N`}L

`=0

for `= 0,1, . . . ,L do
if ` < L then

Set N ` =
M`AS`

[N`]+M`+1AS`+1
[N`]

M`+M`+1
.

else
Set N L = ASL [NL].

end
end

Algorithm 2.3: Adaptive Time Step Stochastic Euler (ATSSE)
Input : ∆ tin,∆Win, TOL, N in
Output: ∆ tout ,∆Wout , Nout , gout
Set m = 0, ∆ t[0] = ∆ tin, ∆W[0] = ∆Win, N[0] = number of steps in ∆ tin
while m < 1 or (r[m−1]; TOL,N in) violates (33) do

Compute the Euler approximation X [m] and the error indicators r[m] on
∆ t[m] with the known Wiener increments ∆W[m].

if (r[m]; TOL,N in) violates (33) then
Refine the grid ∆ t[m] by
forall the intervals n = 1,2, . . . ,N[m] do

if r[m](n) satisfies (34) then
divide the interval n into two equal parts

end
end
and store the refined grid in ∆ t[m+1].
Compute ∆W[m+1] from ∆W[m] using Brownian bridges on ∆ t[m+1].
Set N[m+1] = number of steps in ∆ t[m+1].

end
Increase m by 1.

end
Set ∆ tout = ∆ t[m−1], ∆Wout = ∆W[m−1], Nout = N[m−1], gout = g(X [m−1]).

3 A Stopped Diffusion Example

This section presents numerical results from an implementation of the algorithm of
Sect. 2. We apply the algorithm to a challenging problem where the computational
work of multilevel Monte Carlo based on uniform meshes is larger than the optimal
O
(
(TOL−1 log(TOL))2

)
, which is still attained by the adaptive multilevel Monte
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Carlo algorithm. This motivates the use of stochastic time steps that are adaptively
refined for each sample path.

The additional difficulty of the problem is that we now wish to compute approx-
imations of an expected value

E[g(X(τ),τ)], (35)

where X(t) solves the SDE (1), but where the function g : D× [0,T ]→R is evaluated
at the first exit time

τ := inf{t > 0 : (X(t), t) 6∈ D× (0,T )}

from a given open domain D×(0,T )⊂Rd×(0,T ). This kind of stopped (or killed)
diffusion problems arise for example in mathematical finance when pricing barrier
options and for boundary value problems in physics.

The main difficulty in the approximation of the stopped diffusion on the boundary
∂D is that a continuous sample path may exit the given domain D even though a
discrete approximate solution does not cross the boundary of D. Due to this hitting
of the boundary the order of weak convergence of the Euler–Maruyama method is
reduced from 1 to 1/2, in terms of the step size of uniform meshes, and the order
of strong convergence is less than 1/2 so that the complexity estimate in Theorem 1
of [3] for uniform multilevel simulations can not be applied.

We combine the adaptive multilevel algorithm of Sect. 2 with an error estimate
derived in [2] that takes into account also the hitting error. The hitting error is ac-
counted for by an extra contribution to the error density in (23); this contribution can
be expressed in terms of exit probabilities for individual time steps, conditioned on
the computed path at the beginning and the end of the time steps, and of the change
in the goal function, g, when evaluated at a possible exit point within the time step
instead of the actually computed exit (X(τ̄), τ̄). The full expression of the resulting
error indicators is given in equation (50) of [2]. Since the differential ∂ig(X(T ),T )
in the discrete dual backward problem (17) does not exist if T is replaced by τ̄ < T
this initial value must be alternatively defined; this can be done using difference
quotients with restarted computed trajectories as described, both for the discrete
dual and for its first and second variations, in equations (20-25) of [2]. Note that for
this modified error density the proof in [10] of almost sure convergence to a limit
density does not apply.

The results in this section are on the accuracy and cost of the adaptive multilevel
algorithm of Sect. 2, applied to (35)–(36), with the error estimate modified for the
barrier problem.

For the numerical example we consider the stopped diffusion problem

dX(t) =
11
36

X(t) dt +
1
6

X(t) dW (t), for t ∈ [0,2] and X(t) ∈ (−∞,2), (36)

X(0) = 1.6.
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For g(x, t) = x3e−t with x ∈ R, this problem has the exact solution E[g(Xτ ,τ)] =
u(X(0),0) = X(0)3, where the solution, u, of the Kolmogorov backward equation
is u(x, t) = x3e−t . We chose an example in one space dimension for simplicity, al-
though it is only in high dimension that Monte Carlo methods are more efficient than
deterministic finite difference or finite element methods to solve stopped diffusion
problems. The comparison here between the standard Monte Carlo and the Multi-
level Monte Carlo methods in the simple one dimensional example indicates that
the Multilevel Monte Carlo method will also be more efficient in high dimensional
stopped diffusion problems, where a Monte Carlo method is a good choice.

In the simulations the tolerance levels were chosen as TOLS = TOL/2 and
TOLT = TOL/4. We used for the stopping and refinement constants the values
CS = 5 and CR = 2. The computations were performed in Matlab 7 using the
built in pseudo random number generator randn for simulating sampling from the
normal distribution.

In the numerical complexity results the cost is measured by counting the total
number of time steps in all batches and on all levels. The complexity study in Fig. 1
is based on multiple simulations for each tolerance using different initial states in
the pseudo random number generator, with more data on the large tolerances than
on the smallest ones. A least squares fit of the model4

cost = c1

(
log
(

TOL0

TOL

)
1

TOL

)c2

(37)

in the log2-log2-scale of the graph using equal weights on all data points gives c2 =
1.9 where the value 2 is predicted by theory. When the least squares fit is made on
the mean cost for each tolerance the parameter in the cost model is c2 = 2.0. The
corresponding cost using the single level adaptive algorithm with just one data point
per tolerance used grows faster than TOL3 in this example.

In Fig. 2 the data on cost versus tolerance of Fig. 1 is shown together with the
corresponding errors. The observed errors are scattered below the corresponding
tolerances showing that the algorithm achieves the prescribed accuracy. It was al-
ready observed above that the multilevel version of the adaptive algorithm improves
on the convergence of the single level version; this figure also shows that the er-
ror using a basic single level Monte Carlo method with uniform time steps for the
stopped diffusion problem decreases only like cost−0.26, which is worse than the
convergence rate of the single level version of the adaptive algorithm.

We remark that we present the error versus cost results for the basic Monte Carlo
algorithm in a way that slightly favours it over the adaptive methods. To explain this
we note that the adaptive algorithms aim to balance the contributions to the total
error made by the statistical and by time discretization errors; since the constant
time step algorithm was implemented without time discretization error estimates
this balancing could not be made in the computations. Instead, for each step size,
the cost and error pair displayed in the graph was obtained indirectly by first over-

4 The number of levels is 1+L = 1+ log2

(
TOL0
TOLT

)
= log2

(
TOL0
TOL

)
.
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killing the statistical error using a large number of samples and then by, knowing
that the resulting error was dominated by the time discretization error, using the
computed sample variance to get an estimate of the number of samples that would
have been sufficient for obtaining a statistical error of the same size as the time
discretization error. This procedure favours the constant time step method over the
adaptive methods in that it gives an ideal constant factor in the cost, but the order
of convergence is not affected. On the other hand the computational overhead in the
implementation of the adaptive time stepping algorithm is significantly greater than
in the naive Monte Carlo algorithm; again the order of convergence is not changed.

In conclusion the observed convergence of the adaptive multilevel Monte Carlo
method applied to the barrier problem (36) is close to the predicted

cost = c1

(
log
(

TOL0

TOL

)
1

TOL

)2

.

This shows an improved convergence compared to the single level version of the
adaptive Monte Carlo algorithm where the cost grows approximately like TOL−3,
which in itself is a better order of weak convergence than the one obtained using a
single level Monte Carlo method with constant time steps where the cost grows like
error−4.
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Fig. 1 Experimental complexity for the barrier example. To the left, the computational cost of
the multilevel adaptive algorithm is shown for varying tolerances using different initial states in
the pseudo random number algorithm. A least squares fit, in log2 –log2-scale, of the model cost =
c1
(

log(TOL0/TOL)/TOL
)c2 with equal weight on all observations results in c1 = 12 and c2 = 1.9.

One realisation of the corresponding cost using a single level implementation of the same adaptive
Monte Carlo method is included for reference. To the right is shown the mean computational
cost over all observations where the values for large tolerances are based on more observations
than those for small tolerances. When the least square fit is performed on the average values the
resulting coefficients are c1 = 12 and c2 = 2.0.
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Fig. 2 The multilevel adaptive Monte Carlo algorithm with stochastic time steps has been tested
on the barrier problem using a sequence of tolerances and different initial states in the pseudo ran-
dom number generator. For each tolerance and each sample the computational cost is marked by
an ×; the maximal cost and the average cost for a given tolerance have been chosen as represen-
tative measures. One realisation of the computational cost using a single level implementation of
the adaptive algorithm for a sequence of tolerances is included as a reference, showing that the
multilevel version is more efficient for small tolerances. A further comparison can be made with a
basic single level, constant time step, Monte Carlo algorithm. This algorithm lacks error control;
instead the statistical error was balanced against the time discretisation error in two steps: first the
statistical error was over killed to reveal the time discretisation error for each time step size, and
then the number of samples needed to make the statistical error the same size as the time discreti-
sation error was estimated using variance estimates from the computation. This represents an ideal
situation and it explains the very regular decay of the error with increasing cost seen in the graph;
the least square fit, shown as a dashed line, has the slope -0.26, consistent with the O(

√
∆ t) time

discretisation error for the barrier problem, and a O(1/
√

N) statistical error.
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