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An Extension of Clarke’s Model With Stochastic
Amplitude Flip Processes

Håkon Hoel and Henrik Nyberg

Abstract—Stochastic modeling is an essential tool for studying
statistical properties of wireless channels. In multipath fading
channel (MFC) models, the signal reception is modeled by a sum
of wave path contributions, and Clarke’s model is an important
example of such which has been widely accepted in many wireless
applications. However, since Clarke’s model is temporally deter-
ministic, Feng and Field noted that it does not model real wireless
channels with time-varying randomness well. Here, we extend
Clarke’s model to a novel time-varying stochastic MFC model with
scatterers randomly flipping on and off. Statistical properties of
the MFC model are analyzed and shown to fit well with real signal
measurements, and a limit Gaussian process is derived from the
model when the number of active wave paths tends to infinity.
A second focus of this work is a comparison study of the error
and computational cost of generating signal realizations from the
MFC model and from its limit Gaussian process. By rigorous
analysis and numerical studies, we show that in many settings,
signal realizations are generated more efficiently by Gaussian pro-
cess algorithms than by the MFC model’s algorithm. Numerical
examples that strengthen these observations are also presented.

Index Terms—Multipath channels, Gaussian processes, ray
tracing.

I. INTRODUCTION

IN radio communication settings with a fixed transmitter,
Clarke’s model [3] for a wireless flat fading channel may

be expressed by

ξt,M =
1√
M

M∑
m=1

e−i(2πfcv cos(αm)t/c+θm), (1)

where v denotes speed of the receiver, fc the carrier frequency,
{θm}Mm=1 are i.i.d. initial phase shifts, θm ∼ U [0, 2π), and αm

is the arrival angle of the mth component wave, distributed
according to a scatterer density p(α). When the scatterer den-
sity is a constant, Clarke noted that the autocorrelation function
E[ξt,Mξ∗0,M ] converges to the zeroth-order Bessel function of
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the first kind J0(2πfcvt/c) as M → ∞, and that the signal’s
power spectral density (PSD) takes the form of Jakes’ spectrum:

S(f) =

{
1

π
√

f2
D
−f2

, if |f | < fD

0, else,
(2)

with fD = vfc/c denoting the maximum Doppler frequency
shift. Feng and Field [4] observed two shortcomings of Clarke’s
model. First, in settings where the receiver is standing still, i.e.,
v = 0, the received signal ξt,M in (1) will be constant, but, in
contrast, received signals in real wireless channel environments
will fluctuate even when the receiver is standing still. Second,
the PSD of real signal measurements tend to deviate from the
U-shape of Jakes’ spectrum by having a wider support than
[−fD, fD], cf. [4, Fig. 4] and Fig. 4. It should be clear from
these shortcomings of Clarke’s model that extensions are nec-
essary to model real wireless channels with time-varying ran-
domness accurately. For this purpose, Feng and Field proposed
the following extension of Clarke’s model that incorporates the
effect of fluctuations in the component phases:

εt =
M∑

m=1

am exp
(
i
(
2πfnt+ φ

(m)
t

))
. (3)

Here, the amplitudes am are i.i.d. random variables, fn =

fD cos(αm) are the Doppler shifts, and the phases φ
(m)
t are

independent Wiener processes with uniform initial distribution
in [0, 2π)

dφ
(m)
t =

√
BdW

(m)
t , φ

(m)
0 ∼ U [0, 2π), (4)

where B is a constant with the dimension of frequency. See also
[5] for an asymptotic study, as M → ∞, for a closely related
MFC model with Wiener process driven phase components.

In this paper, we propose an alternative MFC model for
addressing the shortcomings of Clarke’s model that incorpo-
rates time-varying randomness through stochastic amplitude
processes am that flip on and off. Our proposed MFC model is
motivated from the assumption that time-varying randomness
derives from the appearance and disappearance of wave paths
in the scattering environment. Furthermore, by analyzing the
asymptotics when the number of active wave paths tends to
infinity, we derive through rigorous analysis that signal real-
izations of our proposed MFC model converge in distribution
to a Gaussian process.

When studying a channel model statistically by means of
sample averages of numerical signal realizations, numerical
error and computational cost are important issues to con-
sider. To control the bias in your estimates it is important to

0090-6778 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



HOEL AND NYBERG: EXTENSION OF CLARKE’S MODEL WITH STOCHASTIC AMPLITUDE FLIP PROCESSES 2379

TABLE I
COMPUTATIONAL COST IN GENERAL MODEL SETTINGS

TABLE II
COMPUTATIONAL COST IN THE WSS SETTING (14)

generate numerical signal realizations as accurately as pos-
sible, and to control the statistical error it is important to
generate sufficiently many samples. Another contribution of
this paper is a cost and accuracy study of generating nu-
merical signal realizations of our proposed MFC model. A
signal realization error measure is introduced and the presented
algorithms are studied in terms of accuracy and computational
cost. The results are summarized in Tables I and II, and from
these results we conclude that in many settings the Gaussian
process algorithms generate signal realizations more efficiently
than the MFC algorithm. Numerical examples corroborate the
cost and accuracy observations, and one numerical example
illustrating properties of the Gaussian process model in a time-
varying reflection environment is also given.

The rest of this paper is organized as follows. In Section II
we present our MFC model extension of Clarke’s model and
a numerical algorithm for generating signal realizations from
the MFC model. In Section III we derive that when the number
of active wave paths in the MFC model tends to infinity, the
output signal converges in distribution to a Gaussian process.
Furthermore, two algorithms for generating Gaussian process
signal realizations are presented, and an error and complexity
analysis of all the algorithms is given. In Section IV we investi-
gate the relation between the signal’s autocorrelation and PSD
for wide-sense stationary (WSS) settings and describe a method
for estimating the flip rate and scatterer density from PSD
measurements. Section V provides numerical examples that
illustrate various statistical properties of the developed model
with comparisons to real measurement data, and thereafter we
close the paper with concluding remarks.

II. THE EXTENDED CHANNEL MODEL

In this section we propose an extension of Clarke’s model
that incorporates the birth and death of wave paths through
stochastic amplitude processes flipping on and off. A numerical
algorithm for generating realizations of the proposed MFC
model is also presented.

A. Model Description

We consider a channel environment with a fixed transmitter
and the receiver moving with a constant speed in an urban en-
vironment with buildings obstructing the line of sight between

Fig. 1. Illustration of a typical wireless channel scattering environment for
our MFC model.

scatterer and receiver. The incoming rays are modeled as scat-
tered off the receiver’s surroundings with the majority of scat-
tering surfaces assumed to be flat walls. The distance between
transmitter and receiver is assumed so large that it is reasonable
to consider the elevation angle of arrival (AoA) of incoming
wave paths to be 0◦, cf. Fig. 1. That is, scatterers are assumed
to lie in the horizontal plane. The received signal is modeled by

Zt,M =
1√
M

M∑
m=1

a(αm, t)e−i(2πfcτ(αm,t)+θm(t)), (5)

where fc denotes the carrier frequency, {αm}Mm=1 are the
angle of arrival of the wave paths that are i.i.d. according to
a prescribed scatterer density p : [0, 2π) → [0,∞), the delay
function is given by τ , and a(αm, t) and θm(t) are stochastic
processes for the amplitude and the phase shift of each wave
path, respectively.

B. The Amplitude Flip and Phase Shift Processes

To model local shadowing of radio wave paths, we propose
an amplitude flip process a(α, t) which flips on when it changes
value from 0 to a+(α, t) ≥ 0 and flips off when the opposite
change occurs. The process a(α, t) thus represents the state
of a scatterer, and we will assume that the amplitude function
a+ : [0, 2π) · R → [0,∞) is piecewise continuous (it may for
example be piecewise constant or depend on the distance from
scatterer to receiver). The amplitude process is modeled as a
Poisson process with constant flip rate C:

P (a(α, ·)flips k times within one time step Δt)

=
(CΔt)k exp(−CΔt)

k!
, (6)

where flips are independent from the phase shift processes
{θm(t)}Mm=1 and from the scatterers’ state

⊗M
m=1{0,a+(αm,t)},

with
⊗

denoting the tensor product. The scatterers’ initial state
{a(αm, 0)}Mm=1 is sampled from the i.i.d. Bernoulli distribu-
tion P (a(αm,0)=a+(α,0))=1/2 and P (a(αm,0)=0)=1/2
(which is consistent with the steady state distribution as t→∞).

The phase shift processes {θm(t)}Mm=1 are at all times i.i.d.
uniform in [0, 2π), and the phase of θm(t) is updated by a
new sample θm(t) ∼ U [0, 2π) at every time the scatterer at
the angle αm flips on—as a scatterer flipping on in our model
corresponds to a new scatterer appearing at the given angle.
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Remark 1: A natural extension of the amplitude process is to
make further distinctions between different types of scatterers
by also modeling the flip rate as a r.v. The flip rate distribution
would then represent additional (possibly infinite) degrees of
freedom for adjusting the model signal’s frequency spectrum.
We do however believe it would be difficult to device an
algorithm that effectively fits the flip rate distribution to mea-
surements. So, for the sake of simplicity, we restrict ourselves
here to a model with constant flip rate C.

Remark 2: The presence of measurement noise in the data
might be difficult to distinguish from flipping scatterer noise
and can affect modeling parameter estimates, such as the flip
rate. In this model we make the assumption that measurement
noise is negligible relative to the noise generated by flipping
scatterers.

C. Related Models

Apart from strong link to Feng and Field’s work [4] described
in Section I, the flipping scatterers in our MFC model has
connections to birth-death modeling of wave paths through
Poisson counting processes. In [6] Charalambos et al. consider
an MFC model that simulates the number of active scatterers
by a Poisson counting process. In simplified form the model
expresses the low-pass output signal by

y(t) =

N(T )∑
i=1

hi(t), (7)

where hi(t) denotes ith path’s impulse response at time t and
N(T ) is the Poisson counting process evaluated at a final time
T ≥ t. For each realization, the number of wave paths is fixed
to N(T, ω) in the time span t ∈ [0, T ], so this model does not
incorporate the effect of scatterers flipping on and off during
the time frame [0, T ].

A number of works on indoor channel models have also
considered the effects of local wave path shadowing. The
occurrence of wave path shadowing in an indoor environment
due to human activities is measured in [7], and in [8] a Markov
process channel model incorporating birth and death of wave
paths is presented. Of particular relevance to our work is the
indoor channel model [9], which the authors note is “straight
forward extendable to urban environments”. It uses a birth and
death process with fixed arrival (birth) intensity of scatterers
and fixed departure (death) intensity per active scatterer. This
is known as an M/M/∞ process from queuing theory (having
an infinite population of potential scatterers), cf. [10], and it
is characterized by the arrival (birth) intensity and departure
(death) intensity of scatterers. In comparison, our MFC model
has a finite population of scatterers with “rebirths” (with new
phase shifts). The stationary distributions of the number of
active scatterers will consequently differ, with M/M/∞ being
Poisson distributed, while the MFC model is binomial (M , 0.5)
distributed. The impact of this difference will however vanish
as the number of scatterers tends to infinity, and the most
important aspect for the output signal, which both models
capture in a similar way, is the limited life time of a scatterer.
Moreover, the life time of a scatterer is exponentially distributed
for both models.

Our model may also be linked to the Master Equation for
particle dynamics, cf. [11], by considering the of angles of
arrival {αm}Mm=1 as a lattice with an evolving state space⊗M

m=1{0, a+(αm, t)}. For a micro-scale lattice populated by
finite state spin particles with probabilistic lattice particle dy-
namics, the time evolution of the state probability mass function
satisfies the Master Equation. When the micro-scale state space
is large, simulations of lattice particle dynamics are typically
very costly. In many settings it is possible to reduce simula-
tion cost by coarse graining (i.e., local averaging) techniques,
reducing the size of the state space while preserving essential
features of the micro-scale lattice dynamics, cf. [12], [13].

D. The MFC Algorithm

We now present an algorithm for generating signal realiza-
tions of the MFC model (5) on a time grid t = (t1, t2, . . . , tN ).
The algorithm first generates a lattice of angles of arrival
according to the given scattering density and initializes lattice
states at time t1 by assigning phase shift state θk(t1) and am-
plitude state a(αk, t1) at each of the lattice points. Having fully
described the states at t1, the signal value Zt1,M is computed,
according to (5). Amplitude and phase shift states are thereafter
simulated on the time grid t and output signal values Zt,M are
computed.

Algorithm 1 The MFC algorithm

Input: Amplitude function a+, flip rate C, carrier fre-
quency fc, scatterer density p, receiver speed v, time grid
t = (t1, t2, . . . , tN ).
Output: Signal realization Zt,M = (Zt1,M , Zt2,M , . . . ,
ZtN ,M ).
Generate a set of i.i.d. angles of arrival {αk}Mk=1 distributed
according to the density p(α).
Generate a set of i.i.d. phase shifts {θk(0)}Mk=1 with θk(0) ∼
U [0, 2π).
Generate i.i.d. initial state of the amplitudes {a(αk, t1)}Mk=1

from the steady state distribution P (a(α, t1) = 0) =
P (a(α, t1) = a+(α, t1)) = 1/2.
Compute Zt1,M by (5).
for j = 2 to N do

for k = 1 to M do
Generate nk ∼ Poisson(C(tj − tj−1)) and flip nk

times the state of a(αk, tj).
If nk > 0, update the phase shift process by
sampling a new θk(tj) ∼ U [0, 2π).

end for
Compute Ztj ,M by (5).

end for

Remark 3: It is possible to extend the MFC model to sce-
narios including line of sight wave components. Suppose you
have the input/output relation consisting of many diffuse ray
contributions in Zt,M and one line of sight ray with angle of
arrival 0◦ and amplitude V . Then the resulting output signal
becomes Zt,M + V e−i(2πfcτ(0,t)).
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III. A STOCHASTIC PROCESS MODEL

In this section we show that the signal Zt,M defined in (5)
converges in distribution to a complex Gaussian process as
M → ∞. Thereafter, two algorithms are presented for gen-
erating signal realizations from the limit Gaussian process;
Algorithms 2 and 3. At the end, the performance of
Algorithms 1, 2, and 3 is compared in terms of accuracy and
computational cost.

We begin by recalling definitions for circular symmetric
multivariate complex normals and circular symmetric Gaussian
processes.

A. Definitions and a Convergence Result

Definition 1 (Circular Symmetric Multivariate Complex Nor-
mal Distribution): A multivariate complex normal Z ∈ C

n is
circular symmetric if eiθ̂Z has the same distribution as Z for
any θ̂ ∈ R. A circular symmetric multivariate complex normal
has mean 0 ∈ C

n and is uniquely described by its covariance
matrix K = E[ZZH ]. We write Z ∼ NC(0,K), and recall that
its probability density function is given by

pZ(z) =
e−zHK−1z

det(K)πN
. (8)

Definition 2 (Circular Symmetric Complex Gaussian
Process): A complex-valued stochastic process {Zt}t∈[0,T ) is
a circular symmetric complex Gaussian process if any fi-
nite length sample vector (Zt1 , Zt2 , . . . , Ztn) with 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn < T is multivariate circular symmetric complex
normal distributed.

The following theorem shows that Zt,M converges in distri-
bution to a Gaussian process as M → ∞:

Theorem 1 (Distributional Convergence to a Gaussian
Process): Assume the MFC model (5)’s amplitude function
a+(·, t) and delay function τ(·, t) are both bounded and piece-
wise continuous on [0, 2π) for all times t ∈ [0, T ). Then the
signal

Zt,M :=
1√
M

M∑
m=1

a(αm, t)e−i(2πfcτ(αm,t)+θm(t)) (9)

converges in distribution to a circular symmetric complex Gaus-
sian process Zt as M → ∞.

Proof: See Appendix A. �

B. Algorithms for the Gaussian Process

In this section we present two algorithms for generating re-
alizations of Theorem 1’s limit Gaussian process sampled on a
time grid t = (t1, t2, . . . , tN ). Since Zt = (Zt1 , Zt2 , . . . , ZtN )
is circular symmetric multivariate complex normal, it is
uniquely described by its covariance matrix. By similar com-
putations as in the proof of Theorem 1, we derive that

Kjk := Cov(Ztj , Ztk) =
e−C|tj−tk |

2

·
2π∫
0

a+(α, tj)a
+(α, tk)e

i2πfcΔτ(α,tj ,tk)p(α)dα. (10)

The covariance matrix integral terms (10) are typically not
computable, but may be approximated to arbitrary precision by
numerical integration:

Kjk =
e−C|tj−tk |

2

·
M∑
�=1

a+(x�, tj)a
+(x�, tk)e

i2πfcΔτ(x�,tj ,tk)p(x�)︸ ︷︷ ︸
=:f(x�)

ν�, (11)

where 0 = x1 < x2 < · · · < xM = 2π are the quadrature
points and ν� denotes the quadrature weights with the constraint∑M

�=1 ν� = 2π. For example, if the integrand in (10) is two
times differentiable for all α ∈ [0, 2π) except on finite set of
identifiable discontinuity points, then the trapezoidal rule

Kjk =
e−C|tj−tk |

2

M−1∑
�=1

f(x�) + f(x�+1)

2
(x�+1 − x�), (12)

with appropriately chosen quadrature points will yield an ap-
proximation error |Kjk −Kjk| = O(M−2), where O denotes
the big O notation. Moreover, if the integrand only is once dif-
ferentiable for all α ∈ [0, 2π) except on finite set of identifiable
discontinuity points, then the rate of convergence is reduced
to |Kjk −Kjk| = O(M−1). For a wider study of convergence
rates for the trapezoidal rule and Simpson’s rule (a higher
order quadrature method) applied to low-regularity integrands,
see [14].

1) Algorithm 2: We now present a standard way of gen-
erating Gaussian process realizations consisting of multiply-
ing the square root of the covariance matrix to a vector of
i.i.d. standard complex normals, cf. [10]. The exact covariance
matrix K is approximated by the numerically integrated K,
cf. (11), and the resulting signal realization is denoted Zt =
(Zt1 , Zt2 , . . . , ZtN ).

Algorithm 2 Covariance matrix based Gaussian process
algorithm

Input: Amplitude function a+, flip rate C, carrier fre-
quency fc, scatterer density p, receiver speed v, time grid
t = (t1, t2, . . . , tN ).
Output: Signal realization Zt = (Zt1 , Zt2 , . . . , ZtN ).
Compute the covariance matrix approximation Kjk by the
numerical integration (11) for j, k ∈ {1, 2, . . . , N}.

Singular value decompose K = U S U
H

, and compute

K
1/2

= U S
1/2

.
Generate a vector of N i.i.d. standard complex normal
elements; Ẑ ∼ NC(0, IN ), and the output signal realization

Zt = K
1
/2 Ẑ. (13)

2) Algorithm 3: Computing the square root of K in
Algorithm 2 and generating signal realizations by the matrix
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vector multiplication (13) are both computationally costly
operations. In this section we present an alternative algorithm
which in WSS settings improves the efficiency of these opera-
tions by circulant-embedding of the covariance matrix and ap-
plication of the Fast Fourier Transform (FFT). The presentation
is adapted from the material in [10, Chapter XI].

We consider the modeling setting

τ(α, t) = −v cos(α)t/c and a+(α, t) = a+(α). (14)

Then the Gaussian process Zt is a WSS process, which simpli-
fies the structure of the covariance (10) to

Kij = E[ZtiZ
∗
tj
] =

e−C|ti−tj |

2

·
2π∫
0

a+(α)2ei2πfD cos(α)(ti−tj)p(α)dα =: A(ti − tj), (15)

where we recall that fD = fcv/c is the maximum Doppler
shift and A(t) denotes the autocorrelation function. Sampling
the limit Gaussian process Zt on a uniform time grid t =
(t1, t2, . . . , tN ) then yields a circular symmetric multivariate
complex normal Zt with covariance matrix K ∈ C

N×N that
is Toeplitz, i.e., Ki,j = A(ti − tj) =: Ai−j . For Toeplitz ma-
trices, some operations, e.g., roots and matrix vector multipli-
cations, may be computed more efficiently than for general
matrices by circulant-embedding. To illustrate the circulant-
embedding procedure, let us for simplicity1 assume A−j = Aj ,
and embed K as the upper left corner of a circulant of order
2N − 2:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A0 A1 · AN−1 AN−2 · A2 A1

A1 A0 · AN−2 AN−1 · A3 A2

· · · · · · · ·
AN−1 AN−2 · A0 A1 · AN−3 AN−2

AN−2 AN−1 · A1 A0 · AN−4 AN−3

· · · · · · · ·
A1 A2 · AN−1 AN−2 · A1 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

The circulant matrix C has the eigendecomposition C = FΛFH

where F is the finite Fourier matrix of order 2N − 2 with
elements Fjk = ei2π(j−1)(k−1)/(2N−2)/

√
2N − 2, and Λ is

the diagonal matrix of eigenvalues diag(Λ) = Fa with a =
(A0, A1, . . . , AN−1, AN−2, . . . , A2, A1)

T . Provided all entries
of Λ are non-negative, we may write C1/2 = FΛ1/2, and
a signal realization is generated by Zt = RFΛ1/2Ẑ, with
Ẑ ∼ NC(0, I2N−2) and R : C2N−2 → C

N defined by Rz =
(z1, z2, . . . , zN )T for all z ∈ C

2N−2. This leads to the follow-
ing algorithm for generating WSS signal realizations:

1See [15] for an instructive description of simulation procedures in the
general case when A−j = A∗

j but A−j �= Aj .

Algorithm 3 Covariance based algorithm for WSS processes

Input: Flip rate C, maximum Doppler shift fD, scatterer
density p, uniform time grid t = (t1, t2, . . . , tN ).
Output: Signal realization Zt = (Zt1 , Zt2 , . . . , ZtN ).
Compute approximations Aj ≈ Kjj by the numerical
integration (11) for j ∈ {1, 2, . . . , N}.
Determine Λ by computing diag(Λ) = F (A0, A1, . . . ,
AN−1, AN−2, . . . , A2, A1)

T , using the FFT.
Generate a multivariate complex normal Ẑ ∼ NC(0, I2N−2)
and use the FFT to compute the output realization Zt =

RFΛ
1/2

Ẑ.

C. Error Estimates and Computational Complexity

Three alternative algorithms have been presented for gener-
ating signal realizations for the channel model (5), and in this
section we will shed some light on when to use which by com-
paring their performance in terms accuracy and computational
cost. We begin by introducing a distance measure for complex-
valued random vectors.

Definition 3 (Distance Measure for Complex-Valued Random
Vectors): Let X and Y denote two complex-valued random
vectors of the same dimension. We define the distributional
distance between X and Y to be given by

d(X,Y ) := sup
A∈C(CN )

|P (X ∈ A)− P (Y ∈ A)| , (17)

where C(CN ) denotes the class of convex sets in C
N .

1) Algorithm 1: To bound the error of signal realizations
generated by Algorithm 1 the following theorem on higher
dimensional Berry–Essen bounds will be useful:

Theorem 2 (Bentkus [16]): Let X̂i be i.i.d. random vectors
in R

N with mean zero and identity covariance matrix and
let X ∼ N (0, IN ). Define SM := M−1/2

∑M
m=1 X̂m and let

C(RN ) denote the class of all convex sets in R
N . Then

d(SM , X) ≤
400N1/4E

[
|X̂|3

]
√
M

. (18)

By applying Theorem 2 we obtain the following upper bound
for the approximation error d(Zt,M , Zt):

Corollary 1 (Error bound for Algorithm 1): Let Zt,M denote
a signal realization generated by Algorithm 1 with sample
times t restricted to [0, T ), and assume the covariance matrix
of the corresponding sampled limit Gaussian process Zt ∼
NC(0,K), cf. (10), is non-singular so that it may be represented
by the singular value decomposition K = USUH with S =
diag(si), s1 ≥ s2 ≥ · · · ≥ sN > 0. Then

d(Zt,M , Zt) ≤
23/4 · 400N7/4

∥∥∥E [(a+(α, ·))3]∥∥∥
L∞([0,T ))

s
3/2
N M1/2

.

(19)

Proof: See Appendix B. �
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To ensure that signal realizations generated by Algorithm 1
fulfills

d(Zt,M , Zt) ≤ TOL, (20)

it follows from Corollary 1 that M = O(TOL−2N7/2S−3
2N )

scatterers is needed. This yields the computational cost

Cost(Alg. 1) = O

(
LTOL−2

(
N3/2

S2N

)3
)
, (21)

for generating L realizations fulfilling (20).
2) Algorithm 2: The error d(Zt, Zt) between Zt generated

by Algorithm 2 and Zt sampled from the limit Gaussian pro-
cess can be expressed in terms of the difference between the
respective signal realizations’ covariance matrices, K and K.
We recall that this difference is a consequence of approximating
the integral terms Kjk of (10) by the numerical integration (11),
and that this error takes the bound

max
1<j,k<N

|Kj,k −Kj,k| ≤ ε = O(M−γ), (22)

where M denotes the number of quadrature points and the
convergence rate γ > 0 depends on the quadrature method
used. The following theorem provides an error bound for
Algorithm 2.

Theorem 3: Assume the covariance matrix K of the sampled
limit Gaussian process Zt given in (10) is non-singular, so
that it may be represented by the singular value decomposition
K = USUH with S = diag(si), s1 ≥ s2 ≥ · · · ≥ sN > 0. Let
further Zt ∼ NC(0,K) be of the same dimension as Zt, and
assume that ‖K −K‖2 ≤ N1/2ε with ε = O(M−γ), γ > 0,
and M chosen so large that 10N3/2ε < sN . Then

d(Zt, Zt) = O
(

N3/2

sNMγ

)
. (23)

Proof: See Appendix C. �
To ensure that signal realizations generated by Algorithm 2

fulfills d(Zt, Zt) ≤ TOL, it follows from Theorem 3 that M =
O((N3/2/sNTOL)1/γ) quadrature points is needed. The cost
of generating L signal realizations fulfilling the above accuracy
constraint thus becomes

Cost(Alg. 2)=O
(
N3+N2

(
N3/2

sNTOL

)1/γ

+LN2

)
, (24)

where O(MN2) comes from computing the matrix elements
of K by quadrature, O(N3) comes from computing the square
root of K, and O(LN2) comes from generating L signal
realizations.

3) Algorithm 3: As for Algorithm 2, signal realizations Zt

generated by Algorithm 3 are multivariate circular symmetric
complex Gaussian with covariance K. Therefore, we may once
again use Theorem 3 to conclude that under the assumptions
there stated, the cost of generating L signal realizations with

Algorithm 3 fulfilling the accuracy constraint d(Zt, Zt) ≤
TOL is

Cost(Alg. 3)=O
(
N

(
N3/2

SNTOL

)1/γ

+LN log(N)

)
, (25)

where O(MN) comes from computing the covariance el-
ements {Aj}N−1

j=−N+1 of K by quadrature, O(N log(N))

comes from computing the spectral decomposition Λ, and
O(LN log(N)) comes from generating L signal realizations
using FFT.

4) Summary of the Complexity Estimates: We now summa-
rize the derived upper bounds for the computational cost of
generating output realizations for Algorithms 1, 2, and 3. Let
us however stress that the obtained error bounds, on which
the cost estimates are based, are not proven to be sharp, so
some bounds may be conservative. In Table I we present cost
estimates for general modeling settings that may include hav-
ing time dependent amplitude functions a+ and/or non-linear
delay functions τ(α, t). The results of the table indicate that
when the quadrature convergence rate γ ≥ 3/5, cf. (22), the
covariance based Gaussian process algorithm, Algorithm 2, is
asymptotically the most efficient algorithm; and this will hold
for a large class of problem settings: For the trapezoidal rule,
for example, integrands in (10) which are once differentiable
except at a finite, identifiable number of discontinuity points
will have the rate γ = 1, cf. Section III-B.

In Table II we compare the algorithms’ performance in
the WSS setting (14). The table shows that at least when
the quadrature convergence rate γ ≥ 1/2, Algorithm 3 is the
asymptotically most efficient.

See Fig. 6 for a runtime comparison of the algorithms in a
WSS setting, and [1] for a more elaborate study of the above
cost bounds.

IV. APPLICATIONS OF THE POWER SPECTRAL DENSITY

The shape of the PSD depends on both the MFC model’s
flip rate and the scatterer density. Restricting ourselves to the
WSS setting (14), we will in this section describe a method for
estimating the flip rate C from the PSD computed from real life
signal measurements.

A. Introduction

The PSD is given by SC(f) = F{A(·)}, where A(t) is the
autocorrelation of the limit complex Gaussian process Zt, F(·)
denotes the Fourier Transform, and the subscript C in SC

denotes the PSD’s dependence on the flip rate. In the WSS
setting (14), it follows from (15) and by using the Convolution
Theorem for Fourier transforms that

SC(f) =

2π∫
0

C (a+(α))
2
p(α)

C2 + (2π (f − fD cos(α)))2
dα. (26)

See [4], for more details on a derivation of a similar PSD
expression.
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Fig. 2. The PSD function SC(f) is plotted for different flip rate values C in
the setting fD = 50 Hz and (a+)2p = (2π)−1.

From (26) we see that SC(f) depends on the flip rate C
and the term (a+)2p, which we hereafter refer to as a scaled
scatterer density. Fig. 2 illustrates SC(f)’s dependency on the
flip rate C in the modeling setting (a+)2p = (2π)−1 with S0(f)
equaling Jakes’ spectrum and SC(f) becoming a progressively
mollified version of Jakes’ spectrum the higher value C takes.

B. A link to Feng and Field’s Model

In the WSS setting (14) Feng and Field’s extension of
Clarke’s model that we described in equation (3) have very
similar signal autocorrelation and PSD to our proposed MFC
model. For Feng and Field’s model the autocorrelation function
becomes

E [εtε
∗
0] =

M∑
m=1

E[a2m]e−B|t|/2
2π∫
0

ei2πfD cos(α)tdα, (27)

while we recall that our model’s autocorrelation is in the given
setting on the form

E [ZtZ
∗
0] =

e−C|t|

2

2π∫
0

(
a+(α)

)2
ei2πfD cos(α)tp(α)dα, (28)

cf. (15). It should be noted that this similarity is obtained
although modeling assumptions are quite different: in our
model the wave path amplitudes are governed by Poisson flip
processes, whereas Feng and Field’s model has time invariant
amplitude functions; in our model phases are updated when
scatterers flips on, whereas Feng and Field’s model phases
evolve as scaled Wiener processes. The similarity between the
models is intriguing, but it should not be exaggerated. After all,
there are more degrees of freedom in ours (C and (a+)2p) than
in theirs (only B), and the WSS modeling setting (14) is only
one of many possible settings for our model, while it is the only
possible setting for theirs.

Fig. 3. Right column plots illustrate the PSD SC(f) obtained by (26) when
the scaled scatterer density (a+)2p(α) is given by respective left column
plots, C = 10, and fD = 50. Top row: (a+)2p = 1/(2π) yields the mol-
lified Jakes’ spectrum PSD. Second row: (a+)2p(α) = 1[−π/2,π/2](α)/π
yields a PSD consisting almost exclusively of positive Doppler shifts since
the receiver’s moves towards the active scatterers. Third row: (a+)2p(α) =
1[π/2,3π/2](α)/π yields a PSD consisting almost exclusively of negative
Doppler shifts since the receiver moves away from the active receivers.
Last row: (a+)2p(α) = exp(−|α− π|)/2.

C. Model Parameter Estimation From PSD Measurements

Feng and Field’s publication [4] further presents a method for
estimating the flip rate constant C from measurements which
can be used when the scaled scatterer density (a+)2p is known.
Namely, given a measurement of the PSD, Ŝ(f), estimate C
through minimizing the distance between the theoretical and
measured spectra by

C = argmin
x>0

cos−1

⎛⎝∫
R

√
Ŝ(f)Sx(f)df

⎞⎠ , (29)

where the PSD are scaled so that ‖Ŝ‖2 = 1 and ‖Sx‖2 = 1.
However, from (26) we see that the shape of the PSD depends
both on the flip rate and the scaled scatterer density on (a+)2p.
In Fig. 3, we shed some light on the relationship between
(a+)2p and the PSD, with the most notable property being
that if the receiver moves towards the region where (a+)2p
has most of its mass, then the PSD will generally be higher-
valued for positive frequencies than for negative frequencies,
and oppositely if the receiver moves away from the region
where (a+)2p has most of its mass. So to estimate the flip rate
from PSD measurements using equation (29), (a+)2p either
has to be known or estimated. It is however a much more
difficult and costly task to estimate (a+)2p than the flip rate, as
(a+)2p represents an infinite degrees of freedom, so we restrict
ourselves to a tentative approach here. Let Ŝ denote a real life
PSD measurement for a moving receiver, and consider relation
(26) as the inhomogeneous Fredholm integral equation

2π∫
0

KC(f, α)
(
a+(α)

)2
p(α)dα = Ŝ(f), (30)
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with unknown (a+(α))2p(α) and parameterized by the flip
rate C. For a fixed flip rate, one may approach this problem
by discretization, which leads to a system of linear equations,
and, supposing the measurement Ŝ is noisy, solve the inverse
problem using Tikhonov regularization or similar techniques,
cf. [17].

V. NUMERICAL EXAMPLES

In this section we present three numerical examples for
studying the performance of the presented algorithms. The first
example considers a WSS modeling setting and study how well
our models’ PSD and autocorrelation can reproduce those of a
real signal measurement by optimal fitting of the flip rate C.
The second example compares the computational cost of nu-
merical signal generation by Algorithms 1, 2, and 3, and in
the last example we study the effect the time variation has on
the statistics of the channel model in a non-stationary channel
environment setting.

A. Example 1

We consider the WSS modeling setting (14) with

(a+)2p(α) = 1l0.35<|α|<2.8

9∑
i=1

bie
−ĉi||α|−α̂i| + 1l1.7<|α|<2

7

5
,

(31)

where 1l denotes the indicator function, α ∈ (−π, π) and

b=(39, 31, 3, 11, 18.5, 6.5, 10, 6, 4),

ĉ=(10, 38, 40, 40, 30, 12, 22, 30, 14),

α̂=(0.385, 0.73, 0.95, 1.06, 1.19, 1.57, 2.07, 2.23, 2.48). (32)

The scaled scatterer density (31) is composed of basis func-
tions of the kind 1lâ<|α|<b̂ and e−ĉ|α−α̂| and the parameter
vectors (32) are fitted to the signal measurement by trial and
error until our model’s PSD and autocorrelation functions are
close to those of the measured signal. (See Fig. 3 for illus-
trations of how the PSD for these kinds of basis functions
may look.) The other model parameters are the delay function
τ(α, t) = −v cos(α)t/c, the receiver velocity v = 12.5 m/s and
the carrier frequency fc = 1.8775 GHz. A measured signal,
sampled uniformly on the time interval [0, 0.16] using N =
1419 samples, is provided by Henrik Asplund from Ericsson
Research, who did the measurement in the urban neighborhood
of Kiista, Stockholm. The PSD of the measured signal Ẑt

is computed by the FFT of ẐtẐ
∗
0 =: Ŝ(f), and to remove

the measurement noise an ideal low-pass filter with cut-off
frequency 500 Hz is applied to Ŝ(f). The model flip rate C
is thereafter fitted to the measurement by minimizing (29), with
resulting best fit C ≈ 3.9027. See Fig. 4 for a comparison of
the theoretical PSD SC and the measurement PSD Ŝ. Having
determined the flip rate, signal realizations are generated by
the MFC algorithm, each containing M = 2000 wave paths.
For the Gaussian process algorithms M = 1000 quadrature
points are used to compute the covariance matrix Kjk by the

Fig. 4. The best fit of SC(f) to a single measured signal’s PSD Ŝ(f). The
fitting is done by (29).

Fig. 5. Comparison of the modulus of the normalized autocorrelation of the
signal measurement and the fitted model’s signal realizations generated by
Algorithms 1, 2, and 3.

trapezoidal rule (12). As an additional measure of the difference
between our model and the signal measurement, respective
autocorrelations are plotted in Fig. 5. Here, the autocorrelation
of the measured signal and signal realizations of Algorithm 1
are computed using the MATLAB function xcorr.m (taking
the average autocorrelation of L = 2000 signal realizations for
Algorithm 1), while the autocorrelation for Algorithms 2 and 3
already is computed in the covariance matrix K.

B. Example 2

We next compare the computational runtime cost of generat-
ing numerical signal realizations using Algorithms 1, 2, and 3
over the time interval [0, 0.1] using N = 1000 time steps. We
consider the WSS modeling setting (14) with

(a+)2p(α) =
(
|α− π|5 + |α|3

)
1l[0.3,2.6] (|α|) , (33)

the maximum Doppler shift fD = 50 Hz and flip rate C = 5.
For the MFC algorithm M = 2000 wave paths are used in the
simulations, while for Algorithms 2 and 3 we use M = 1000
quadrature points to compute the Toeplitz covariance matrix
Kjk by the trapezoidal rule (12). Fig. 6 gives the complete
runtime cost of generating up to L = 40 000 i.i.d. signal real-
izations using the MATLAB numerical computing environment
on an Intel Xeon CPU X5550, 2.67 GHz architecture.
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Fig. 6. Comparison of the runtime of generating up to L = 40 000 i.i.d. signal
realizations for the channel environment described in Example V-B.

Fig. 7. A receiver moving rightwards through a thin opening in a non-
scattering (black) wall and thereby experiencing a change in the scattering
environment.

C. Example 3

In the third example we model the time-varying scattering
environment with a receiver moving from left to right through
a thin opening in a non-reflecting black wall, as sketched in
Fig. 7. When the mobile receiver is on the left side of the
opening, it only receives wave paths from the reflecting gray
walls at its rear; and when it is on the right side of the opening, it
only receives wave paths from the reflecting gray walls in front
of it. We consider the time interval [0, 2) seconds and assume
the following instant change in the amplitude function as the
receiver moves through the black wall’s opening at t = 1:

a+(α, t) =

{
cos2(α)1l|α|≥π/2, for 0 ≤ t < 1,
cos2(α)1l|α|≤π/2, for 1 ≤ t < 2,

(34)

for angles of arrival α ∈ (−π, π). This represents a scattering
environment where the amplitude flip process, modeled as due
to local shadowing, is a non-stationary process. Other model-
ing parameters are as follows: p = (2π)−1, C = 5, and fD =
50 Hz. Fig. 8 contains snapshots of the time dependent PSD for
a single stochastic signal realization created by Algorithm 2,
showing that when the mobile receiver is situated on the left
side of the opening, the PSD is concentrated around −fD, and
when the receiver is on the right side of the opening, the PSD
is concentrated around fD. By the discussion in Section IV on
the relation between (a+)2p and SC(f), the snapshotted PSD
in Fig. 8 seem reasonable.

Fig. 8. Snapshots of the time dependent PSD for a signal realization at t =
0.5 s when the receiver is situated on the left side of the wall opening (blue line)
and at t = 1.5 s situated at to the right side of the wall opening (green line).

VI. CONCLUSION

In this paper, we have presented an MFC model extension
of Clarke’s model that incorporates time-varying randomness
through stochastic amplitude processes a(αm, t) that flip on
and off. For the purpose of lowering the computational cost of
generating signal realizations we showed that in the limit when
the number of active scatterers tends to infinity, the MFC model
signal converges in distribution to a Gaussian process. Three
algorithms were presented for generating stochastic signal real-
izations; one for the MFC model and two for the limit Gaussian
process. By rigorous analysis and numerical studies we have
shown that in many settings the Gaussian process algorithms
will generate signal realizations orders of magnitude faster
than the MFC model’s algorithm. Further numerical examples
illustrate how model parameters may be fitted to real signal
measurements and that the model is applicable even in non-
stationary settings.

The developed MFC and Gaussian process models are 2D
models, and for many scattering environments the reduced
dimensionality is a reasonable simplification. But for environ-
ments with nontrivial 3D scattering densities it is of course not.
Expansion to 3D and more detailed studies of the channel statis-
tics in non-stationary settings are potential future extensions of
this work.

APPENDIX A
PROOF OF THEOREM 1

The following definition of the multivariate complex normal
distribution will be useful in the proof of Theorem 1.

Definition 4 (Multivariate Complex Normal Distribution): A
random vector Z = (Z1, Z2, . . . , Zn) ∈ C

n is said to be com-
plex multivariate normal distributed if the linear combination
of its components, cHZ ∈ C

1 is complex normal distributed
for all c ∈ C

n.
Proof of Theorem 1: Definitions 4 and 2 imply that if

the sum

Υt,c,M :=
n∑

i=1

c∗iZti,M , (35)
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converge in distribution to a complex normal for any finite
length set of sampling times t = (t1, t2, . . . , tn) ⊂ [0, T ) and
c = (c1, c2, . . . , cn) ∈ C

n, then Zt,M converges in distribution
to a complex Gaussian process on [0, T ). By the aid of the
Central Limit Theorem (CLT) we prove that this holds by
showing that for any t and c, an equality on the form

Υt,c,M =
1√
M

M∑
m=1

ξm, (36)

holds, with ξ1, ξ2, . . . being a sequence of i.i.d. circular
symmetric2 with bounded variance.

We begin by rewriting (35) as a sum of M i.i.d. random
variables:

Υt,c,M =
1√
M

M∑
m=1

n∑
j=1

c∗ja(αm, tj)e
−i(2πfcτ(αm,tj)+θm(tj))

︸ ︷︷ ︸
=:ξm

(37)

Since both {θm(·)}m, {a(αm, ·)}m are i.i.d. and mutually
independent, it straightforwardly follows that ξm is circular
symmetric. To further compute the variance of ξm, we first need
to derive some useful properties. By the definition of the phase
shift processes and amplitude process given in Section II-B,
P (θm(tj) = θm(tk)) = exp(−C|tj − tk|) and

E [a(αm, tj)a(αm, tk)|αm, θm(tj) = θm(tk)]

= a+(αm, tj)a
+(αm, tk)P

(
a(αm, tj) = a+(αm, tj)

)
=

a+(αm, tj)a
+(αm, tk)

2
. (38)

Introducing the short-hand notation Δτ(α, s, t) := τ(α, t)−
τ(α, s) and Δθm(s, t) := θm(t)− θm(s), we see that

E
[
a(αm, tj)a(αm, tk)e

i(2πfcΔτ(αm,tj ,tk)+Δθm(tj ,tk))
∣∣∣αm

]
= E [a(αm, tj)a(αm, tk)|αm, θm(tj) = θm(tk)]

· ei2πfcΔτ(αm,tj ,tk)P (θm(tj) = θm(tk))

= e−C|tj−tk | a
+(αm, tj)a

+(αm, tk)

2
ei2πfcΔτ(αm,tj ,tk),

(39)

which gives the variance

σ2
ξ := E

[
|ξ1|2

]
=

n∑
j,k=1

c∗jck
e−C|tj−tk |

2

·
2π∫
0

a+(α, tj)a
+(α, tk)e

i2πfcΔτ(α,tj ,tk)p(α)dα. (40)

We have shown that Υt,c,M is a scaled sum of i.i.d. circular
symmetric random variables ξm with bounded variance. It then
follows by the CLT (for complex-valued random variables)

2A complex-valued r.v. X is circular symmetric if eiθ̂X has the same
distribution as X for any θ̂ ∈ R.

Υt,c,M converge in distribution to NC(0, σ
2
ξ ) as M → ∞. By

Definition 4, this implies that Zt,M converge in distribution
to a complex Gaussian process Zt as M → ∞. Moreover,
since the sample vector (Zt1,M , Zt2,M , . . . , Ztn,M ) is circular
symmetric for any set of sampling times t = (t1, t2, . . . , tn) ⊂
[0, T ), Zt is also circular symmetric.

�

APPENDIX B
PROOF OF COROLLARY 1

Proof: Since Zt is a circular symmetric complex normal,
the equation

P (Zt,M ∈ A)− P (Zt ∈ A)

= P
(
(K/2)−1/2Zt,M ∈ Ã

)
−
∫
Ã

e−|z|2/2

(2π)N
dz, (41)

holds for any set A ∈ C(CN ), where Ã := (K/2)−1/2A. The
linearly transformed signal (K/2)−1/2Zt,M may be written

(K/2)−1/2Zt,M =
1√
M

M∑
m=1

(K/2)−1/2Z̆m (42)

with i.i.d. complex-valued random vectors

Z̆m :=

⎡⎢⎢⎣
a(αm, t1) exp (−i (2πfcτ(αm, t1) + θm(t1)))
a(αm, t2) exp (−i (2πfcτ(αm, t2) + θm(t2)))

...
a(αm, tN ) exp (−i (2πfcτ(αm, tN ) + θm(tN )))

⎤⎥⎥⎦ .
(43)

Following the proof of Theorem 1, Z̆m is circular
symmetric with covariance matrix K given by (10). The
associated 2N -dimensional real-valued random vector
(Re((K/2)−1/2Z̆m), Im((K/2)−1/2Z̆m)) has mean 0 and
identity covariance I2N , and by Hölder’s inequality,

E

[∣∣∣(K/2)−1/2Z̆m

∣∣∣3] ≤ 23/2

s
3/2
N

E

⎡⎢⎣
⎛⎝ N∑

j=1

(a(α, tj))
2

⎞⎠3/2
⎤⎥⎦

≤ 21/2
(

N

sN

)3/2 ∥∥∥E [(a+(α, ·))3]∥∥∥
L∞([0,T ))

. (44)

The proof is concluded by applying Theorem 2. �

APPENDIX C
PROOF OF THEOREM 3

The following corollary will be used in the proof of
Theorem 3:

Corollary 2 [18, p. 198]: Let G and F be arbitrary matrices
(of the same size) where σ1 ≥ · · · ≥ σn are the singular values
of G and σ′

1 ≥ · · · ≥ σ′
n are the singular values of G+ F . Then

|σi − σ′
i| ≤ ‖F‖2.
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Proof of Theorem 3: By the theorem’s assumptions, we
may write K = K + δK with ‖δK‖2 ≤ N1/2ε, and since
K is symmetric, it has a singular value decomposition K =

U S U
H

with s1 ≥ s2 ≥ · · · ≥ sN ≥ 0. By Corollary 2, we
have that max1≤j≤N |sj − sj | ≤ N1/2ε < sN . This further im-
plies that sN > 0, so K is non-singular and its inverse can be
represented by

K
−1

=(K + δK)−1 = (I +K−1δK)−1K−1

=K−1 +

∞∑
j=1

(−K−1δK)jK−1. (45)

Moreover, by the assumption of M being sufficiently large,∥∥∥∥∥∥K1/2
∞∑
j=1

(−K−1δK)jK−1/2

∥∥∥∥∥∥
2

≤ 2N1/2ε

sN
. (46)

For all Borel sets A ⊂ C
N , we derive the following upper

bound

P (Zt ∈ A)− P (Zt ∈ A)

=
1

πN |det(K)|

∫
A

e−zHK
−1

z∣∣det(K−1K)
∣∣ − e−zHK−1zdz

=
1

πN |det(K)|1/2
∫
A

e−zHK−1z

·

⎛⎝e
−zH
∑∞

j=1
(−K−1δK)jK−1z∣∣det(K−1K)

∣∣ − 1

⎞⎠ dz

=
1

(2π)N

∫
(K/2)−1/2A

e−|z|2/2

·

⎛⎝e
−zHK1/2

∑∞
j=1

(−K−1δK)jK−1/2z/2∣∣det(K−1K)
∣∣ − 1

⎞⎠ dz

(46)︷︸︸︷
≤ 1

(2π)N

∫
(K/2)−1/2A

e−|z|2/2

·
(

e(N
1/2ε/sN )|z|2∏N

j=1

(
1−N1/2ε/sj

) − 1

)
dz

≤ 1

(2π)N

∫
R2N

e−|x|2/2

·
((

1− N1/2ε

sN

)−N

e(N
1/2ε/sN )|x|2 − 1

)
dx

=

(
1− N1/2ε

sN

)−N (
1− 2

N1/2ε

sN

)−N

− 1

≤ e10N
3/2ε/sN − 1 ≤ 20N3/2ε

sN
. (47)

Here, we used that if X̂ is a 2N -dimensional real-valued multi-
variate normal with mean zero and identity covariance matrix,

then E[et|X̂|2 ] = (1− 2t)−N is the moment generating function
to a chi-square distributed variable with 2N degrees of free-
dom. Calculating along the same lines one obtains a similar
lower bound P (Zt ∈ A)−P (Zt∈A)≥−3N3/2ε/sN . The up-
per and lower bounds are both valid for the class of all Borel sets
A∈C

N , and this class contains the class of convex sets C(CN ).
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