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The difference of the values of observables for the time-independent Schrödinger

equation, with matrix-valued potentials, and the values of observables for ab initio

Born–Oppenheimer molecular dynamics, of the ground state, depends on the probabil-

ity to be in excited states, and the electron/nuclei mass ratio. The paper first proves an

error estimate (depending on the electron/nuclei mass ratio and the probability to be in

excited states) for this difference of microcanonical observables, assuming that molecu-

lar dynamics space-time averages converge, with a rate related to the maximal Lyapunov

exponent. The error estimate is uniform in the number of particles and the analysis does

not assume a uniform lower bound on the spectral gap of the electron operator and con-

sequently the probability to be in excited states can be large. A numerical method to

determine the probability to be in excited states is then presented, based on Ehrenfest

molecular dynamics, and stability analysis of a perturbed eigenvalue problem.

1 Motivation for Error Estimates in ab initio Molecular Dynamics

Molecular dynamics is a computational method to study molecular systems in materials

science, chemistry, and molecular biology. The simulations are used, for example, in
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2 C. Bayer et al.

designing and understanding new materials or for determining biochemical reactions

in drug design [14].

The wide popularity of molecular dynamics simulations relies on the fact that

in many cases it agrees very well with experiments. Indeed when we have experimen-

tal data it is often possible to verify the correctness of the method by comparing with

experiments at certain parameter regimes. However, if we want the simulation to pre-

dict something that has no comparing experiment, we need a mathematical estimate of

the accuracy of the computation. In the case of molecular systems with few particles,

such studies are made by directly solving the Schrödinger equation. A fundamental and

still open question in classical molecular dynamics simulations is how to verify the

accuracy computationally, that is, when the solution of the Schrödinger equation is not

a computational alternative.

The aim of this paper is to determine quantitative error estimates for molecular

dynamics, including the case with nearly crossing electron potential surfaces that can

yield large errors, without solving the Schrödinger equation but by combining mathe-

matical stability analysis of eigenvalue problems with quantitative numerical Ehren-

fest molecular dynamics computations of perturbations. Having molecular dynamics

error estimates opens, for instance, the possibility of systematically evaluating which

density functionals or empirical force fields are good approximations and under what

conditions the approximation properties hold. Computations with such error estimates

could also give improved understanding of when quantum effects are important and

when they are not, in particular in cases when the Schrödinger equation is too compu-

tationally complex to solve.

The first step to check the accuracy of a molecular dynamics simulation

is to know what to compare with. Here we compare the value of any observable

g :R3N →R, of nuclei positions X, for the time-independent Schrödinger eigenvalue

equation, ĤΦ = EΦ, with the corresponding molecular dynamics observable, defined by

a Hamiltonian Ĥ , the wave function Φ :R3N →CJ , and the eigenvalue E ∈R. The approx-

imation error we study is therefore the microcanonical setting∫
R3N 〈Φ(X), g(X)Φ(X)〉dX∫

R3N 〈Φ(X),Φ(X)〉dX
− lim

T→∞
1

T

∫ T

0
g(Xt)dt, (1)

based on a molecular dynamics path Xt, with total the energy equal to the Schrödinger

eigenvalue E . The inner product 〈·, ·〉 is defined in CJ , where Φ ∈CJ corresponds to J

discrete (electron) states. The observable can for instance be the local potential energy,

used in [47] to determine phase field partial differential equations from molecular
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Computational Error Estimates for Molecular Dynamics 3

dynamics simulations. For the sake of simplicity, we first explain the basic idea for

observables depending only on position variables X. The general case of position and

momentum dependent observables is treated in Section 2 using the Weyl quantization.

The time-independent Schrödinger equation has a remarkable property of accurately

predicting experiments in combination with no unknown data, thereby forming the

foundation of computational chemistry. However, the drawback is the high-dimensional

solution space for nuclei-electron systems with several particles, restricting numeri-

cal solution to small molecules. In this paper, we study the time-independent set-

ting of the Schrödinger equation as the reference. The proposed approach has the

advantage of not requiring any initial data as input, on the other hand, an assump-

tion on convergence rates of time averages of molecular dynamics observables is

needed.

The second step to check the accuracy is to derive error estimates. We have three

types of error: time discretization error, sampling error, and modeling error. The time

discretization error comes from approximating the differential equation for molecular

dynamics with a numerical method, based on replacing time derivatives with differ-

ence quotients, and time steps Δt. The sampling error is due to truncating the infinite

T and using a finite value of T in the integral in (1). The modeling error (also called

coarse-graining error) originates from eliminating the electrons in the Schrödinger

nuclei-electron system and replacing the nuclei dynamics with their classical paths;

this approximation error was first analyzed by Born and Oppenheimer in their seminal

paper [4].

The time discretization and truncation error components are in some sense sim-

pler to handle by comparing simulations with different choices of Δt and T , although

it can, of course, be difficult to know that the behavior does not change with even

smaller Δt and larger T due to metastability, see [7, 31]. The modeling error is more

difficult to check since a direct approach would require to solve the Schrödinger

equation. Currently, the Schrödinger partial differential equation can only be solved

with few particles, therefore it is not an option to solve the Schrödinger equation in

general. The reason for using molecular dynamics is precisely to avoid solving the

Schrödinger equation. Consequently, the modeling error requires mathematical error

analysis. Egorov’s theorem, cf. [5, 38], provides such error estimates and is used also

here. However, in the literature there seems to be no error analysis that is precise, sim-

ple, and constructive enough so that a molecular dynamics simulation can use it in

practice to assess the modeling error also in the case when the electron operator has

eigenvalues (i.e., potential surfaces) which are not well separated and may cause large
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4 C. Bayer et al.

modeling error. For instance, crossing eigenvalue surfaces can form so-called conical

intersections, which provide the mechanism for many chemical reactions, see [44, 48].

If the excited electron energy levels are well separated from the ground state energy,

molecular dynamics based on the ground state energy is a good approximation, as first

analyzed by Born and Oppenheimer [4]. On the other hand, in a quantum system with

two electron energy levels that are not well separated, the dynamic transition prob-

ability from one state to the other state for a moving particle can be substantial, as

determined by Landau [28] and Zener [50], and generalized to a similar dynamic case in

two space dimensions in [27]. We denote the transition probability to go from the ground

state to excited states for a time-dependent problem “dynamic transition probability”,

as in the Landau–Zener model, to distinguish it from the “probability to be in excited

states” for the time-independent Schrödinger eigenvalue problem.

Our alternative error analysis presented here relates computable dynamic tran-

sition probabilities to the probability to be in excited states for the time-independent

Schrödinger equation and is developed with the aim to give a different point of view

that could help to construct algorithms that estimate the modeling error in molecular

dynamics computations. Our analysis differs from previous ones by combining analyti-

cal estimates with computations and it is based on three main steps:

– analyzing the time-independent Schrödinger equation as the reference

model, including excited electron states with near crossing potential sur-

faces and the accuracy of observables as a function of the probability to be

in excited states (in Section 2),

– studying stochastic molecular dynamics, constrained to the manifold of con-

stant energy, based on small stochastic perturbations of the standard Born–

Oppenheimer Hamiltonian dynamics,

– using stability analysis of a perturbed eigenvalue problem to estimate the

probability to be in excited electron states, based on perturbations related

to (Landau–Zener like) dynamic transition probabilities (in Section 3),

– applying Ehrenfest molecular dynamics to computationally estimate the

dynamic transition probabilities (in Section 4).

The estimation method is tested on one- and two-dimensional problems but to conclude

how useful the method is for realistic chemistry problems will require more work.

The next section introduces the Schrödinger and molecular dynamics models

and ends with a more detailed outline.
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Computational Error Estimates for Molecular Dynamics 5

1.1 The Schrödinger and molecular dynamics models with an outline of the main results

In deriving the approximation of the solutions to the full Schrödinger equation, the

heavy particles are often treated within classical mechanics, that is, by defining the

evolution of their positions and momenta by equations of motions of classical mechan-

ics. Therefore, we denote by Xt : [0,∞)→R3N the time-dependent function of the nuclei

positions, with time derivatives denoted by

Ẋt= dXt

dt
, Ẍt= d2 Xt

dt2
.

We denote the Euclidean scalar product on R3N by

X · Y=
N∑

n=1

3∑
i=1

Xn
i Yn

i .

Furthermore, we use the notation ∇ψ(X)= (∇X1ψ(X), . . . ,∇XNψ(X)), and as cus-

tomary ∇Xnψ = (∂Xn
1
ψ , ∂Xn

2
ψ , ∂Xn

3
ψ). The notation ψ(X)=O(M−α) is also used for complex-

valued functions, meaning that |ψ(X)| =O(M−α) holds uniformly in X for ψ(X) ∈CJ .

The time-independent Schrödinger equation

Ĥ(X)Φ(X)= EΦ(X) (2)

models many-body (nuclei-electron) quantum systems and is obtained from minimiza-

tion of the energy in the solution space of wave functions, see [2, 6, 30, 39, 40, 43]. It is

an eigenvalue problem for the energy E ∈R of the system, described by the Hamiltonian

operator Ĥ(X)

Ĥ(X)= V(X)− 1

2
M−1 I

N∑
n=1

ΔXn, (3)

where I denotes the J × J identity matrix, and by the wave functions, Φ(X), belong-

ing to a set of permissible electron states which we assume, for simplicity, to be finite,

Φ(X) ∈CJ . We use a normalized solution
∫
R3N |Φ(X)|2 dX = 1 and without loss of general-

ity we assume that all nuclei have the same mass M. If this is not the case, we can intro-

duce new coordinates M1/2
1 X̃k=M1/2

k Xk, which transform the Hamiltonian to the form

we want V(M1/2
1 M−1/2 X̃)− (2M1)

−1 I
∑N

k=1 ΔX̃k. In computational chemistry, the electron

operator Hamiltonian V̄ , is independent of M and it is precisely determined by the sum

of the kinetic energy of electrons and the Coulomb interaction between nuclei and elec-

trons. The wave function is then in a subspace of L2(dXdx), with electron coordinates x,

see [30]. By introducing a finite-dimensional basis {φi}ni=1 of the electron solution space,

minimization of the energy
∫
R3N

∫
Rn Φ(X, x)∗(V̄(X)− 1

2 M−1 I
∑N

n=1 ΔXn)Φ(X, x)dx dX under
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6 C. Bayer et al.

the constraint
∫
R3N

∫
Rn Φ(X, x)Φ(X, x)∗ dx dX = 1 leads to the eigenvalue problem (2) for

the solution Φ(X, x)=∑J
j=1 Φ j(X)φ j(x), with the J × J matrix V := S−1 ¯̄V defined by the

matrix components Sij := ∫Rn φi(x)φ j(x)∗ dx and ¯̄Vij := ∫Rn V̄(X, x)φi(x)φ j(x)∗ dx. To be able

to compute with several electrons, that is, n/3
 1, the electron solution space is often

simplified in the form of Hartree–Fock or density functional approximations, which also

lead to eigenvalue problems which now are nonlinear, see [30]. We assume that the elec-

tron operator V(X) is linear and self-adjoint, in a finite-dimensional complex-valued

Euclidian space CJ (for simplicity), with the usual inner product 〈·, ·〉, and acts as a

matrix multiplication. An essential feature of the partial differential equation (2) is the

high computational complexity of finding the solution in a subset of the Sobolev space

H1(R3N)J . The mass of the nuclei, M, are much greater than 1 (electron mass).

In contrast to the Schrödinger equation, a molecular dynamics model of N

nuclei X̃ : [0,∞)→R3N , with a given potential Vp : R3N →R, can be computationally stud-

ied for large N by solving the ordinary differential equations Md2 X̃τ /dτ 2 =−∇Vp(X̃τ ) in

the fast time scale. We will use the slow time scale t=M−1/2τ with positions Xt= X̃τ

and scaled momenta Pt := Ẋt satisfying

Ẍt=−∇Vp(Xt). (4)

In the slow time scale, the nuclei move O(1) in unit time, since Ṗt=−∇Vp(Xt). This com-

putational and conceptual simplification motivates the study to determine the potential

and its implied accuracy compared with the Schrödinger equation, as started already

in the 1920s with the Born–Oppenheimer approximation [4]. The purpose of our work is

to contribute to the current understanding of such derivations by showing convergence

rates under new assumptions. The precise aim in this paper is to estimate the error∫
R3N 〈Φ(X), g(X)Φ(X)〉dX∫

R3N 〈Φ(X),Φ(X)〉dX
− lim

T→∞
1

T

∫ T

0
g(Xt)dt (5)

for scalar smooth observables g of the time-indepedent Schrödinger equation (2) approx-

imated by the corresponding molecular dynamics observable limT→∞ T−1
∫ T

0 g(Xt)dt,

which is computationally cheaper to evaluate in the case with several nuclei; Section 2

includes also the general case with position and momentum dependent observables.

The main step to relate the Schrödinger wave function and the molecular dynam-

ics solution is the so-called zero-order Born–Oppenheimer approximation, where Xt

solves the classical ab initio molecular dynamics (4) with the potential Vp : R3N →R
determined as an eigenvalue of the electron Hamiltonian V(X) for a given nuclei position
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Computational Error Estimates for Molecular Dynamics 7

X. That is, Vp(X)= λ0(X) and

V(X)Ψ0(X)= λ0(X)Ψ0(X), (6)

for a normalized electron eigenvector Ψ0(X) ∈CJ (here the ground state). The initial

data (X0, P0) is chosen to have its energy equal to the eigenvalue E , that is, |P0|2/2+
λ0(X0). The Born–Oppenheimer expansion [4] is an approximation of the solution of the

time-independent Schrödinger equation which is shown in [17, 25] to solve the time-

independent Schrödinger equation approximately when the electron operator V have

eigenvalues λ j(X) that are well separated, satisfying

min
X
(λ1(X)− λ0(X)) > c for a positive constant c independent of M. (7)

This expansion, analyzed by the methods of multiple scales, pseudodifferential

operators, and spectral analysis, for example, in [13, 16, 17, 25], can be used to

study the approximation error (5). The work [16, 17, 25, 33] prove asymptotic expansions

for the eigenfunction. In the literature, one can also find precise statements on the error

for the setting of the time-dependent Schrödinger equation, for example, in [5, 26, 33, 35],

which in some sense is easier since the stability issue is more subtle in the eigenvalue

setting. The aim of our work is to present a method to analyze this stability of the

eigenvalue problem, using the dynamic transition probability estimated from Ehren-

fest dynamics simulations as quantitative input, without assuming an M-uniform lower

bound c on the spectral gap.

We present error estimates for molecular dynamics approximation of time-

independent observables in quantum mechanics, valid also when the eigenvalues λn

of the electron operator V may nearly intersect and thereby increase the probability of

being in excited states. For the Schrödinger solution Φ to (2), with the electron ground

state Ψ0 satisfying (6), the probability pex to be in excited states is

pex :=
∫
R3N
〈Φ⊥(X),Φ⊥(X)〉dX, (8)

where Φ⊥(X) :=Φ(X)− 〈Ψ0(X),Φ(X)〉Ψ0(X). The derivation of the approximation error is

divided into three steps which defines the outline of the paper.

(I) The first step, in Section 2, proves that observables based on the time-

independent Schödinger equation can be approximated by stochastic

molecular dynamics on the constant energy manifold. The convergence

rate depends on the nuclei/electron mass ratio M and the probability pex to
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8 C. Bayer et al.

be in excited states. The proofs use Egorov’s theorem and assume that the

expected value of space-time averages of the molecular dynamics observ-

able converge in distributional sense with a rate related to the maximal

Lyapunov exponent.

(II) The second step, in Section 3, presents a numerical method to deter-

mine the probability to be in excited states from stability analysis of

a perturbed eigenvalue problem. The perturbation is determined from a

time-dependent excitation problem related to the Landau–Zener model

(with pd denoting the dynamic transition probability to go to the excited

state). Resonances of the eigenvalue problem then determines the larger

probability pex (to be in excited states for the Schrödinger eigenvalue prob-

lem) from the perturbations pd in the dynamic problem.

(III) The final step, in Section 4, on numerical results, illustrate that the

dynamic transition probability pd can be determined from Ehrenfest

molecular dynamics simulations applied to two simple model problems.

Section 5 proves a lemma on the regularity of the expected value of the molecular

dynamics solution and establishes in three other lemmas estimates on remainder terms

in Moyal expansions used in the theorems. Appendix 1 formulates WKB-solutions in the

case with caustics.

The main ingredient in step I is Egorov’s theorem which has been used exten-

sively to study semiclassical limits both in the time-dependent and time-independent

case, cf. [5, 38, 42]. We derive two estimates: Theorem 2.1 proves an estimate of

a weighted difference of the Schrödinger and molecular dynamics observables and

Theorem 2.2 derives an estimate of the difference of the Schrödinger and molecular

dynamics observables, without the weight. The idea to assume ergodic classical dynam-

ics to prove convergence of observables, in [29, 41], initiated the activity on quantum

ergodicity [49] and related results on semiclassical limits for scalar potentials, [20], and

matrix potentials with distinct eigenvalues [3]. The work [42] includes a recent review of

semiclassical limit results in the case of well-separated electron eigenvalue surfaces. In

this case with well-separated electron eigenvalues, satisfying (7), the probability to be

in the excited state is proved to be small pex =O(M−1). We want to include the case when

molecular dynamics simulations become inaccurate in practice. For an actual molecular

dynamics simulation, the mass M is given and the electron potential V does not depend

in M, so a positive spectral gap c does not depend on M. However, if the mass is not

large enough the molecular dynamics approximation may be inaccurate. Our analysis is

asymptotic for large M and to include the situation with a small gap for a certain mass
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Computational Error Estimates for Molecular Dynamics 9

we therefore consider a model when the spectral gap

min
X
(λ1(X)− λ0(X))=: δM > 0, (9)

can be close to zero, that is, when it is not uniformly bounded from below with respect

to M, and then pex can be large as seen, for example, in the Landau–Zener probabil-

ity (50) and Figure 4. There are four main new ingredients in our theorems compared

with previous studies. It is well known that the standard proof of Egorov’s theorem,

in the time-dependent case, combined with an assumption on the molecular dynam-

ics convergence rate toward its ergodic limit yields an error estimate for the molecular

dynamics observables when compared with the Schrödinger observables. The precise

form of the assumption on the convergence to the ergodic limit is important for the

conclusion of the approximation error compared with Schrödinger observables: (1) for

instance, assuming an algebraic convergence rate O(T−1/2), for molecular dynamics time

averages of length T , would only give logarithmic error estimates O(1/ log1/2 M) (also in

the case with a uniform spectral gap); (2) it is difficult to verify ergodicity for Hamilto-

nian dynamics, both theoretically and numerically. The first new ingredient here is to

use stochastic dynamics constrained on the constant energy surface instead of Hamil-

tonian dynamics. Introducing small stochastic perturbations on the constant energy

manifold have the advantage to guarantee ergodicity with respect to the microcanonical

ensemble and to provide observables with higher regularity. Our second ingredient is to

use a more precise convergence rate assumption based on space-time averages, which

can be tested numerically (see Figure 10) and yields a better error estimate O(M−γ̄ ), for

a positive γ̄ , The third ingredient is to prove uniform convergence rates in the num-

ber of particles N by careful use of localized mollifiers. Previous convergence proofs

require for instance, for a certain constant C , the quantity maxz∈R6N ,|α|≤C N |∂αz g(z)|M−1 to

be small but typically this is a large number for systems with many particles unless

the mass ratio M is very large and increasing with the number of particles N, see [20]

and [51, Theorem 15.4]. The fourth ingredient is that we include nonuniformly spectral

gap bounds (9): Theorems 2.1 and 2.2 prove the error estimate in step I in terms of the

probability pex to be in excited states, which is not a typical a priori information. Con-

sequently, the computational approximation of pex in steps II and III is an important

complement. Although to evaluate the practical value of the suggested method to esti-

mate the computational error in molecular dynamics these two steps need to be tested

on more realistic chemistry problems.

The alternative to consider molecular dynamics at constant temperature using

the canonical ensemble is important in practice and it also has the advantage of proved
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10 C. Bayer et al.

ergodic limits. The canonical ensemble is in a sense the average of the microcanonical

ensemble over all energies weighted with the Gibbs density. Therefore, the results here

are useful for ongoing analysis in the constant temperature setting.

2 Molecular Dynamics Approximation of Schrödinger Observables for

Matrix-valued Potentials

For every mass M
 1, we consider L2(R3N) wave functions Φ :R3N →RJ and eigenvalues

E ∈R, solving the Schrödinger eigenvalue equation

ĤΦ = EΦ, (10)

where

Ĥ :=− 1

2M
ΔX + V(X). (11)

Here, the symmetric smooth matrix-valued potential V : R3N →RJ2
has (electron) eigen-

values {λn}J−1
n=0 , ordered increasingly, with normalized eigenvectors {Ψn}J−1

n=0 satisfying

V(X)Ψn(X)= λn(X)Ψn(X)

and the spectral gap condition (9). The eigenvalues {λn, n≥ 1}may be degenerate but λ0 is

not. Both Φ and E depend on the mass M and we will only consider those eigenfunctions

where the corresponding eigenvalue is bounded, that is, the Φ for which E =O(1) as

M→∞. That is, we assume that for every M
 1 there are solutions Φ =ΦE ∈ L2(R3N)

with eigenvalue E =O(1) to (10), as M→∞. On the other hand, the matrix V does not

depend on M explicitly and consequently also the eigenvectors and eigenvalues Ψn and

λn do not depend on M explicitly. However, to include the case of a small spectral gap,

we assume that the positive spectral gap, δ, in (9) is not uniform in M and we study

estimates depending on the two parameters M and δ. To handle ergodicity for the Born–

Oppenheimer dynamics, we will below assume that the smallest eigenvalue λ0(X) is

smooth and tends to infinity as |X|→∞. This assumption in fact also implies that the

spectrum of Ĥ is discrete, see [9].

We consider a given smooth scalar observable g : R6N →R in the Schwartz space

constructed as

g= ḡ ∗ φη,
sup
z∈R6N

∑
|β|≤4

|∂βz ḡ(z)|2 is uniformly bounded with respect to N, (12)

 at U
niversity of O

slo L
ibrary on A

ugust 6, 2015
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 



Computational Error Estimates for Molecular Dynamics 11

where for some η > 4M−1/2 the mollifier φη : R6N →R is defined by φη(z) :=
(2πη)−3N e−|z|

2/(2η) and ḡ :R6N →R is smooth and compactly supported. We assume that

each solution Φ =ΦE to (10) is normalized, that is,
∫
R3N 〈Φ(X),Φ(X)〉dX = 1, and define

for each Φ the observable

gS :=
∫
R3N
〈Φ(X), ĝΦ(X)〉dX, (13)

based on the Weyl quantization, see [32],

ĝΦ(X)=Op[g]Φ(X) := (2πM−1/2)−3N
∫
R6N

eiM1/2(X−Y)·P g
(

X + Y

2
, P
)
Φ(Y)dY dP ,

using the inner products

〈w, v〉 :=
J∑

j=1

w∗jv j for w, v ∈CJ , X · P :=
3N∑
n=1

XnP n for X, P ∈R3N .

We note that in the case g(X, P )= g(X) is a function of X only, then the Weyl quantization

acts as a multiplication operator, that is, ĝΦ(X)= g(X)Φ(X). We also define the Wigner

transform

W(X, P ) := (2πM−1/2)−3N
∫
R3N

eiM1/2Y·P
〈
Φ

(
X + Y

2

)
,Φ
(

X − Y

2

)〉
dY (14)

and

Wjk(X, P ) := (2πM−1/2)−3N
∫
R3N

eiM1/2Y·PΦ∗
j

(
X + Y

2

)
Φk

(
X − Y

2

)
dY,

and note that Φ =ΦE is different for different eigenvalues E . The change of variables

X′ = X + Y

2
, Y′ = X − Y

2

shows that for any g :R6N →R and A :R6N →RJ2

∫
R3N
〈Φ(X), ĝΦ(X)〉dX =

∫
R6N

g(X, P )W(X, P )dX dP ,∫
R3N
〈Φ(X), ÂΦ(X)〉dX =

∫
R6N

J∑
j=1

J∑
k=1

Ajk(X, P )Wjk(X, P )dX dP .

Our estimates of remainder terms use the corresponding function W(s) defined for

s ∈ [0, 1] by

W(s)(X, P ) := (2πM−1/2)−3N
∫
R3N

eiM1/2Y·P 〈Φ(X + sY),Φ(X − (1− s)Y)〉dY, (15)
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12 C. Bayer et al.

which is the “Wigner”-function corresponding to the alternative quantization

(2πM−1/2)−3N
∫
R9N
〈Φ(X), g(X + s(Y − X), P )Φ(Y)〉 eiM1/2(X−Y)·P dY dX dP

=
∫
R6N

g(X, P )W(s)(X, P )dX dP . (16)

We will approximate the Schrödinger observable by dynamics related to ab initio

molecular dynamics

Ẋt= Pt,

Ṗt=−∇Xλ0(Xt),
(17)

based on the Hamiltonian

H0(X, P ) := |P |
2

2
+ λ0(X).

We assume that λ0 is smooth and coercive in the sense that

lim
|X|→+∞

λ0(X)=+∞. (18)

In order to obtain precise estimates of the approximation error which are uniform in N,

we consider a mollified Hamiltonian

Hη(X, P ) := |P |2/2+ λη(X),

λη(X) := λ0 ∗ φη(X),

where φη(X)= (2πη)−3N/2 e−|X|
2/(2η) is a standard mollifier on the small scale

√
η. To

obtain good approximation of observables compared with the Schrödinger case, we

use η= 4M−1/2. To ensure ergodic molecular dynamics and still approximate the Born–

Oppenheimer dynamics, we will compare the Schrödinger observable to the observable

for stochastic dynamics restricted to the manifold

ΣE := {(X, P ) ∈R6N | Hη(X, P )= E},

for the constant energy E equal to the Schrödinger eigenvalue, with a small stochas-

tic perturbation of (17). Let Z = (X, P ) ∈R6N denote the phase-space variable, then one

example of such stochastic Stratonovich dynamics on ΣE takes the form

dZt= J∇Hη(Zt)dt+
√

2ετP(Zt) ◦ dW̃t, (19)
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Computational Error Estimates for Molecular Dynamics 13

where ε < M−1/2 is a small positive parameter, W̃ is the standard Wiener process

in R6N with independent components, the skew symmetric matrix J is defined by

J∇Z Hη(X, P )= (P ,−∇Xλη(X)), the parameter τ ∼ 1 is positive, and the projection P(Z)
onto the tangent space of ΣE at Z ∈ΣE reads

P(Z) := Id− n̂(Z)⊗ n̂(Z)

with the normal n̂(Z) :=∇Hη(Z)/|∇Hη(Z)| to ΣE . We assume that ∇Hη|Σe �= 0 for all e∈R.

Since also Hη is assumed to be smooth and coercive, the set Σe is a smooth compact

codimension 1 manifold in R6N for every e∈R. The dynamics (19) is the projection of the

Ito differential equation

dzt= (J∇Hη(zt)− ε∇Hη(zt))dt+
√

2ετ dW̃t (20)

to ΣE and zt has a unique equilibrium measure, which is the Gibbs measure

e−Hη(z)/τ dz
/∫

R6N
e−Hη(z)/τ dz.

The diffusion parameter ε can, for instance, also be a semipositive-definite constant

diagonal matrix, so that (20) includes the Langevin equation. The work [12] proves that

the projected dynamics (19) also is ergodic and the equilibrium measure is the micro-

canonical measure

dν(Z) :=
(∫

ΣE

dΣ

|∇Hη|
)−1 dΣ(Z)

|∇Hη(Z)| ,

that is, limT→∞ T−1
∫ T

0 g(Zt)dt= ∫
ΣE

g(z)dν(z) where dΣ is the surface measure on ΣE

induced by the Lebesgue measure in R6N . Alternative ergodic dynamics on ΣE sampling

the microcanonical measure are presented in [12].

The Ito dynamics corresponding to (19) reads, see [8, 12],

dZt= P(Zt)(J∇Hη(Zt)− ε∇Hη(Zt))︸ ︷︷ ︸
=J∇Hη(Zt)

dt− ετκ(Zt)n̂(Zt)dt+
√

2ετP(Zt)dW̃t, (21)

where κ(z) := div n̂(z) is the mean curvature at z on ΣE . The Kolmogorov equation for the

expected value u(t, z) :=E[g(ẐT ) | Zt= z], for t≤ T , of paths Z satisfying (19) becomes

∂tu(t, z)+ (J∇Hη(z)− ετκ(z)n̂(z)) · ∇zu(t, z)+ ετ trace(P(z)∇2u(t, z))︸ ︷︷ ︸
=Lu(t,z)

= 0 t< T ,

u(T , ·)= g,

(22)
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14 C. Bayer et al.

where ∇2u(t, Z) denotes the Hessian with respect to z , so that

trace(P(z)∇2u(t, z))=
∑
i, j

Pi j(z)∂zi∂zj u(t, z) and Pi j = δi j − n̂in̂j.

This Kolmogorov equation has an intrinsic definition based only on the coordinates on

ΣE , see [12]. The expected value u is smooth and the compact support of ḡ implies that u

decays rapidly as |Z |→∞, so that u is in the Schwartz class. The work [12] also proves

an exponential convergence rate to equilibrium: let the initial data g be smooth in a

neighborhood of ΣE then there is a positive constant γ0 ∼ ε such that∥∥∥∥u(t, ·)−
∫
ΣE

u(T , Z)dν(Z)

∥∥∥∥
L2(dν(ΣE ))

=O(e−γ0(T−t)), t< T . (23)

The upper and lower bounds in [21] on the convergence rate exponent γ0 for Langevin

dynamics in the full R6N phase-space prove that the rate is bounded from below by a

constant times ε and from above by a constant times log(1/ε) where ε� 1 is the damping

factor, as in (20), for fixed positive temperature τ .

Let Sts(Z) := (Zt | Zs = Z), for t> s be the stochastic flow of the dynamics (19), that

is, the solution Zt that starts in Z at time s, for a realization W̃(·,ω) of the Wiener pro-

cess. Then we have u(t, Z)=E[g ◦ STt(Z)]. We write St := St0 so that u(0, Z)=E[g ◦ ST (Z)].

This function satisfies the exponential growth

sup
Z∈R6N

⎛⎝∑
|β|≤n

|∂βZ0
E[g ◦ St(Z0)]|2

⎞⎠1/2

≤ eĈ (t+1)δmin(0,−n+1), n≤ 4, (24)

where Ĉ is independent of M, δ, and ε, as derived in Lemma 5.1 under assumption (97)

including weak near crossing of eigenvalues.

Define the molecular dynamics microcanonical observable

gMD(Z0) := lim
T→∞

1

T

∫ T

0
g(St(Z0))dt=

∫
ΣE

g(z)dν(z), (25)

depending on the initial energy E = Hη(Z0). Our main assumption on the dynamics is

that we assume that for some ε < M−1/2 there is a positive constants γ , independent of

ε and M, such that ∫
R6N

2

T

∫ T

T/2
(E[g ◦ Ss](Z0)− gMD(Z0))dsW(Z0)dZ0

≤ e−γT +O(M−1) for T ≤ log M/(Ĉ + γ ). (26)
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Computational Error Estimates for Molecular Dynamics 15

The constant Ĉ depends on the observable g so that an observable related to a macro-

scopic quantity may have better convergence rate in the case of a large system.

From (23), we know that there is a constant γ ∼ ε satisfying (26). Assumption (26)

says that the decay with respect to time T of

2

T

∫ T/2

0

(
u(t, Z0)−

∫
R6N

u(T , ·)dν
)

dt

integrated over the Wigner distribution is exponential with the decay rate γ ∼ 1 (for

some ε < M−1 and T < log M/(Ĉ + γ )) plus possibly an additional constant small term

M−1 independent of t. The ergodic assumption

lim
T→∞

1

T

∫ T

0
g ◦ St0(Z0)dt=

∫
R6N

g(z)dν(z),

for the Hamiltonian dynamics with ε = 0 is used in [3, 20, 29, 41] to prove convergence

of Schrödinger observables. This ergodic assumption is difficult to verify numerically,

since a numerical approximation of the dynamics will always perturb the dynamics

and it is theoretically unclear how this perturbation effects the dynamics over infi-

nite time, see [46]. To find a method to prove ergodicity for general Hamiltonian sys-

tems also remains a challenge, cf. [46]. An advantage with assumption (26) is that it

can be tested numerically for some initial points Z0, see Figure 10, since the time

discretization error can be made small compared with the bound O(M−1), by tak-

ing a small time step Δt< M−1, and the simulation time T < log M/Ĉ is finite. Not all

dynamics satisfy (26). For instance, there exists billiard dynamics in “stadium” domains

in R2 that is proved to be ergodic for almost all initial data but is nonergodic for

some data with corresponding concentrated Schrödinger eigenfunctions, see [19]. Small

perturbations of these data with nonergodic dynamics will need very long time to

reach asymptotically ergodic behavior and consequently also the stochastic regular-

ization above is likely to have γ in (26) depending on ε so that our assumption would

not hold.

Having introduced the necessary notation and terminology, we are now ready

to present an estimate for the weighted difference between the Schrödinger and

stochastic molecular dynamics observables that is expressed in terms of the spec-

tral gap, the mass, and the excitation probability. Theorem 2.2, presented in the end

of this section, then estimates the difference gS − gMD of the observables without the

weight.
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16 C. Bayer et al.

Theorem 2.1. For every M
 1, consider the Schrödinger eigenvalue problem (10)

and (11) with a solution Φ ∈ L2(R3N), for a corresponding eigenvalue E =O(1), and

assume:

(i) the observable g satisfies (12) and the potential V is smooth with

supX∈R3N

∑
1≤|σ |≤3 |∂σXV(X)|2 bounded, uniformly in N, where | · | is the

matrix 2-norm in CJ ,

(ii) the molecular dynamics limit gMD in (25) satisfies the weak convergence

rate (26),

(iii) the electron eigenvector Ψ0 and eigenvalue λη are smooth and have bounded

derivatives satisfying, for some δ = δM > 0 defined in (9) (which may depend

on M) and any |β| ≤ 2, and for any |α| ≤ 4,

|∂βXΨ0(X)| =O(δ−|β|),
|∂αXλη(X)| =O(δ−|α|+1),

(iv) the Hamiltonian Hη is smooth, satisfies the coercivity (18) and ∇Hη|Σe �= 0

for all e∈R,

(v) the exponential bound (24) holds with the constant Ĉ uniformly bounded

in N.

Let the probability to be in excited states be denoted by pex = pex(Φ), as defined in (8),

and define the Wigner transform W=W(Φ) by (14). Then, for M−1/2δ−2 =O(1), the molec-

ular dynamics observable gMD approximates the Schrödinger observable gS, defined

in (13), with the weighted error estimate∣∣∣∣∫
R6N

(gS − gMD(Z0))W(Z0)dZ0

∣∣∣∣≤ C (eĈ T (M−1δ−4 + C Nεδ
−1 + ηδ−2 + p1/2

ex )+ e−γT ), (27)

for any T > 0, and by choosing T such that e−(Ĉ+γ )T = (M−1/2δ−2 + p1/2
ex ), η= 4M−1/2, and

ε sufficiently small∣∣∣∣∫
R6N

(gS − gMD(Z0))W(Z0)dZ0

∣∣∣∣≤ C (M−1/2δ−2 + p1/2
ex )

γ

Ĉ+γ , (28)

for a constant C , independent of M
 1, pex � 1, δ, γ , N, and Ĉ . �

To prove this theorem, we modify the proof of Egorov’s theorem [38] to include

stochastic dynamics and the assumption (26) on the space-time convergence rate and

to replace the uniform spectral gap bound for matrix-valued perturbation potentials

V(X), in [3, 42], with Assumption (iii). Assumption (iii) with δ > 0 excludes a conical
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Computational Error Estimates for Molecular Dynamics 17

intersection but avoided crossings are allowed with a spectral gap in (9) that is not uni-

formly bounded from below as a function of M. The Landau–Zener probability (50) in

Section 3.2 (combined with (52) and (82)) illustrate for instance that pex can be close to

one for an avoided crossing, with a small spectral gap minX(λ1(X)− λ0(X))= δ =M−1/4.

That p1/2
ex can be of the same order as M−1δ−4 in the estimate (27) motivates the study of

the approximation error as a function of pex and M. To have pex large seems to require

smaller gaps δ � M1/4, see Section 3. It would be desirable to have analytic estimates of

pex, since it is determined by M and V . Such estimates are known, pex = o(1) as M→∞,

for the case when spectral gap δ > c> 0 is uniformly bounded from below while in the

case with no uniform spectral gap the required smoothness of projection to the ground

state is assumed, see [45]. The lack of analytic estimates of pex is our motivation for

using pex in addition to M as parameter in the theorems and presenting the computa-

tional method to determine pex in this work.

We note that stochastic dynamics has a regularizing effect since E[g ◦ Ss], with

ε > 0, is in general more regular than g ◦ Ss, with ε = 0. In fact, we do not explicitly need

the stochastic flow S: the proof only uses the deterministic value u(t, ·)=E[g ◦ STt(·)] and

its flow u(t, ·)=: S̄tTu(T , ·), for t< T , with the generator ∂tu(t, ·)=−Lu(t, ·). The exponen-

tial bound in assumption (v) is proved in Lemma 5.1 under an assumption that allows

weak near crossing of eigenvalues away from regions where P vanishes.

Proof. Consider the solution operator eiM1/2tĤ of the time-dependent Schrödinger

equation

iM−1/2∂tΨ (t, X)= ĤΨ (t, X)

defined by Ψ (t, ·)= e−iM1/2tĤΨ (0, ·). We will compare the observable

gS =
∫
R3N
〈e−iM1/2tĤΦ(X), ĝ e−iM1/2tĤΦ(X)〉dX

=
∫
R3N
〈Φ(X), eiM1/2tĤ ĝ e−iM1/2tĤΦ(X)〉dX

to the expected value

2

T

∫ T

T/2

∫
R6N

E[g ◦ St(Z0)]W(Z0)dZ0 dt= 2

T

∫ T

T/2

∫
R3N
〈Φ(X0), ̂E[g ◦ St]Φ(X0)〉dX0 dt.

By construction, we have that St(Z0) is in the compact manifold ΣHη(Z0). The coerciv-

ity (18) of λ0 and the decay of g in phase-space imply therefore that g(St(Z0)) decays

sufficiently fast for large |Z0|. The integrals above are therefore well defined. Since V

is smooth, elliptic regularity implies that the solution Φ to the Schrödinger eigenvalue
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18 C. Bayer et al.

problem also is smooth. Let ū be the solution to

∂tū(t, z)− Lū(t, z)= 0, t> 0,

ū(0)= ḡ,
(29)

then E[ḡ ◦ St(Z0)]= ū(t, Z0) and g= ḡ ∗ φη. We have, using the commutator [Â, B̂] := ÂB̂ −
B̂ Â and that ĤΦ = EΦ,

∫
R6N

ū(t, ·) ∗ φη(Z)W(Z)dZ − gS

=
∫
R3N

〈
Φ(X), ̂ū(t, ·) ∗ φη − eiM1/2tĤ ̂ū(0, ·) ∗ φη e−iM1/2tĤΦ(X)

〉
dX

=
∫
R3N

〈
Φ(X),

∫ t

0

∂

∂s
(eiM1/2(t−s)Ĥ ̂ū(s, ·) ∗ φη e−iM1/2(t−s)Ĥ )dsΦ(X)

〉
dX

=
∫
R3N

〈
Φ(X),

∫ t

0
eiM1/2(t−s)Ĥ

(
∂

∂s
Op[ū(s, ·) ∗ φη]− iM1/2[Ĥ , ̂ū(s, ·) ∗ φη]

)
× e−iM1/2(t−s)ĤΦ(X)

〉
ds dX

=
∫ t

0

∫
R3N

〈
eiM1/2(t−s)ĤΦ(X), Op[((P · ∇X −∇λη · ∇P )ū(s, ·)) ∗ φη(X, P )]

− iM1/2
[
Ĥ , ̂ū(s, ·) ∗ φη

]
+ Op

[(
− ετκ

|∇Z Hη|∇Z Hη · ∇Z ū(s, ·) ∗ φη

+ ετ trace(P∇2
Z )ū(s, ·)

)
∗ φη(Z)

]
× e−iM1/2(t−s)ĤΦ(X)

〉
dX ds

=
∫ t

0

∫
R3N

〈
eiM1/2(t−s)EΦ(X), Op[((P · ∇X −∇λη(X) · ∇P )ū(s, ·)) ∗ φη(Z)]

+ O(ε)− iM1/2
[
Ĥ , ̂ū(s, ·) ∗ φη

]
e−iM1/2(t−s)EΦ(X)

〉
dX ds

=
∫ t

0

∫
R3N

〈
Φ(X), (Op[((P · ∇X − ∇λη(X) · ∇P )ū(s, ·)) ∗ φη(Z)]

+O(ε)− iM1/2[Ĥ , Op[ū(s, ·) ∗ φη]])Φ(X)
〉
dX ds. (30)

In the fourth equality, we have used (29) to conclude that

∂

∂s
Op[ū(s, ·) ∗ φη(Z)]=Op

[
∂

∂s
ū(s, ·) ∗ φη(Z)

]
=Op[(Lū(s, ·)) ∗ φη(Z)]

=Op
[((

J∇Z Hη − ετκ

|∇Z Hη|∇Z Hη

)
· ∇Z + ετ trace(P∇2

Z )

)
ū(s, ·) ∗ φη

]
=Op[(J∇Z Hη · ∇Z ū(s, ·)) ∗ φη(Z)]+O(C Nεδ

−1 eĈ t).

 at U
niversity of O

slo L
ibrary on A

ugust 6, 2015
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 



Computational Error Estimates for Molecular Dynamics 19

Here the estimate

∣∣∣∣∫
R3N

〈
Φ, Op

[(
− ετκ

|∇Z Hη|∇Z Hη · ∇Z + ετ trace(P∇2
Z )ū(s, ·) ∗ φη

)]
Φ

〉
dX

∣∣∣∣≤ C Nεδ
−1 eĈ t

(31)

follows by Lemma 5.4 and we note that the term is negligible small by choosing ε suf-

ficiently small, although the constant C N typically is large as it depends on order N

derivatives of the symbol.

To estimate terms in the error representation (30) is now the remaining four

steps in the proof.

1. The Moyal expansion for the commutator of two Weyl operators in [5, 25] and

Lemma 5.5 is stated for scalars and here we apply Lemma 5.5 to each matrix component

jk of Ĥ to obtain

iM1/2[Ĥ , ̂ū(s, ·) ∗ φη] jkΦk= iM1/2[Ĥ jk, ̂ū(s, ·) ∗ φη]Φk

= (Op[(∇P Hjk(X, P ) · ∇X − ∇X Hjk(X, P ) · ∇P )(ū(s, ·) ∗ φη)(X, P )]+ R̂M)Φk(X) (32)

for the matrix components

Hjk(X, P )= |P |
2

2
δ jk + Vjk(X),

where the remainder takes the form, see [5] and Section 5,

RM :=Op

⎡⎣ m∑
n=1

2M−n(2i)−n
∑

|α|=2n+1

(−1)|α|

α!
∂αXVjk(X)(∂

α
P ū(s, ·) ∗ φη)(X, P )+ M−(m+1)rm

⎤⎦ (33)

and rm is smooth. We will use R̂M for m= 1. Lemma 5.5 in Section 5 shows that

∫
R3N
〈Φ, R̂MΦ〉 =O(eĈ Tδ−2M−1). (34)

2. The normalization property 1= ∫R6N W(Z)dZ implies that

gS =
∫
R6N

gSW(Z)dZ
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20 C. Bayer et al.

and we obtain by (30) and (32)

∫
R6N

(
gS − 2

T

∫ T

T/2
ū(t, ·) ∗ φη(Z)dt

)
W(Z)dZ

= 2

T

∫ T

T/2

(
gS −

∫
R6N

ū(t, ·) ∗ φη(Z)
)

W(Z)dZ dt

= 2

T

∫ T

T/2

∫ t

0

∫
R3N
〈Φ(X), Op[((∇λη(·)I − ∇XV(X)) · ∇P ū(s, ·)) ∗ φη(X, P )]Φ(X)〉dX ds dt

+ 2

T

∫ T

T/2

∫ t

0

∫
R3N
〈Φ(X), (O(ε)+ R̂M)Φ(X)〉dX ds dt︸ ︷︷ ︸
=O(eĈ T (M−1δ−2+εC Nδ−1))

, (35)

where we use the bounds (34) and (31) in last term.

3. We have the desired quantity
∫
R6N (gS − gMD)W dX dP in the left-hand side

above by adding and subtracting the molecular dynamics observable gMD, to the sec-

ond term in the left-hand side, and using its convergence rate e−γT + M−1 from (26) as

follows:

∫
R6N

2

T

∫ T

T/2
ū(t, ·) ∗ φη(Z)dtW(Z)dZ

=
∫
R6N

gMD(Z)W(Z)dZ +
∫
R6N

2

T

∫ T

T/2
(ū(t, ·) ∗ φη(Z)− gMD(Z))dtW(Z)dZ

=
∫
R6N

gMD(Z)W(Z)dZ +O(e−γT + M−1),

which yields the last term in the error bound (27).

4. It remains to estimate the first term in the right-hand side of (35). The rule for

the composition of Weyl quantizations, cf. [32] and Lemma 5.5 in Section 5,

ÂB̂ = ÂB − iM−1/2Op

⎡⎢⎣ {A, B}︸ ︷︷ ︸
:=∇P A·∇X B−∇X A·∇P B

⎤⎥⎦+O(M−1), (36)

for smooth scalar functions A, B :R6N →R. The first term in the right-hand side of (35)

can be written as follows:

∫
R3N
〈Φ, Op[((∇λη(·)I −∇XV(X)) · ∇P ū(s, ·)) ∗ φη(X, P )]Φ〉dX
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Computational Error Estimates for Molecular Dynamics 21

and to estimate this term we use (8) and write Φ =Φ⊥ +Π0Φ, where ‖Φ⊥‖L2(dX) = p1/2
ex

and Π0w := 〈w,Ψ0〉Ψ0, for w ∈RJ , defines the projection onto the ground state. The inte-

gral terms including the factor Φ⊥ are bounded using Lemma 5.5∫
R3N
〈Φ⊥, Op[−(∇λη(·)I −∇XV(X)) · ∇P ū(s, ·) ∗ φη(X, P )]Φ〉dX

+
∫
R3N
〈Φ, Op[−(∇λη(·)I −∇XV(X)) · ∇P ū(s, ·) ∗ φη(X, P )]Φ⊥〉dX =O(eĈ T p1/2

ex ).

The main term related to the consistency of the approximation can be written as follows:

Op[−(∇λη(·)I − ∇XV(X)) · ∇P ū(s, ·) ∗ φη(X, P )]

=Op[−(∇λη(X)I −∇XV(X)) · ∇P ū(s, ·) ∗ φη(X, P )]

+ Op[−(∇λη(·)− ∇λη(X)) · ∇P ū(s, ·) ∗ φη(X, P )],

where Lemma 5.3 shows that the last term is bounded by

sup
(X,P )∈R6N

|(∇λη(X)− ∇λη(·)) · ∇P ū(s, ·) ∗ φη(X, P )|︸ ︷︷ ︸
=O(eĈ sηδ−2)

+O(η eĈ sδ−2)=O(eĈ sηδ−2)

since the symbol satisfies∫
R6N

(∇λη(X)− ∇λη(X − X′)) · ∇P ū(s, X − X′, P − P ′)φη(X′, P ′)dX′ dP ′

=
∫
R3N

3N∑
j=1

∂X j∇λη(X) · ∇P ū(s, X, P − P ′)
∫
R3N

X′jφη(X
′, P ′)dX′︸ ︷︷ ︸

=0

dP ′

+
∫
R6N

3N∑
j,k=1

∫ 1

0
(1− t)(∂X j Xk∇λη(X − tX′) · ∇P ū(s, X − tX′, P − P ′)

+ 2∂X j∇λη(X − tX′) · ∂Xk∇P ū(s, X − tX′, P − P ′)

+ ∂X j (∇λη(X)− ∇λη(X − tX′)) · ∂Xk∇P ū(s, X − tX′, P − P ′))X′j X
′
kφη(X

′, P ′)dX′ dP ′ dt

≤
∥∥∥∥∥∥

3N∑
j,k=1

∫ 1

0
(1− t)(|∂X j Xk∇λη(X − tX′) · ∇P ū(s, X − tX′, P − P ′)|

+ 2|∂X j∇λη(X − tX′) · ∂Xk∇P ū(s, X − tX′, P − P ′)|

+ |∂X j (∇λη(X)−∇λη(X − tX′)) · ∂Xk∇P ū(s, X − tX′, P − P ′)|)dt

∥∥∥∥∥∥
L∞

× sup
j,k
‖X′j X

′
kφη(X

′, P ′)‖L1 dt.
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The remaining term satisfies, using (36) and the notation V̌(X) := V(X)− λη(X),∫
R3N
〈Π0Φ, Op[∇XV̌(X) · ∇P ū(s, ·) ∗ φη(X, P )]Π0Φ〉dX

=
∫
R3N
〈Φ,Π0Op[∇XV̌(X) · ∇P ū(s, ·) ∗ φη(X, P )]Π0Φ〉dX

=
∫
R3N

〈
Φ,Π0

1

2
(∇XV̌(X) · Op[∇P ū(s, ·) ∗ φη(X, P )]

+ Op[∇P ū(s, ·) ∗ φη(X, P )] · ∇XV̌(X))Π0Φ

〉
dX +O(eĈ T M−1δ−4)

=
∫
R3N
〈Φ,Π0∇XV̌(X)Π0︸ ︷︷ ︸

=O(η)

·Op[∇P ū(s, ·) ∗ φη]Φ〉dX

+
∫
R3N
〈Φ,Π0∇XV̌(X) · (Op[∇P ū(s, ·) ∗ φη(X, P )] (Π0 −Π0 ∗ φη)︸ ︷︷ ︸

=O(ηδ−2)

Φ〉dX

−
∫
R3N
〈Φ,Π0∇XV̌(X) · (Π0 −Π0 ∗ φη)︸ ︷︷ ︸

=O(ηδ−2)

Op[∇P ū(s, ·) ∗ φη(X, P )])Φ〉dX

+
∫
R3N

〈
Φ,Π0∇XV̌(X)

× (Op[∇P ū(s, ·) ∗ φη(X, P )]Π0 ∗ φη −Π0 ∗ φηOp[∇P ū(s, ·) ∗ φη(X, P )])︸ ︷︷ ︸
=O(eĈ T M−1δ−4)

Φ

〉
dX, (37)

where the first term is O(η) since V̌ = (V − λ0)+ λ0 − λη and the gradient of the ground

state condition (V − λ0)Ψ0 = 0 implies

〈Ψ0,∇(V − λ0)Ψ0〉 =−〈Ψ0, (V − λ0)∇Ψ0〉 =−〈(V − λ0)Ψ0,∇Ψ0〉 = 0,

and the second term is estimated by Lemma 5.5. Therefore, the right-hand side in (35)

yields the contribution O(eĈ T (M−1δ−4 + p1/2
ex )) to the error bound (27). �

The next result shows that the difference of the observables can be estimated

without the weight W.

Theorem 2.2. Let Ē := ∫R6N Hη(Z)W(Z)dZ and assume that

(i) the assumptions in Theorem 2.1 hold and

(ii) the function g̃MD :R→R is defined by

gMD(Z)=: g̃MD(Hη(Z)) for Z ∈R6N ,
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Computational Error Estimates for Molecular Dynamics 23

then ∫
R6N

gMD(Z)W(Z)dZ = g̃MD(Ē)+O(M−1δ−4 + p1/2
ex )

and

gS − g̃MD(Ē)=O((M−1/2δ−2 + p1/2
ex )

γ

Ĉ+γ ),

where

Ē = E +O(pex + η). �

Proof. The function g̃MD(E)=
∫
ΣE

g(z)dν(z)/
∫
ΣE

dν(z) can be written as the convolution

g̃MD(E)=
∫
ΣE

g(z)dν(z)=
∫
R6N

∫
ΣE

ḡ(z− z′)dν(z)φη(z
′)dz′ (38)

and as

g̃MD(E)=
∫
R6N g(Z)δ(Hη(Z)− E)dZ∫

R6N δ(Hη(Z)− E)dZ
.

Using the assumption that |∇Z Hη(Z)||ΣE does not vanish, the function g̃MD is smooth

since we have for Z = (X, P )

d

dE

∫
R6N

g(Z)δ(Hη(Z)− E)dZ =−
∫
R6N

g(Z)δ′(Hη(Z)− E)dZ

=−
∫
R6N

g(Z)

|∇Hη(Z)|
∇Hη(Z)

|∇Hη(Z)| · ∇Hη(Z)δ
′(Hη(Z)− E)dZ

=−
∫
R6N

g(Z)

|∇Hη(Z)|
∇Hη(Z)

|∇Hη(Z)| · ∇Zδ(Hη(Z)− E)dZ

=
∫
R6N

div
(

g(Z)∇Hη(Z)

|∇Hη(Z)|2
)
δ(Hη(Z)− E)dZ

and similarly for higher order derivatives.

Taylor expansion implies

g̃MD(Ẽ)= g̃MD(Ē)+ g̃′MD(Ē)(Ẽ − Ē)+ 1
2 g̃′′MD(ξ)(Ẽ − Ē)2,

for some ξ = ξ(Ẽ) between Ẽ and Ē satisfying g̃′′MD(ξ(Ẽ)) := 2
∫ 1

0 g̃′′MD(sẼ + (1− s)E)(1−
s)ds, and integration with Ẽ = Hη(Z) yields the moment relation∫

R6N
gMD(Z)W(Z)dZ =

∫
R6N

g̃MD(Hη(Z))W(Z)dZ

= g̃MD(Ē)
∫
R6N

W(Z)dZ︸ ︷︷ ︸
=1

+g̃′MD(Ē)
∫
R6N

(Hη(Z)− Ē)W(Z)dZ︸ ︷︷ ︸
=0

+ 1

2

∫
R6N

g̃′′MD(ξ(Hη(Z)))(Hη(Z)− Ē)2W(Z)dZ . (39)
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24 C. Bayer et al.

The definition of Ē shows the error estimate

Ē =
∫
R6N

Hη(Z)W(Z)dZ =
∫
R3N
〈Φ(X), ĤηΦ(X)〉dX

=
∫
R3N
〈Φ(X), ĤΦ(X)〉dX −

∫
R3N
〈Φ(X), (V − λ0)Φ(X)〉dX

−
∫
R3N
〈Φ(X), (λ0 − λη)Φ(X)〉dX

= E +O(pex)+O(η), (40)

since Ĥη = Ĥ − ˆ̌V = Ĥ − (V − λ0)− (λ0 − λη).

The rule for composition of Weyl quantizations, in (117) in Lemma 5.5, shows

that

ÂB̂ = ÂB − iM−1/2Op

⎡⎢⎣ {A, B}︸ ︷︷ ︸
=:∇P A·∇X B−∇X A·∇P B

⎤⎥⎦+O(M−1δ−4),

for A= Hη − Ē and B(Z)= g̃′′MD(ξ(Hη(Z))), which implies

Op[g̃′′MD(ξ(Hη))(Hη − Ē)2]=Op[Hη − Ē ]Op[g̃′′MD(ξ(Hη))]Op[Hη − Ē ]+O(M−1δ−4),

since we have

{g̃′′MD(ξ(Hη)), Hη − Ē} = 0,

{Hη − Ē , Hη − Ē} = 0.

Therefore, the last term in (39) becomes∫
R6N

g̃′′MD(ξ(Hη(Z)))(Hη(Z)− Ē)2W(Z)dZ +O(M−1δ−4)

=
∫
R3N

〈
̂(Hη − Ē)Φ(X), Op[g̃′′MD(ξ(Hη(Z)))]

̂(Hη − Ē)Φ(X)
〉

dX

=
∫
R3N

〈
(Ĥ − Ē − V̌)Φ(X), Op[g̃′′MD(ξ(Hη(Z)))](Ĥ − Ē − V̌)Φ(X)

〉
dX

=
∫
R3N

〈
(E − Ē − V̌)Φ(X), Op[g̃′′MD(ξ(Hη(Z)))](E − Ē − V̌)Φ(X)

〉
dX

=
∫
R3N

〈
(E − Ē)︸ ︷︷ ︸
=O(pex+η)

Φ − V̌Φ⊥(X), Op[g̃′′MD(ξ(Hη(Z)))](E − Ē − V̌)Φ(X)

〉
dX

=O(p1/2
ex + η),

which combined with (39) and Theorem 2.1 proves the theorem. �

 at U
niversity of O

slo L
ibrary on A

ugust 6, 2015
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 



Computational Error Estimates for Molecular Dynamics 25

3 Determining the Probability to be in Excited States

The purpose of this section is to describe a numerical method to approximate the prob-

ability pex to be in excited states for the Schrödinger eigenvalue problem, without solv-

ing a Schrödinger eigenvalue problem and instead analyze a certain eigenvalue problem

with respect to perturbations related to the dynamic behavior for a time-dependent

problem. This perturbation study is formal in the sense that precise conditions for its

validity is not presented here. The perturbation model is first formulated in one spa-

tial dimension and then in multiple dimensions in Section 3.3. The perturbation uses

the WKB-method to formulate transitions and is presented in Section 3.1. The dynamic

problem is related to the Landau–Zener model and Ehrenfest dynamics as described in

Section 3.2.

3.1 Construction of WKB-solutions

To construct a numerical method for approximating the probability pex to be in excited

states, without solving a Schrödinger equation, we will use a decomposition of the

Schrödinger solution into WKB-functions (78). This section presents a construction of

such WKB-functions.

The singular perturbation −(2M)−1∑
kΔXk of the matrix-valued potential V in

the Hamiltonian (3) introduces an additional small scale M−1/2 of high frequency oscil-

lations, as shown by a WKB-expansion, see [10, 23, 36]. We shall construct solutions

to (2) in such a WKB-form

Φ(X)= φ(X) eiM1/2θ(X), (41)

where the amplitude function φ :R3N →CJ is complex valued, the phase θ : R3N →R is

real valued in the classically allowed region {X ∈R3N | λ0(X)≤ E} (and purely imaginary

elsewhere, see Remark 3.1), and the factor M1/2 is introduced in order to have well-

defined limits of φ and θ as M→∞. Note that it is trivially always possible to find

functions φ and θ satisfying (41), even in the sense of a true equality. Of course, the

ansatz only makes sense if φ and θ do not have strong oscillations for large M. The

standard WKB-construction [10, 34] is based on a series expansion in powers of M1/2,

which solves the Schrödinger equation with arbitrarily high accuracy. Instead of an

asymptotic solution, we introduce an actual local solution based on a time-dependent

Schrödinger transport equation. This transport equation reduces to the formulation

in [34].
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26 C. Bayer et al.

3.1.1 A WKB-solution

The WKB-function (41) satisfies the Schrödinger equation (2) provided that

0= (Ĥ − E)φ eiM1/2θ(X)

=
((

1

2
|∇θ |2 + V − E

)
φ − 1

2M
Δφ − i

M1/2

(
∇φ · ∇θ + 1

2
φΔθ

))
eiM1/2θ(X). (42)

We shall see that only eigensolutions Φ that correspond to dynamics without caustics

correspond to such a single WKB-mode, as for instance when the eigenvalue E is inside

an electron eigenvalue gap. Solutions in the presence of caustics use a Fourier integral

of such WKB-modes, see [34] and Appendix 1. The purpose of the phase function θ is

to generate an accurate approximation in the limit as M→∞. A possible definition,

see [34], is the Hamilton–Jacobi equation, also called the eikonal equation

1
2 |∇θ |2 = E − λ0. (43)

The solution to the Hamilton–Jacobi eikonal equation can be constructed locally from

the associated Hamiltonian system

Ẋt= Pt,

Ṗt=−∇λ0(Xt),
(44)

through the characteristics path (Xt, Pt) satisfying ∇θ(Xt)=: Pt. For the time being, we

fix some P0 ∈R3N and vary X0 over a hyperplane (denoted by I ) in R3N orthogonal to

P0, see Figure 1. Hence, the trajectories Xt can (locally) cover the space. Later on, in

Section 3.3 we shall argue that a superposition of such solutions actually allows us to

reconstruct the true (local) solution of the Schrödinger equation. In particular, we will

solve the system (44) not just once, but for all different X0.

The amplitude function φ can be determined by requiring the ansatz (41) to be a

solution to (42), which gives

0= (Ĥ − E)φ eiM1/2θ(X)

=

⎛⎜⎜⎜⎝
(

1

2
|∇θ |2 + λ0 − E

)
︸ ︷︷ ︸

=0

φ

− 1

2M
Δφ + (V − λ0)φ − i

M1/2

(
∇φ · ∇θ + 1

2
φΔθ

)⎞⎟⎟⎟⎠ eiM1/2θ(X).
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Computational Error Estimates for Molecular Dynamics 27

Fig. 1. Paths Xt with velocity Ẋt = Pt going out from the plane with fixed normal P0 = constant.

Thus, by using (43), we have

− 1

2M
Δφ + (V − λ0)φ − i

M1/2

(
∇φ · ∇θ + 1

2
φΔθ

)
= 0. (45)

The usual method for determining φ from this so-called transport equation uses an

asymptotic expansion φ �∑K
k=0 M−k/2φk, see [17, 25]. An alternative is to write it as a

Schrödinger equation, as in [34]: we apply the characteristics in (44) to write

d

dt
φ(Xt)=∇φ · Ẋt=∇φ · ∇θ ,

and define the weight function G by

d

dt
log Gt= 1

2
Δθ(Xt), (46)

and the variable ψt := φ(Xt)Gt. Then the transport equation (45) becomes a Schrödinger-

type equation

iM−1/2ψ̇t= (V − λ0)ψt − Gt

2M
ΔX

(
ψt

Gt

)
=: Ṽψt. (47)

As (47) is (formally) a time-dependent Schrödinger equation, we need to impose initial

conditions. Once more, we refer to Section 3.3 for a detailed discussion of this subtle

issue.
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28 C. Bayer et al.

The last step in the construction of the WKB system (θ ,φ) is to patch together

the different trajectories obtained in (44)–(47). A priori, Xt, Pt, Gt, and ψt are functions of

(t, X0), for t≥ 0 and X0 ∈ I , where I was a hyperplane in R3N . By uniqueness of solutions

to (44), the map (t, X0) �→ Xt is locally injective. Considering −P0 in addition to P0, we

obtain that (t, X0) �→ Xt is locally invertible. Hence, we may also interpret the functions

P = P (t, X0), G =G(t, X0), ψ =ψ(t, X0) as functions of the space variable alone. Abusing

notation, we set ∇θ(X)= P (t, X0), G(X)=G(t, X0), ψ(X)=ψ(t, X0) for X = X(t, X0) in a

neighborhood of I .

In conclusion, equations (43)–(47) determine the WKB-ansatz (41) to be a local

solution to the Schrödinger equation (2) in the following sense. Assume that the

Hamilton–Jacobi equation |∇θ(X)|2
2 + λ0(X)= E has a C2 solution θ : U→R in a domain

U ⊆R3N . Let Ẋt=∇θ(Xt) and Pt=∇θ(Xt), then (Xt, Pt) solves the Hamiltonian sys-

tem (44), for t∈ [0, t∗] such that Xt ∈ U . Then

Φ(Xt)=G−1(Xt)ψ(Xt) eiM1/2θ(Xt) (48)

solves (2) in U , since both (43) and (45) are satisfied and consequently also (42). It is well

known that Hamilton–Jacobi equations in general do not have global C 2 solutions, due

to X-paths that collide and generate blow up in ∂XXθ(X). However, if the domain is small

enough and the data on the boundary is compatible (in the sense that Hη(X,∇θ(X))= E

on the boundary), noncharacteristic (in the sense that the normal derivative ∂nθ(X) �= 0

on the boundary) and λ0 is smooth, then the converse property holds, that is, the char-

acteristics generate a local solution to the Hamilton–Jacobi equation, see [11]. Maslov’s

method to find a global asymptotic solution by patching together local solutions is

described in [34].

Remark 3.1. In the classically forbidden region {X ∈R3N | E <λ0(X)}, we can apply the

same WKB method by replacing the phase function θ by the imaginary phase iθ . The

Eikonal equation becomes−|P |2/2+ λ0(X)= E , which then has a solution, and the trans-

port equation becomes real valued

M−1/2ψ̇t=−(V − λ0)ψt + Gt

2M
ΔX

(
ψt

Gt

)
.

The matrix V − λ0 is positive semidefinite, so that ψ remains bounded for bounded time

and approaches the ground state Ψ0. In the classical region, we instead use the oscilla-

tory behavior to conclude that ψ tends to the ground state, see [1]. �
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3.2 The Landau–Zener model, transition probabilities, and Ehrenfest dynamics

Note that the parameter t in (44)–(47) is just a numerical parameter, which, prima facie,

has no connection with physical time. Indeed, we are working in a time-independent

setting after all. On the other hand, if t is interpreted as time, (47) corresponds to a time-

dependent Schrödinger equation, and we may ask for dynamic transition probabilities

of the time-dependent model, denoted by pd(t)= pd(Xt) and rigorously defined in (52). It

turns out below that the time-dependent transition probabilities are easier to analyze

than the time-independent ones, pex, at least under some simplifying assumptions. The

link between the time-dependent transition probabilities pd and the time-independent

pex is not trivial and will be explored in detail in Section 3.3. To have some intuition, it

might be helpful to think of pd(t) as a “local” excitation probability around Xt, with the

idea that pex, in turn, is given as a time/space average of pd.

We start our discussion by looking at a simple special case of (47), the Landau–

Zener model, for which the first results on transition probabilities with crossing or

nearly crossing electron potentials were obtained. It is given by

iM−1/2φ̇t=
[

P0t δ

δ −P0t

]
φt (49)

with a wave function φ :R→C2, constant positive parameters (M, P0, δ), and initial data

limt→−∞ φ(t)= (1, 0). The transition probability

pLZ := e−πδ
2 M1/2/P0 (50)

is the so-called Landau–Zener probability, determined using Weber functions in [50],

and illustrated in Figure 8. In this particular model, we note that pLZ = limt→∞ |φ2(t)|2.

In the context of (44)–(47), the Landau–Zener model can be seen as a special case

of

Ẋt= Pt,

Ṗt=−∇λ0(Xt),

iM−1/2ψ̇t= (V(Xt)− λ0(Xt))︸ ︷︷ ︸
=:V̌(Xt)

ψt − (2M)−1GΔ(ψ/G),
(51)

which by the WKB-method (48) determines a Schrödinger WKB-solution ΦQ locally and

hence the transition probability

pd(Q, Xt) := 〈ψt,ψt〉 − |〈ψt,Ψ0(Xt)〉|2, (52)
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30 C. Bayer et al.

using the initialization ψ(Xt)=Ψ0(Xt) for Xt ∈ I , where the inflow domain is given by

I = {X : (X − Y) · P = 0} (53)

for a given point Q := (Y, P ) ∈R6N and the ground state Ψ0 is defined in (6). By neglecting

the small term −G/(2M)Δ(ψ/G) in the transport equation (51) and using the simplifica-

tion with the potential λ0(X)= 0 and

V̌(X)=
[

X δ

δ −X

]
, (54)

we obtain the Landau–Zener model. The Landau–Zener model was constructed to model

and explain the dynamic transitions from the ground state to an excited state when the

electron potential surfaces cross or nearly cross (with a minimal distance δ) and the

eigenstates change rapidly (near X = 0 for small values of δ): the eigenvalues of V̌ in (54)

are λ±(X)=±
√

X2 + δ2 and the eigenvectors

Ψ± = 1√
δ2 + (λ±(X)− X)2

[
δ

λ±(X)− X

]
.

Remark 3.2. In the one-dimensional avoided crossing case (54) the electron eigenvec-

tors satisfy Ψ+(X)= f(X/δ) for a smooth function f : R→R2 with

lim
X→∞

Ψ+(X)=
[

1

0

]
,

lim
X→−∞

Ψ+(X)=
[

0

1

]
.

We see that

‖∂XΨ+‖L∞(R) =O(δ−1),

for δ �= 0. The other eigenvector Ψ− satisfies the same bounds. Therefore, assumption (iii)

in Theorem‘2.1 holds for this avoided crossing with any δ �= 0. �

3.2.1 Ehrenfest dynamics

As far as computations are concerned, the system (51) is still very demanding due to

the Laplacian on the right-hand side. A further simplification mainly introduced for

computational reasons (and used in the computational examples of this paper) is the
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so-called Ehrenfest dynamics

Ẋt= Pt,

Ṗt=−∇λ0(Xt)− 〈ψt,∇V̌(Xt)ψt〉
〈ψ ,ψ〉 ,

iM−1/2ψ̇t= V̌(Xt)ψt,

(55)

which is an approximate WKB solution, by neglecting the small term −G/(2M)Δ(ψ/G)

in the transport equation and replacing the Eikonal equation with |P |2/2+ λ0(X)+
〈ψ , V̌ψ〉/〈ψ ,ψ〉 = E , as in [1]. If we write the wave function in its real and imaginary

parts ψ =ψr + iψ i, and use initial data that satisfy 〈ψ0,ψ0〉 = 2M−1/2, then the Ehrenfest

dynamics (55) is a Hamiltonian system with the Hamiltonian

HE = |P |2/2+ λ0(X)+ M1/2〈ψ , V̌(X)ψ〉/2, (56)

using the primal variables X and ψr, the dual variables P and ψ i. If the probability,

〈ψ⊥,ψ⊥〉, to be in the excited state is small (using the projection in (8)), the Ehrenfest

Hamiltonian is O(〈ψ⊥,ψ⊥〉) close to the Born–Oppenheimer Hamiltonian |P |2/2+ λ0(X).

3.3 An estimate of the probability to be in excited states for matrix-valued potentials

This section presents a formal stability study of a perturbed eigenvalue problem that

provides an approximation for the probability to be in excited states, pex. The two ingre-

dients are first to determine the perturbation as a dynamic transition problem, related to

the Landau–Zener model, and thereafter to use the stability analysis of a matrix eigen-

value problem to identify the probability to be in the excited state with the squared

norm of the change of the eigenvector. The dynamic transition problem can be approx-

imated numerically using Ehrenfest dynamics, as described in Sections 3.2 and 4. Our

formulation of the perturbed eigenvalue problem is related to the transformation from

local WKB solutions, which relate to the dynamic transition probability pd, to a global

solution of the Schrödinger equation. In dimension 1, we view a local WKB solution as

a solution to the left of the hyperplane I (which is a point in dimension 1) and another

WKB solution to the right of the hyperplane. The continuity condition to match these

two WKB solutions to the right and left to one global differentiable solution forms the

eigenvalue problem we will study. The eigenvalue problem is consequently not formu-

lated directly for the unbounded Schrödinger operator. It is instead an eigenvalue prob-

lem with bounded solution operators obtained from WKB solutions. A reason we use this

form of the perturbation analysis is that small dynamic transition probabilities pd from
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32 C. Bayer et al.

Landau–Zener like dynamics can be viewed as small regular perturbations while the

corresponding perturbations of the potential in the Schrödinger equation is not small

and not regular. The construction is extended to several dimensions in Section 3.3.4.

3.3.1 The perturbed eigenvalue problem in one space dimension

Consider first the scalar Schrödinger eigenvalue problem in one space dimension.

Assume that we have solutions Φ in the domain X > 0 and Φ in X < 0, with

right and left limits limX→0+Φ(X)=:Φr, limX→0−Φ(X)=:Φ�, and limX→0+Φ ′(X)=:Φ ′r,

limX→0−Φ ′(X)=:Φ ′�. In the one-dimensional case, the WKB method for an eigenvalue

problem typically gives a caustic to the left, with phase θ�, and a caustic to the right,

with phase θr (see Section 3.1, (A.5), and (A.19)) so that

Φ(X)� φr(X) cos(M1/2θr(X)− π/4) for X > 0,

Φ(X)� φ�(X) cos(M1/2θ�(X)− π/4) for − X > 0,
(57)

for smooth functions θr,� and φr,�. The continuity condition in order to have a global

solution

Φr =Φ�,

Φ ′r =Φ ′�,

can with the notation Φ ′r =: RrΦr (and similarly for the limit to the left) be written[
1 −1

Rr −R�

][
Φr

Φ�

]
= 0, (58)

which implies that the 2× 2 matrix [
1 −1

Rr −R�

]

must be singular, that is, Rr = R�. For the WKB solutions, the derivative satisfies

Rr =−M1/2θ ′r(0) tan(M1/2θr(0)− π/4)+O(M0),

R� =−M1/2θ ′�(0) tan(M1/2θ�(0)− π/4)+O(M0).

The two eigenvalues of the matrix [
1 −1

Rr −R�

]
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Computational Error Estimates for Molecular Dynamics 33

Fig. 2. The eigenvalues λ1 and λ2 of the potential V in the unperturbed (left) and perturbed

(right) cases as a function of position X. For X /∈ [−a, 0], the potential V(X) is diagonal in both

the unperturbed and perturbed cases while for X ∈ [−a, 0] the potential V(X) is diagonal in the

unperturbed case and nondiagonal in the perturbed case.

satisfy

μ= 1− R�

2
±
√(

1− R�

2

)2

+ R� − Rr. (59)

Consider the two decoupled scalar Schrödinger eigenvalue problems(
− 1

2M
Δ+ λ1(X)

)
Φ1(X)= EΦ1(X) and

(
− 1

2M
Δ+ λ2(X)

)
Φ2(X)= EΦ2(X). (60)

The continuity condition corresponding to (58) for (60) will be used as our unperturbed

eigenvalue problem, and in one space dimension this continuity condition becomes the

unperturbed problem ⎡⎢⎢⎢⎢⎣
[

1 −1

Rr
1 −R�

1

]
0

0

[
1 −1

Rr
2 −R�

2

]
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Φr

1

Φ�
1

Φr
2

Φ�
2

⎤⎥⎥⎥⎥⎦= 0. (61)

We consider a special case of the Schrödinger eigenvalue equation (2) in one space

dimension where the potential is diagonal outside the interval [−a, 0], that is, V(X)=[
λ1(X) 0

0 λ2(X)

]
, X /∈ [−a, 0], and view it as a perturbation of the diagonal Schrödinger

equation (60), as illustrated in Figure 2. To have a diagonal potential in the unperturbed

case is not necessary. What is important is that the electron eigenvalues are well sepa-

rated so that the transition from ground state to excited states is negligible.
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34 C. Bayer et al.

The WKB-method (48) shows that

Φ±(X) :=ψ±(X)G−1
± (X) e±iM1/2θ(X) (62)

are local solutions to the Schrödinger equation (2), with positive and negative wave

speeds ±θ ′(X). When the path Xt passes through a domain where the electron eigen-

values are close, the wave function ψ+ (or ψ−) determined by the transport equation (47)

yields the probability pd to transit from the ground state to an excited state, as in the

Landau–Zener model (49). For a WKB-solution (62), with Φ =Φ+ (or Φ =Φ−), we can

define the transition operator S̃+ by

Φ+(0)= S̃+Φ+(−a)=
[

S̃+11 S̃+12

S̃+21 S̃+22

][
Φ+

1 (−a)

Φ+
2 (−a)

]
(63)

(and similarly for Φ−) by solving the eikonal and transport equations (51) with data

given on X =−a. The idea is that given the point X =−a and the momentum P in this

point the two first equations determine the path (X(t), P (t)). The third Schrödinger like

transport equation in (51) then yields a linear solution operator along this path deter-

mining ψ at X = 0 from ψ at X =−a. Let us now determine S̃ more precisely. We want

to determine the global effect of a small transit probability |S̃21|2 viewed as the per-

turbation to the eigenvalue problem (61) with S̃+Φ+(−a)+ S̃−Φ−(−a) replacing Φ�. To

simplify the perturbation analysis, we factorize the transition[
S̃11 S̃12

S̃21 S̃22

]
=
[

1 S12

S21 1

][
S̃11 0

0 S̃22

]

into a transition between the states S := [ 1 S12
S21 1

]
and a diagonal matrix

[
S̃11 0
0 S̃22

]
, which

does not contribute to the transition between states. Since we are only interested in

estimates of the small components S̃12 = S12 S̃22 and S̃21 = S̃11S21, we consider only per-

turbations generated by the transition matrix S. We note that the transition element S̃21

by (63) can be written as the 2-component of Φ(0) if Φ(−a)= (1, 0). Therefore, (62) shows

that the transition element

S+21 =
S̃+21

S̃+11

= G+(0) eiM1/2θ(0)ψ2+(0)
G+(0) eiM1/2θ(0)ψ1+(0)

= ψ2+(0)
ψ1+(0)

where |ψ1+(−a)| = 1 (64)

can be determined by the WKB-amplitude function ψ+ and similarly we have the tran-

sition element S−21 =ψ2−(0)/ψ1−(0). The dynamic transition probability pd, defined by

Ehrenfest dynamics in (52), measures in this case the amplitude squared in the excited

state at X = 0 for a wave starting in X =−a in the ground state. Consequently, we have,
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for Xt= 0 and Q corresponding to the + wave speed in (62), that

pd(Q, 0)= 〈ψ+(0),ψ+(0)〉 − |〈ψ+(0),Ψ0(0)〉|2 = |ψ1+(0)|2 + |ψ2+(0)|2 − |ψ1+(0)|2 = |ψ2+(0)|2

so that by (64) S±21 =O(p1/2
d ), as pd→ 0 (namely as the spectral gap becomes large). We

assume for simplicity that the transition matrix S= S± is translation invariant, so that

Φ ′
±(0)= S±Φ ′

±(−a). The total perturbation becomes the sum SΦ := S+Φ+ + S−Φ− of the

perturbations of the two WKB-solutions Φ±, for the splitting Φ =Φ+ +Φ−. Hence, we

consider perturbations

Φ±(0)= S±Φ±(−a)=
⎡⎣1−O(pd) O(p1/2

d )

O(p1/2
d ) 1−O(pd)

⎤⎦⎡⎣Φ±
1 (−a)

Φ±
2 (−a)

⎤⎦
with the transition from the state 1 to state 2 determined by the matrix component S±21,

which is of the (small) order p1/2
d , where pd, defined in (52), is related to the Landau–

Zener probability. A reason to decompose the solution into WKB solutions is that their

transition is determined by the amplitude functions ψ± with approximately conserved

norm |ψ±(t)|. The approximate conservation follows from the conservation d
dt |ψ±(t)|2 = 0

for the Ehrenfest dynamics (55) and the fact that the transport equation (47), determin-

ing ψ±, becomes the Ehrenfest dynamics in the limit M→∞.

The perturbed eigenvalue condition becomes

(A+ β)rβ = 0, (65)

where

A :=

⎡⎢⎢⎢⎢⎣
[

1 −1

Rr
1 −R�

1

]
0

0

[
1 −1

Rr
2 −R�

2

]
⎤⎥⎥⎥⎥⎦=:

[
A1 0

0 A2

]
,

rβ =

⎡⎢⎢⎢⎢⎣
Φ1(0+)
Φ1(−a)

Φ2(0+)
Φ2(−a)

⎤⎥⎥⎥⎥⎦ ,

A+ β =

⎡⎢⎢⎢⎢⎣
1 −S11 0 −S12

Rr
1 −S11 R�

1 0 −S12 R�
1

0 −S21 1 −S22

0 −S21 R�
2 Rr

2 −S22 R�
2

⎤⎥⎥⎥⎥⎦ ,

SΦ(−a)= S+Φ+(−a)+ S−Φ−(−a), β ∈C4×4,

(66)
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36 C. Bayer et al.

and we want to determine the change in the eigenvector |rβ − r0|2 (which measures the

probability to be in the excited state) from the perturbed eigenvalue problem (65). For

this, we use the result in the following lemma, whose derivation follows [15].

Lemma 3.3. Assume that the matrix A∈Cn×n has n distinct eigenvalues, μ j, 0≤ j ≤
n− 1. Let l j and rj be left and right eigenvectors of A, that is, l j A=μ jl j, Arj =μ jrj,

satisfying

l j · rk=
⎧⎨⎩1 if j = k,

0 if j �= k.

For sufficiently small matrices β ∈Cn×n, the eigenvectors and eigenvalues of the pertur-

bation matrix A+ β are differentiable functions of β. If rβ and μβ denote the eigenvector

and eigenvalue to A+ β that equal the eigenpair (r0,μ0) to the matrix A for β = 0, we

have that

l j · (rβ − r0)=− l j · βr0

μ j − μ0
+ o(|β|) (67)

and

μβ − μ0 = l0 · βr0 + o(|β|). (68)
�

Proof. That the eigenvectors and eigenvalues of A+ β are differentiable functions of β

in a neighborhood of β = 0 follows directly by differentiation of the relations

(A+ β)r =μr, l(A+ β)=μl.

Let B := |β|−1β, where |β| is a matrix norm, for example, the Euclidean opera-

tor norm. Let r(γ ) and μ(γ ) be the perturbed normalized eigenvector and eigenvalue

corresponding to r0 and μ0 given by r(0)= r0 and μ(0)=μ0, and

(A+ γ B)r(γ )=μ(γ )r(γ ). (69)

Differentiation of (69) at γ = 0 gives

Ar′(0)+ Br(0)=μ′(0)r(0)+ μ(0)r′(0). (70)

Using that r(0)= r0 and μ(0)=μ0 and multiplying by l j from the left, we get

(μ j − μ0)l j · r′(0)= l j · Ar′(0)− μ0l j · r′(0)=−l j · Br0 + μ′(0)l j · r0 =−l j · Br0 for j �= 0,

by the orthogonality between left and right eigenvectors. The Taylor expansion r(|β|)=
r(0)+ r′(0)|β| + o(|β|) gives (67).
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To prove (68), we take the scalar product with l0 from the left in (70), which gives

μ′(0)= l0 · Br0. The Taylor expansion μ(|β|)=μ(0)+ μ′(0)|β| + o(|β|) gives (68). �

The combination of (67) in Lemma 3.3 and the assumption that rβ − r0 =O(1), as

|β|→ 0+, also when |μ j − μ0| is small, implies that

� j · (rβ − r0)=

⎧⎪⎪⎨⎪⎪⎩
− � j · βr0

μ j − μ0
+ o(|β|) if |μ j − μ0|−1 = o(|β|−1),

O(1) otherwise ,

=− � j · βr0

μ j − μ0 + c|� j · βr0| sign(μ j − μ0)
+ o(|β|)

[and by the definition (μ j − μ0)
� :=μ j − μ0 + c|� j · βr0| sign(μ j − μ0)]

=:− � j · βr0

(μ j − μ0)�
+ o(|β|), (71)

for some positive constant c, which determines the perturbation orthogonal to r0. We

will also use that this representation holds separately for each perturbation S+ and S−.

We do not determine the perturbation in the r0 direction, which does not contribute

to the transition between states. We denote by r⊥β − r0 the projection of the perturba-

tion rβ − r0 on the hyperplane orthogonal to r0. Since this plane is spanned by the left

eigenvectors l1, . . . , ln−1, we have by (67) in Lemma 3.3 that

r⊥β − r0 =−
∑

l j ·r0 �=0

l j · βr0

μ j − μ0
+ o(|β|).

Returning to the perturbed problem (65), we recall from equation (59) that the

unperturbed eigenvalues are given by

⎡⎢⎢⎢⎢⎣
μ0

μ1

μ2

μ3

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− R�
1

2
−
√(

1− R�
1

2

)2

+ R�
1 − Rr

1

1− R�
1

2
+
√(

1− R�
1

2

)2

+ R�
1 − Rr

1

1− R�
2

2
−
√(

1− R�
2

2

)2

+ R�
2 − Rr

2

1− R�
2

2
+
√(

1− R�
2

2

)2

+ R�
2 − Rr

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

 at U
niversity of O

slo L
ibrary on A

ugust 6, 2015
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 



38 C. Bayer et al.

and the corresponding unperturbed eigenvectors are

� j =

⎧⎪⎪⎨⎪⎪⎩
(1,−(1− μ j)/Rr

1, 0, 0)

(1− (1− μ j)2/Rr
1)

when j = 0, 1,

(0, 0, 1,−(1− μ j)/Rr
2)

(1− (1− μ j)2/Rr
2)

when j = 2, 3.
and rj =

⎧⎪⎨⎪⎩
(1, 1− μ j, 0, 0) when j = 0, 1,

(0, 0, 1, 1− μ j) when j = 2, 3.

Lemma 3.3 yields

μβ − μ0 = �0 · βr0 + o(|β|)= (1− S11)
1− (1− μ0)

2 R�
1

Rr
1

1− (1− μ0)2
1
Rr

1

+ o(
√

pd)= o(
√

pd). (72)

To have the perturbed eigenvalue equal to zero means that we start with an unper-

turbed eigenvalue μ0 = o(
√

pd) in order to obtain the perturbed eigenvalue μβ = 0, sat-

isfying (A+ β)rβ = 0. Using the unperturbed eigenvector r0 = (1, 1+ o(
√

pd), 0, 0), with

μ0 = o(
√

pd), yields a perturbation in the Φ2 component from zero (in the third compo-

nent of r0) to

S21

∑
j=2,3

1− (1− μ j)
2 R�

2
Rr

2

(μ j − μ0)�(1− (1− μ j)2
1
Rr

2
)
+ o(

√
pd)=O(√pd) (73)

and its squared absolute value measures the probability to be in the excited state, that

is, the probability density |Φ2|2, which integrated yields pex defined in (8).

Remark 3.4. Having a zero eigenvalue of A1 in (66) means that the scalar Schrödinger

eigenvalue problem (
− 1

2M
Δ+ λ1(X)

)
Φ1(X)= EΦ1(X)

has a solution in the whole domain. We see from (73) that when also A2 has a zero

eigenvalue μ2 = 0 we obtain a resonance in the sense that a small perturbation β (where

|S21| =O(|β|)=O(p1/2
d )) yields a large change in the eigenvector rβ =Φ, meaning that

the probability to be in the excited state (which by (73) is of the order |β|2/|μ2|2) can

be of order one even if the perturbation β is tiny. Resonance means that the two

scalar Schrödinger eigenvalue problems have a coinciding eigenvalue E , see Figure 3.

An approximation of this probability is

|β|2/|μ�

2|2 ≈ pd/(|μ2 − μ0|2 + c2 pd). (74)

�
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(a)

(b)

(c)

p
p p

p

Fig. 3. Probabilities to be in the excited state, pex, using numerical approximation of (8), pre-

cisely defined in (87), and the estimations, p̂ex, using the formula (75), obtained by solving the

discrete one-dimensional Schrödinger eigenvalue problem (86) with M= 1, 000, δ =
√

3
5 M−0.2 ≈

0.1946, C = 0.09, and mesh size h= 0.0001. (a) The probability pex. (b) The probability pex (left

panel) to be in an excited state compared with the estimate p̂ex (right panel). (c) The probability

pex (“o”) to be in an excited state compared with the estimate p̂ex (“∗”).
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3.3.2 Numerical test of the perturbation analysis

A method to numerically test the validity of the perturbation analysis leading to the

estimate (73), for the one-dimensional model, is to compare the probability to be in

excited states pex in (8) (determined from numerical approximation of the Schrödinger

equation (86)) with the expression (74) derived from (73) in the perturbation analysis. If

pex shows some similarity with (74), the perturbation analysis is in some sense justified.

The difference μ2 − μ0, of the eigenvalues in (74), can be obtained from numerical

approximation of a difference E2,k′ − E1,k, of the eigenvalues of the decoupled sys-

tem (60), (λi(X)− 1
2 M−1 ∂2

∂X2 )Φi,k(X)= Ei,kΦi,k(X), i = 1, 2, using the same centered differ-

ence approximation as in (86). Let Ei = {Ei,k |k= 1, 2, 3, . . .} be the set of all Ei eigenvalues,

for i = 1, 2. By the approximation

|μ2 − μ0|2 ≈ C ′|E1,k − E2,k′ |2 ≈ C−1|E1,k − E2,k′ |2/|E1,k − E1,k+1|2,

where k and k′ is chosen such that E1,k and E2,k′ are the closest to E and using two con-

stants C and C ′ = C−1/|E1,k − E1,k+1|2, we obtain the following estimate of the probability

to be in the excited state:

p̂ex := pd

C−1|El
1 − El

2|2/|El
1 − Em

1 |2 + pd
, (75)

with C being a constant, E being an eigenvalue of the discrete two-state Schrödinger

equation corresponding to (75) and

El
1 := argmin

E1∈E1

|E1 − E |, Em
1 := argmin

E1∈E1 & E1 �=El
1

|E1 − El
1|,

El
2 := argmin

E2∈E2

|E2 − El
1|, pd := exp(−πδ2

√
M/
√

2(E − λ−(0))).

3.3.3 Conclusions

Figures 3 and 4 show that the estimation of the probabilities, p̂ex, to be in the excited

state, obtained using the formula (75), and the numerically computed probabilities, pex,

to be in the excited state, obtained using the formula (87) from the solution of the dis-

crete one-dimensional Schrödinger eigenvalue problem (86), have similar qualitative

behavior in the following two aspects: (1) the minimal value of pex and p̂ex are simi-

lar, and (2) when E is close to a resonance, seen for p̂ex in (75) as |El
1 − El

2| � |El
1 − Em

1 |,
both pex and p̂ex become larger. By also adjusting the constant C in (75), the behavior
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Fig. 4. Probabilities to be in the excited state, pex, using numerical approximation of (8), pre-

cisely defined in (87), and the estimations, p̂ex, using the formula (75), obtained by solving the

discrete one-dimensional Schrödinger eigenvalue problem (86) with M= 20, 000.

can also be quantitatively similar, see Figures 3 and 4. That is the perturbation analysis

seems to capture this resonance phenomenon, at least qualitatively.

3.3.4 The perturbed eigenvalue problem in the multi-dimensional case

The main idea to extend the one-dimensional perturbed eigenvalue problem to multi-

ple dimensions is to write the Schrödinger wave function as a phase-space integral of

highly oscillatory functions using the Fourier–Bros–Iagolnitzer transform (FBI trans-

form). This integral can be viewed as an integral over all hyperplanes I in R3N defined

in (53). Therefore, each FBI-mode can be initial data for a WKB solution (51) to the right
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of a hyperplane I in R3N and a WKB solution to the left of the hyperplane. The condi-

tion to have a differentiable WKB solution across the hyperplane then uses the conti-

nuity condition (65), as the one-dimensional setting, for each point in the hyperplane.

The direction of the oscillations in the FBI-mode generates through the WKB-method

a molecular dynamics path and an amplitude function. The amplitude function solves,

along the path, a transport equation that is well approximated by Ehrenfest dynam-

ics (55) and can consequently be computed similarly as the molecular dynamics paths

but with smaller time steps, see Sections 3.2 and 4. The integral of WKB-solutions over

all hyperplanes contribute through their amplitude functions to the transition, S. We

will now explain this extension to multiple dimensions more precisely and then in the

next section show how to computationally approximate the probability to be in excited

states pex.

We will use the FBI transform. We could use the standard semiclassical Fourier

transform as the initial data for the WKB-method but the FBI transform has the advan-

tage of giving the high frequency content locally in X, that is, microlocally, which yields

a more accurate WKB Ansatz. The important property of the FBI transform

Tϕ(Y, P ) := (21/3π)−3N/4M9N/8︸ ︷︷ ︸
=:αM

∫
R3N

eiM1/2(Y−X)·P−|Y−X|2 M1/2/2ϕ(X)dX (76)

is the identity

ϕ = T∗Tϕ (77)

for ϕ ∈ L2(R3N), where the adjoint operator T∗ is defined by

T∗φ(X)= αM

∫
R6N

e−iM1/2(Y−X)·P−|Y−X|2 M1/2/2φ(Y, P )dY dP

for example, for all Schwartz functions φ on R6N , see [25]. Therefore, the integral repre-

sentation

Φ(X)= T∗TΦ(X)

= αM

∫
R6N

e−iM1/2(Y−X)·P−|Y−X|2 M1/2/2TΦ(Y, P )dY dP

yields suitable boundary data on hyperplanes (e.g., X1 = 0) for the WKB-method.

We will, for each point (Y, P )=: Q (in the classically allowed region), use a WKB-

function (41). In the case of caustics, this single WKB-function is replaced by a finite
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sum of WKB-functions based on the Legendre transform θ∗(P ) of θ(X), as explained in

Appendices 1 and 2,

ΦQ(X)∼
∑

{P ∗:∇P θ
∗
Q(P

∗)=X}
φQ(X; P ∗) eiM1/2θQ(X;P ∗). (78)

This WKB solution ΦQ solves the Schrödinger eigenvalue problem (2) in the two domains

to the left and right of the hyperplane, with the boundary condition constructed so that

the WKB-mode ΦQ(X) is equal to the FBI-mode

αM e−iM1/2(Y−X)·P−|Y−X|2 M1/2/2TΦ(Y, P )

for X − Y in the hyperplane L P := {q ∈R3N |q · P = 0} orthogonal to P :

q · ∇θQ(X)= q · P = 0, for q ∈ L P and X − Y ∈ L P ,

φQ(X; P ∗)= αMTΦ(Q) e−|X−Y|2 M1/2/2 for X − Y ∈ L P .
(79)

The construction of the WKB-solutions in the case of caustics uses asymptotic conver-

gence as M→∞, described by the asymptotically equal sign ∼, see [34, 51] and (A.19).

The obtained decomposition

Φ(X)=
∫
R6N

ΦQ(X)dQ (80)

determines, for each Q, the corresponding operators Rr,�. The total perturbation comes

from transitions from all φQ along the paths: for each Q= (Y, P ) we let the function

φQ(Xt) solve the transport equation (47) along the WKB-path {Xt}∞t=0 and initialize φQ(Xτ )

to the ground state Ψ0(Xτ ) each time Xτ is in the hyperplane (Xτ − Y) · P = 0, generated

by Q. The perturbed wave function is then as in (64) determined by

〈S(Q, X),Ψi(X)〉 = 〈φQ(X),Ψi(X)〉
〈φQ(X),Ψ0(X)〉 ,

which depends on Q, by relating ψ1+ in (64) with 〈φQ,Ψ0〉 and ψ2+ with 〈φQ,Ψ1〉 in the

case of two states. Integrating over all Q yields the total perturbation, as in (66),

∫
R6N

S(Q, X)ΦQ(X)dQ
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at the point X. The corresponding perturbed eigenvalue problem (65) for the

wave function ΦQ implies, as in (73), the following larger change in the excited

state:

Φ⊥(X)=Φ(X)− 〈Ψ0(X),Φ(X)〉Ψ0(X)

=
∫
R6N

S21(Q, X)︸ ︷︷ ︸
=p1/2

d (Q,X)

ΦQ(X)
∑
j=2,3

1− (1− μ j)
2 R�

2
Rr

2

(μ j − μ0)�(1− (1− μ j)2
1
Rr

2
)

dQ

+O
(∣∣∣∣∫

R6N
S21(Q, X)ΦQ(X)dQ

∣∣∣∣2
)

(81)

at the point X, where μ j and Rr,�
2 depend on Q. The index 1 in S now corresponds

to the component in the ground state and the index 2 to be in an excited state,

that is,

Φ(X)= γ1(X)Ψ0(X)+ γ2(X)Ψ
⊥(X),

and γ j(X) ∈C with the orthogonality conditions

〈Ψ0,Ψ ⊥〉 = 0, 〈Ψ0,Ψ0〉 = 1, 〈Ψ ⊥,Ψ ⊥〉 = 1.

The eigenvalues of the unperturbed problem (59) vary highly due the oscilla-

tory functions Rr,�, with the phase M1/2θ±(X). Figure 4 illustrates a consequence of this

variation and indicates that mean values of excitation probabilities corresponding to

eigenvalues in a neighborhood are more stable than individual excitations probabili-

ties. Let us therefore consider a local average of the probability to be in the excited

state based on a simple model of the smallest eigenvalue μ2 ∼ tan(M1/2(θ+2 − θ�2)) (in

the excited component) where we assume that |μ2| has a bounded density, ρQ, defined

on R. In the case of one space dimension, we can fix a point X ∈R (in the classi-

cally allowed region) where μ2 is evaluated, that cuts the spatial domain into two. The

average then corresponds to an ensemble of Schrödinger eigenvalues localized around

E , related to a local mean value of excitation probabilities in Figure 4. We denote

this local average by A. In higher dimensions, we can similarly fix a codimension 1

cutting surface and evaluate μ2 on the surface. Let us now study the average exci-

tation probability in this model. Using that (μ2 − μ0)
� yields transition probabilities

bounded by one for each Q as in (71) and that outside a compact set (correspond-

ing to the classically allowed region) the factor |S21(Q, X)ΦQ(X)| is negligible small,
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we have

A[〈Φ⊥(X),Φ⊥(X)〉]≤ CA

[∣∣∣∣∫
R6N

|S21(Q, X)ΦQ(X)|
|(μ2 − μ0)�| dQ

∣∣∣∣2
]

≤ CA
[∫

R6N

|S21(Q, X)ΦQ(X)|2
|μ2 − μ0|2 + c2|S21(Q, X)|2 dQ

]
= C

∫
R6N

∫
R

|S21(Q, X)ΦQ(X)|2
|μ2 − μ0|2 + c2|S21(Q, X)|2 ρQ(μ2)dμ j dQ

= C
∫
R6N
|S21(Q, X)||ΦQ(X)|2

∫
R

1
|μ2−μ0|2

c2|S21(Q,X)|2 + 1
ρQ(μ2)d

μ2

c2|S21(Q, X)| dQ

≤ C
∫
R6N
|S21(Q, X)||Φ(X)|2‖ρQ‖L∞(R) dQ

∫
R

dx

x2 + 1

=O
(∫

R6N
|S21(Q, X)||Φ(X)|2 dQ

)
.

We conclude that in a model of local ensemble averages of eigenvalues E , assuming that

for each X the eigenvalue difference |μ2 − μ0| has a bounded density, then the average

probability to be in the excited state has the bound

A[pex]=O
(∫

R3N

∫
R6N
|S21(Q, X)||ΦQ(X)|2 dQ dX

)
,

which, by (81) can be written as the average of the square root of the dynamic transition

probability pd

A[pex]=O
(∫

R3N

∫
R6N

p1/2
d (Q, X)|ΦQ(X)|2 dQ dX

)
. (82)

3.3.5 Ergodic computation of probabilities to be in excited states

The FBI transform satisfies

‖TΦ‖L2(R6N ) = ‖Φ‖L2(R3N ) = 1

and TΦ concentrates on the phase-space set H0(Y, P )= |P |2/2+ λ0(Y)= E in the limit

as M→∞ and pex → 0+, see [25]. When the dynamics is ergodic, the phase-space mea-

sure is in addition uniform on the set E < H0(Q) < E + γ as γ → 0+, cf. [37]. The WKB

functions ΦQ(X) behave similarly as TΦ locally, since their initial conditions are given

by TΦ and they solve the Schrödinger equation. We may write S21(Q, X)=: S21(Q; X, P )

where P is the momentum for the path at the position X that started in the plane given

by Q= (Y′, P ′), since this P is a function of Q and X. Therefore, we approximate pex by
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the following time average of p1/2
d :

pex ≈ lim
γ→0+

∫
R3N

∫
E<H0(Q)<E+γ |S21(Q; X, P )|dQ∫

E<H0(Q)<E+γ dQ
dX = lim

γ→0+

∫
R3N

∫
E<H0(Q)<E+γ |S21(X, P ; Q)|dQ∫

E<H0(Q)<E+γ dQ
dX

= lim
T→∞

∫
R3N

∫ T

0
|S21(X, P ; Xt, Pt)|︸ ︷︷ ︸

=p1/2
d (X;Xt)

dt

T
dX, (83)

Algorithm 1 Approximations of the probabilities, pex, to be in excited states using

molecular dynamics in 2D based on (83)
Input: Energy E ; potential functions V ; mass M; time T ; initial position X0, initial

momentum P0.

Output: Approximated probability ˆ̂pex to be in excited states.

1. Sampling of initialization times {Tn}n and hyperplane coordinates {XTn, P Tn}n:

Set t← 0, n← 0, Tn← 0 and (XTn, P Tn)← (X0, P0) and define the hyperplane P
⊥
Tn

:= {X ∈
R2|X · P Tn = 0}.
while Tn< T do

Simulate the ground state Born-Oppenheimer molecular dynamics for (Xt, Pt) until

Xt crosses the plane P
⊥
Tn

.

At the crossing time, set n←n+ 1, Tn← t and (XTn, P Tn)← (Xt, Pt) and define the

hyperplane P
⊥
Tn

:= {X ∈R2|X · P Tn = 0}.
end while

2. Solve the Ehrenfest molecular dynamics using the Störmer-Verlet method with the

entries in {Tk, XTk, P Tk}nk=0 as input parameters and compute ˆ̂pex :

temp← 0

for k= 0 to n− 1 do

t1 ← Tk

t2 ← Tk+1

Xt1 ← XTk

Pt1 ← P Tk

ψt1 =Ψ−(Xt1)

{Xt, Pt,ψt}←Ehrenfest dynamics path obtained from time t1tot2 with initial data

Xt1 , Pt1 ,ψt1

temp← temp+ ∫ t2
t1
|〈ψt,Ψ+(Xt)〉|dt

end for
ˆ̂pex ← temp/Tn
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Computational Error Estimates for Molecular Dynamics 47

Fig. 5. Illustration of the sampling of hyperplanes and initialization times described in part 1 of

Algorithm 1. Left figure: the two-dimensional Born–Oppenheimer molecular dynamics trajectory

Xt (blue line) with initial conditions XT0 = (−2, 0.5) and ẊT0 = PT0 is simulated until the time t= T1

when it crosses the hyperplane P⊥T0
(dashed line). Right figure: a new hyperplane P⊥T1

(dash-dotted

line) is constructed and the trajectory of Xt is simulated further until the time t= T2 when it

crosses that hyperplane. The sampling procedure is iterated until the final time is reached.

where we used that the transition probability S21(Q; X, P )= S21(X, P ; Q) is symmetric

by reversing time t to −t. In fact, along a given path {Xt}Tt=0 also the momentum P ′, at

position Y′, is determined by the position Y′ and Xt so that p1/2
d (Y′; Xt)= S21(Y′, P ′; Xt, Pt)

is well defined. The relation (83) means that we sample square roots, p1/2
d (X; Xt), of tran-

sition probabilities along the molecular dynamics path, normalized for each passage

through a hyperplane, and then take the average of all hyperplanes. In our computa-

tions, we sample hyperplanes by means of the phase-space trajectory of ground state

Born–Oppenheimer molecular dynamics, cf. Algorithm 1 and Figure 5.

4 Numerical Examples

The purpose of this section is to present two simple model problems, where the

Schrödinger eigenvalue solution can be studied computationally and compared with

the molecular dynamics approximation. In the following subsections, we

• show that the dynamic transition probability pd in (52) can be determined by

numerical solution of Ehrenfest dynamics,

• verify assumption (26) on exponential convergence rate in finite time,
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48 C. Bayer et al.

• compare numerical approximations of observables from the Schrödinger

equation and Born–Oppenheimer molecular dynamics,

• compare approximations of the probability to be in excited states pex from the

Schrödinger equation with the molecular dynamics approximation ˆ̂pex from

Algorithm 1.

4.1 Model 1: a one-dimensional problem

We consider the one-dimensional, time-independent Schrödinger equation (2) with the

heavy-particle coordinate X ∈R, two electron states J = 2, and the Hamiltonian opera-

tor, Ĥ(X), defined by

Ĥ(X) := V(X)− 1

2
M−1 ∂2

∂X2
(84)

with the potential operator V defined by the matrix

V(X) :=
[

X + r(X) δ

δ −X + r(X)

]
, (85)

where the parameter δ is a non-negative constant and the function r : R→R is given by

r(X) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(al − X)2 if X < al ,

(X − ar)
2 if X > ar,

0 otherwise.

For each X, the potential V defines the eigenvalue problem V(X)Ψ±(X)= λ±(X)Ψ±(X),

with the two eigenvalues λ±(X) ∈R and two eigenvectors Ψ±(X) ∈R2. The eigenvalues are

given by λ±(X)= r(X)±√X2 + δ2, and Ψ−(X) and Ψ+(X), respectively, denote the ground

and the excited state vector.

Choosing δ = 0 gives a conical intersection at X = 0, and a positive value of δ

gives a minimum gap 2δ between λ−(X) and λ+(X) at X = 0. A small value of δ corre-

sponds to a large probability to be in excited states and a large value of δ corresponds

to a small probability to be in excited states. Figure 6 illustrates examples of small and

large spectral gaps between λ+ and λ− with two different values of δ, respectively.

4.1.1 The one-dimensional discretized Schrödinger equation

We use a central difference method to solve the one-dimensional two-state Schrödinger

equation (2) in the domain X ∈ (−2π , 2π) with (al , ar)= (−2, 3), mesh size h=
4π/[10M3/4], and partition X j =−2π + jh, j = 0, 1, 2, . . . , [10M3/4]. The approximation of
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Fig. 6. Eigenvalues of the potential matrix (85) for small and large values of the parameter δ

corresponding to the small and large minimum gaps between the eigenvalues, respectively.

the eigenvalue problem with the eigenvector components Φ j
h �Φ(X j) and corresponding

eigenvalue Eh ∈R becomes

− 1

2M

Φ
j−1
h − 2Φ j

h +Φ
j+1
h

h2
+ V(X j)Φ

j
h = EhΦ

j
h for j = 1, 2, . . . , [10M3/4]− 1, (86)

using homogeneous Dirichlet boundary conditions Φ0
h =Φ10M3/4

h = 0.

The approximation of the probability pex to be in the excited state is given by

pex =
∑[10M3/4]

j=0 〈Φ j
h,Ψ+(X j)〉2∑[10M3/4]

j=0 〈Φ j
h,Φ j

h〉
. (87)

4.1.2 Approximation of the dynamic transition probability pd

We show in this computational example that the dynamic transition probability, pd,

defined in (52), can be obtained from Ehrenfest molecular dynamics simulations (55)

using the following formula:

pd(t)=
∣∣∣∣ 〈Ψ+(Xt),ψt〉
〈Ψ+(Xt),Ψ+(Xt)〉

∣∣∣∣2 , (88)

with t∈R denoting the time. We observe that numerical experiments illustrate that the

transition probability pd(t) approximates, as time tends to infinity, the Landau–Zener

probability pLZ as defined in (50), given the Landau–Zener model (49), see Figure 8.

We approximate the solution of the transport equation (47) by the Ehrenfest

molecular dynamics simulations (55) with λ0 = λ− (equal to the smallest eigenvalue
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M = 12,800, d = M−0.25

Fig. 7. The potential energy function, t �→ 〈ψt, V(Xt)ψt〉, approximated from the Ehrenfest molec-

ular dynamics simulations (55), deviates away from the eigenvalues after the avoided crossing, if

the gap is small and the mass is sufficiently small.

of V in(85)) in the Hamiltonian (56). For this computational example, we choose

E = 1, (al , ar)= (−2, 2) and the initial conditions t= 0, X0 =−4.0, ψ0 =Ψ−(X0), and P0 =√
2(E − λ−(X0)). We approximate the solution of the molecular dynamics using the

Störmer–Verlet method, [18], based on the two symplectic Euler steps,

ψ i
k+ 1

2
=ψ i

k −
Δt

2

√
MV̌(Xk)ψ

r
k,

Pk+ 1
2
= Pk − Δt

2

(
λ′−(Xk)+

〈
ψr

k, V̌ ′(Xk)ψ
r
k

〉
+
〈
ψ i

k+ 1
2
, V̌ ′(Xk)ψ

i
k+ 1

2

〉)
,

Xk+1 = Xk +ΔtPk+ 1
2
,

ψr
k+1 =ψr

k +
Δt

2

√
M(V̌(Xk)+ V̌(Xk+1))ψ

i
k+ 1

2
,

ψ i
k+1 =ψ i

k+ 1
2
− Δt

2

√
MV̌(Xk+1)ψ

r
k+1,

Pk+1 = Pk+ 1
2
− Δt

2

(
λ′−(Xk+1)+

〈
ψr

k+1, V̌ ′(Xk+1)ψ
r
k+1

〉
+
〈
ψ i

k+ 1
2
, V̌ ′(Xk+1)ψ

i
k+ 1

2

〉)
.

(89)

4.1.3 Conclusions

Figure 7 illustrates that the potential energy function t �→ 〈ψt, V(Xt)ψt〉, obtained

from the Ehrenfest molecular dynamics simulations is equal to the ground state
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energy, λ−(Xt), until the dynamics reaches the avoided conical intersection. Then it devi-

ates from the ground state energy and continues in between the ground and excited state

energies.

Figure 8 shows that the transition probability, pd(t), obtained using the for-

mula (88) based on Ehrenfest molecular dynamics simulations, remains zero until it

reaches the avoided conical intersection and then it oscillates near the avoided conical

intersection region and approaches pLZ asymptotically as t→∞.

4.2 Model 2: a two-dimensional problem

We consider the two-dimensional, time-independent Schrödinger equation (2) with the

heavy-particle coordinate X = (X1, X2) ∈R2, and two electron states J = 2. The Hamilto-

nian is

Ĥ(X)= V(X)− 1
2 M−1ΔX,

with

V(X) := ( 1
2 (X

2
1 + αX2

2)+ β sin(X1 X2)︸ ︷︷ ︸
=:λs(X)

)I + η

[
v1(X) v2(X)

v2(X) −v1(X)

]
, (90)

where I is the 2× 2 identity matrix, the functions v1, v2 : R2 →R are given by (A) or

(B) below, and α =√2, β = 2, and η= 1/2. As in Model 1, we have for each X the

eigenvalue problem, V(X)Ψ±(X)= λ±(X)Ψ±(X), with the eigenvalues λ±(X)= λs(X)±
η
√
(v1(X))2 + (v2(X))2 and the ground state and excited state eigenvectors Ψ−(X) and

Ψ+(X), respectively. We choose the energy, E = 1.5. In this example, we study the follow-

ing two cases of interactions between the two potential surfaces λ+ and λ−:

(A) A line intersection. We choose v1(X)= arctan(X1/η) and v2(X)= δ/η, where δ

is a non-negative constant that defines the minimum distance between the

potential surfaces. In this example, the potential surfaces intersect each

other (for δ = 0) or have the minimum distance between each other at the line

X1 = 0. Here, choosing a small value for δ corresponds to a large probability

to be in excited states and a large value for δ will give a small probability

to be in excited states. The parameter δ in this two-dimensional example

is analogous to the parameter δ in the one-dimensional example given in

Section 4.1.

(B) A conical intersection. We choose v1(X)= arctan((X1 − a1)/η) and v2(X)=
arctan((X2 − a2)/η) with a= (a1, a2) ∈R2 being a chosen point in the two-

dimensional space. If a is chosen such that λ±(a) are smaller than the
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Fig. 8. Estimation of the Landau–Zener probability, pLZ, from the Ehrenfest molecular dynam-

ics simulations (55). The estimation, pd(t), overshoots near the avoided crossing and eventually

stailizes around pLZ. The overshoot period and the relative magnitude are more prominent for the

cases of smaller Landau–Zener probabilities.
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Computational Error Estimates for Molecular Dynamics 53

energy, E , we have a conical intersection between the potential surfaces

at the point a in the classically allowed region R := {X : λ−(X)≤ E}, other-

wise we have a positive gap between the potential surfaces in the domain

R. Here, choosing a in the origin gives a larger absolute momentum, |P |, at

the conical intersection whereas choosing a far from the origin will yield

a smaller |P |, which yield larger and smaller probabilities to be in excited

states, respectively. Figure 9 shows level curves of the eigenvalues, along
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Fig. 9. Level curves of the eigenvalues λ± of the potential (90) at the energy E = 1.5 with con-

ical intersection points a= (0, 0), (1.75, 0), (2.25, 0), and (3.5, 0), respectively. We illustrate exam-

ples of the Ehrenfest molecular dynamics (55) paths computed using Störmer–Verlet method (89)

with mass M= 100, time t∈ [0, 100], time steps Δt= 1/(32
√

M), and initial data X0 = [−2, 0.5], P0 =
[1,
√

2(E − λ−(X0))− 1], and ψ0 =Ψ−(X0).
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54 C. Bayer et al.

with example molecular dynamics paths, for varying conical intersection

points.

4.2.1 The two-dimensional discretized Schrödinger equation

We use a standard finite difference method to discretize the two-dimensional

Schrödinger eigenvalue problem (2) with mesh size h in both the X1 and X2 direc-

tions in the computational domain Ω = [−4, 4]2. The unknown eigenvalue components

Φ
j,k
h �Φ(X j,k), with the nodal point X j,k= (−4+ jh,−4+ kh) for j, k= 1, 2, . . . , 8/h− 1,

solve the discrete eigenvalue problem

− 1

2M

(
Φ

j−1,k
h − 2Φ j,k

h +Φ
j+1,k
h

h2
+ Φ

j,k−1
h − 2Φ j,k

h +Φ
j,k+1
h

h2

)
+ V(X j,k)Φ

j,k
h = EhΦ

j,k
h (91)

with homogeneous Dirichlet boundary conditions and h= 1/(4
√

M). We use the solu-

tion of the discrete Schrödinger eigenvalue problem to determine the approximate

Schrödinger observables

gS =
∑

j,k g(X j,k)ρ(X j,k)∑
j,k ρ(X

j,k)
, (92)

with g(X) :R2 →R and ρ(X)= |Φh(X)|2.

The value of the molecular dynamics observable, gMD, is given by

gMD := lim
δ→0+

∫
E<H0(X,P )<E+δ g(X, P )dX dP∫

E<H0(X,P )<E+δ dX dP
,

which, for the two-dimensional case, can be written as (For a fixed X ∈Rd, P -

integration using spherical coordinates in the shell E < |P |2/2+ λ0(X) < E + δ yields the

P -dependence [|P |d]
√

E−λ0(X)+δ√
E−λ0(X)

which differentiated with respect to δ gives (93) for d= 2

and the additional factor (E − λ0(X))d/2−1 for d �= 2.)

gMD =
∫

H0(X,0)≤E g(X)dX∫
H0(X,0)≤E dX

, (93)

when g depends only on X.

4.2.2 Verification of the ergodic rate condition (26)

Figure 10 determines the convergence rate γ in assumption (26) based on numerical

approximation of the ergodic projected stochastic dynamics (19). The numerical method
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and

Fig. 10. The figure shows the function T �→ T−1 log(T−1
∫ 2T

T (Ē[g ◦ St0(Z0)]− gMD(Z0))dt), which

approximates the decay rate 2γ in assumption (26), for the projected dynamics (19) with the

potential λ(X)= X2
1/2+ X2

2/
√

2+ 2 sin(X1 X2) and energy E = H(Z0)= 1.5. The empirical mean is

Ē[g ◦ St0(Z0)] :=∑N
n=1 sin(X̄1(t; n)X̄2(t; n))/N and the number of stochastic paths are N = 2× 105.

The initial point is Z0 = (0, 0,
√

1.5,
√

1.5) and (X̄(t; n), P̄ (t; n)) is the phase-space point for sample

path n at time t determined by the numerical method (94) for time steps Δt= 0.01. The solid curve

is for diffusion coefficient ε = 10−4, the dashed for ε = 10−2, and the dashed dot for ε = 0.25. Here

the approximation gMD(Z0)=−0.4388 is determined by an accurate Monte Carlo simulation in the

microcanonical ensemble.

is given by the steps Z̄(nΔt) �→ Z̄((n+ 1)Δt) satisfying

(X, P )= Z̄(nΔt),

X∗ = X + PΔt,

P∗ = P − ∇λ(X∗)Δt,

Z1 = (X∗, P∗),

Z2 = Z1 +√εP(Z1)ΔW,

Z3 = Z2 + μ∇H(Z2)/|∇H(Z2)|,
Z̄((n+ 1)Δt)= Z3,

(94)

where μ ∈R is chosen so that H(Z2 + μ∇H(Z2)/|∇H(Z2)|)= E . Here ΔW=√
Δt(ξ1, ξ2, ξ3, ξ4) and ξi are all independent taking values ±1 with probability
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56 C. Bayer et al.

1/2. The temperature parameter is τ = 1/2. This scheme with phase-space path

{Z̄(nΔt)= (X̄(nΔt), P̄ (nΔt)) |n= 0, 1, 2, . . .} satisfies the convergence assumptions in [12]

so that E[g(X̄(T), P̄ (T))− g(X(T), P (T))]=O(Δt), uniformly in T . (Related to examples

(4.15) and (4.7) in [12].) Figure 10 shows that in this case 2γ > 0.2. The maximal

Lyapunov constant is determined numerically to Ĉ = 0.35 and the convergence rate

exponent γ /(Ĉ + γ ) in Theorem 2.1 becomes 0.1/0.45≈ 0.2.

4.2.3 Convergence of observables in two dimensions

Figures 11 and 12 show that the Schrödinger observables, gS, are close to the ergodic

molecular dynamics observables, gMD. We can compare the numerical results in Fig-

ures 11 and 12 with Theorem 2.2 for the case when the probabilities to be in the excited

state, pex, are small, as in Figure 13 for a= (5, 0) in the conical intersection case. We see

in Figures 11 and 12 that the standard deviation of |gS − gMD| for M= 3, 200 is roughly

1/2 times of the standard deviation for M= 200, that is, the numerical results agree

roughly with an O(M−1/4) estimate in the theorem, see Table 1.

4.2.4 Approximation of the probability to be in excited states

We approximate the probability to be in the excited state, pex, from the Schödinger

equation by the approximation, ˆ̂pex, from Algorithm 1, using Ehrenfest molecular

dynamics simulations based on the Störmer–Verlet method as in (89). We choose

t0 = 0, P0 = [1,
√

2(E − λ−(X0))− 1], ψ0 =Ψ−(X0), X0 = [2,−0.5] (line intersection) and

X0 = [−2, 0.5] (conical intersection).

4.2.5 Conclusions

Figure 14 shows the probabilities, pex, to be in the excited state determined from the

discrete Schrödinger eigenvalue problem (91) based on the formula (87). We note that

for large gaps, in the right column, the probabilities to be in the excited state, pex, are

either small or close to one, as expected, while for small gaps, in the left column, pex

takes values in the whole interval [0, 1]. We also observe the lack of the structure present

in the analogous Figure 4 for the one-dimensional case, due to not having the resonances

ordered with the eigenvalues as in the one-dimensional case discussed in Remark 3.4.

Figure 13 shows pex determined from the discrete Schrödinger eigenvalue prob-

lem and from molecular dynamics simulations for both line and conical intersec-

tion cases computed by Algorithm 1. The shapes of the respective methods’ solutions
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Fig. 11. Schrödinger observables, gS, as a function of Schrödinger eigenvalues, Eh, for mass

M= 200, and the conical intersection case with a= (5, 0) outside the classically allowed region,

compared with the corresponding molecular dynamics observables, gMD, which we compute using

Monte Carlo integrations based on the formula (93). The plots show that the solutions obtained

with the mesh size h= 1/(4
√

M), h= 1/(8
√

M), and h= 1/(16
√

M) are comparable, whereas the

solution obtained with the mesh size h= 1/(2
√

M) appears less accurate.
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Fig. 12. Schrödinger observables, gS, as a function of Schrödinger eigenvalues, Eh, for mass

M= 3, 200, and the conical intersection case with a= (5, 0) outside the classically allowed region,

compared with the corresponding molecular dynamics observables, gMD, which we compute using

Monte Carlo integrations based on the formula (93). The plots show that the solutions obtained

with the mesh size h= 1/(4
√

M) and h= 1/(8
√

M) are comparable, whereas the solutions obtained

with the mesh size h= 1/(2
√

M) appear less accurate.

are similar, especially when the probability to be in the exited state, pex, is small.

Figure 15 presents an empirical probability density of inter-arrival hitting times of

hyperplanes, cf. Algorithm 1. The empirical density is well approximated by a heavy
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Computational Error Estimates for Molecular Dynamics 59

Fig. 13. Plots showing pex estimated from the solution of the discrete Schrödinger eigen-

value problems (left column) and the corresponding ˆ̂pex estimated by the molecular dynamics

Algorithm 1 (right column) for the line intersection cases (first row) and conical intersection cases

(second row). The Schrödinger solution is computed by averaging the solutions for 20 eigenvalues

around E = 1.5 for the line intersection and by averaging the solutions for 500 eigenvalues around

E = 1.5 for the conical intersection.

tailed Burr XII probability density, which indicates that long inter-arrival hitting times

are non-negligible. In Figure 16, we observe an expected decay of O(T−1/2) for the

relative error | ˆ̂pex(T)− ˆ̂pex|/ ˆ̂pex when studying the conical intersection problem with

a= (5, 0). In the more unstable parameter setting of a= (0, 0), however, the error decay

is slower with an observed rate of convergence slightly slower than the expected

−1/2. This might be due to a longer correlation length in the molecular dynamics

and hyperplane sampling of Algorithm 1 when the parameter values of a are close

to (0, 0).

 at U
niversity of O

slo L
ibrary on A

ugust 6, 2015
http://am

rx.oxfordjournals.org/
D

ow
nloaded from

 



60 C. Bayer et al.

Table 1 Numerical results for the order of convergence of the observables in two-dimensional

as explained in Section 4.2.3

g= sin2(X1 X2) g= λ−(X)
e∞ −0.3079 −0.3159

eW −0.3052 −0.2506

e1 −0.2744 −0.2950

e2 −0.2671 −0.2890

The table shows � where the order of convergence is O(M�). The convergence rate

is computed as �= (log e(M1)− log e(M2))/(log M1 − log M2), with e(Mi) being the norm of

error corresponding to the mass Mi , where M1 = 200, and M2 = 3200. We use the norms

e∞ =maxi |(gS − gMD)(Ei)|, eW = |
∑

i(gS − gMD)(Ei)|/NE , e1 =
∑

i |(gS − gMD)(Ei)|/NE , and e2 =√∑
i((gS − gMD)(Ei))2/NE , with NE being the number of eigenvalues Ei .

Remark 4.1 (Extension to higher dimension). The formation of a conical intersection

for a 2× 2 symmetric matrix V requires the eigenvalues to be equal, which means that

the off diagonal element is zero and the diagonal elements are equal at an intersection

point. To have a conical intersection point is therefore generic in dimension 2 and in

higher dimensions the intersection is typically a codimension 2 set. An implementa-

tion of the algorithm for computing ˆ̂pex in higher dimensions and for potentials used

in chemistry is future work. The relevant geometry in the multi-dimensional case is

the distance to this codimension 2 set, which makes the link to two-dimensional case

studied here. �

5 Regularity and Weyl Calculus

This section establishes four lemmas where the last three are used in Theorems 2.1

and 2.2. The first lemma proves the bound (24) on derivatives of the solution u(t, Z)=
E[g ◦ STt(Z)] to (22), which verifies that assumption (v) in Theorem 2.1 holds for a case

with a near crossing of eigenvalues. The second lemma derives L2-bounds on Weyl quan-

tized operators obtained from mollified symbols, the third and fourth lemmas estimate

remainder terms related to the Weyl quantization and establishes the Moyal expansion

for the setting used in the proofs of Theorems 2.1 and 2.2.

We will use equation (21) written as the Ito equation

dZt= a(Zt)dt+ b(Zt)dW̃t (95)

for the molecular dynamics path Z : [0, T ]×Ω→R6N , where Ω is the sample space and

assume that the Jacobians a′ and b′ and the higher order derivatives ∂αZ a(Z) ∈R(6N)(|α|+1)
,
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Computational Error Estimates for Molecular Dynamics 61

(a) (b)

(c) (d)

Fig. 14. Probabilities, pex, to be in the excited state as a function of the eigenvalues, Eh,

computed from the solution of the two-dimensional Schrödinger equations and based on the for-

mula (87). The first row corresponds to the line intersection for two different values of δ; the sec-

ond row corresponds to the conical intersection case for the intersection point a= (1.5, 0) inside

and a= (4.5, 0) outside the classically allowed region. We note that the plots contain the probabil-

ities to be in the excited state, pex, for 20 and 1, 000 eigenvalues for line and conical intersection

cases, respectively. (a) Line intersection, (b) line intersection, (c) conical intersection, and (d) con-

ical intersection.
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62 C. Bayer et al.

Fig. 15. Normalized histogram of the inter-arrival initialization times obtained by Algorithm 1

when applied to the conical intersection problem with a= (5, 0) and M= 12, 800, and, for compar-

ison, the probability density function of the Burr XII distribution with parameter values α = 1.65,

c= 3.6, and k= 0.5. We do not know why this distribution fits reasonably well to the data.

with |α| =n for n= 1, 2, 3, . . ., satisfy the �2 bounds

‖a′‖2,∞ + ‖b′‖2
2,∞ =O(δ−1),

‖∂αZ a‖2,∞ + ‖∂αZ b‖2
2,∞ =O(δ−|α|),

(96)

uniformly in N (but not in |α|). Here we use the �2 (Frobenius) norm: assume that |α| =n

then ‖∂αZ a‖2 =
√∑

|α|=n

∑6N
i=1 |∂αZ ai|2 and the notation

‖a(Zt)‖2,∞ := sup
ω∈Ω

‖a(Zt(ω))‖2.

Lemma 5.1. Assume (96) and that the near crossing is weak, with nonvanishing veloc-

ity P across the near crossing, namely that

max
X∈R3N

‖λ′′η(X)‖2 ≤ cδδ
−1,∫ T

0
‖λ′′η(Xt)‖2,∞ dt≤ C T ,∫ T

0
(E[‖∂αXλ′′η(Xt)‖2n

2 ])1/(2n) dt≤ CαTδ−|α|,

(97)
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Computational Error Estimates for Molecular Dynamics 63

Fig. 16. Convergence plots for ˆ̂pex obtained for the hyperplane sampling and molecular dynamics

simulation methods in Algorithm 1 applied to the conical intersection problem.

for a constant cδ ≤ 1/ log δ−1 and constants Cα independent of δ, M, N, and ε. Then for

each multi-index β there is a constant Ĉ , independent of M, δ, N, and ε, such that

sup
Z0∈R6N

‖∂βZ0
E[g ◦ ST (Z0) | Z0]‖2 ≤ eĈ (T+1)δmin(0,−|β|+1). (98)

�

Proof. Remark 5.2 motives the assumptions. First we study solutions w : [0, T ]×Ω→
R6N to the linearized Ito equation

dwt= a′(Zt)wt dt+ b′(Zt)wt dW̃t + αt dt+ βt dW̃t,
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64 C. Bayer et al.

where Zt solves (95)–(21) and the stochastic processes α : [0, T ]×Ω→R6N and β : [0, T ]×
Ω→R6N×6N satisfy for each n∈N \ 0 and some positive number m the bound∫ t

0
E[‖βs‖2n

2n | Z0] ds=O(eC t),∫ t

0
(E[‖αs‖2n

2 | Z0])1/(2n) ds=O(eC tδ−m).

(99)

Ito’s formula implies

dE[‖wt‖2
2 | Z0]= 2E[wt · dwt | Z0]+ E[dwt · dwt | Z0]

≤ 2E[‖a′(Zt)‖2‖wt‖2
2 |Z0] dt+ E[‖b′(Zt)‖2

2‖wt‖2
2 |Z0] dt

+ 2E[‖wt‖2‖αt‖2 |Z0] dt+ E[‖β‖2
2 + 2‖βt‖2‖b′t‖2‖wt‖2 | Z0] dt

≤ (2‖a′(Zt)‖2,∞ + ‖b′(Zt)‖2
2,∞)E[‖wt‖2

2 | Z0] dt+ E[2‖wt‖2‖αt‖2 + ‖βt‖2
2 | Z0] dt,

where by assumption (96) we have 2‖a′s‖2,∞ + ‖b′s‖2
2,∞ =O(δ−1 + εδ−2)=O(δ−1) and by (97)

there holds
∫ t

0 2‖a′s‖2,∞ + ‖b′s‖2
2,∞ ds=O(t). Here ‖b′‖2

2,∞ =
∑

i ‖b′i··‖2
2,∞. We use ε� δ, with

the arbitrarily small diffusion constant ε in (19), so that the contribution from b′ and β

are negligible compared with those from a′ and α. Gronwall’s inequality shows that

E[‖wt‖2
2 | Z0]≤

(
E[‖w0‖2

2 | Z0]+
∫ t

0
E[2‖ws‖2‖αs‖2 + ‖βs‖2

2 | Z0] ds
)

e
∫ t

0 2‖a′s‖2,∞+‖b′s‖2
2,∞ ds

≤
(
E[‖w0‖2

2 |Z0]+
∫ t

0
2
√
E[‖wt‖2

2 | Z0]
√
E[‖αs‖2

2 | Z0]+ E[‖βs‖2
2 | Z0] ds

)
eC t,

(100)

which by (99) implies

sup
0<s<t

√
E[‖ws‖2

2 | Z0]≤ eC t

(√
E[‖w0‖2

2 | Z0]+
∫ t

0
2
√
E[‖αs‖2

2 | Z0] ds+O(eC t)

)
= eC tO(δ−m) (101)

provided this holds initially for t= 0. Analogously for n> 1, we obtain by Hölder’s

inequality

dE[‖wt‖2n
2 | Z0]

=nE
[
‖wt‖2(n−1)

2 wt · dwt + n(n− 1)‖wt‖2(n−2)
2

(wt · dwt)
2

2
+ n‖wt‖2(n−1)

2

dwt · dwt

2
| Z0

]
=nE[‖wt‖2(n−1)

2 (wt · a′twt dt+ wt · αt dt)+ h.o.t.| Z0]

≤nE[‖wt‖2n
2 ‖a′t‖2 | Z0] dt+ nE[‖wt‖2n−1

2 ‖αt‖2 | Z0] dt+ h.o.t.

≤nE[‖wt‖2n
2 ‖a′t‖2 | Z0] dt+ n(E[‖wt‖2n

2 | Z0])1−1/(2n)(E[‖αt‖2n
2 | Z0])1/(2n) dt+ h.o.t.
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so that

sup
0<s<t

(E[‖ws‖2n
2 |Z0])1/(2n) ≤ eC t

(
(E[‖w0‖2n

2 |Z0])1/(2n) +
∫ t

0
2(E[‖αt‖2n

2 | Z0])1/(2n) ds+O(eC t)

)
= eC tO(δ−m) (102)

provided this holds initially for t= 0.

The first variation Z ′t= ∂Zt/∂Z0 satisfies

dZ ′t= a′(Zt)Z
′
t dt+ b′(Zt)Z

′
t dW̃t,

so that (101), for m= 0, implies

E[‖Z ′t‖2n
2 | Z0]=O(eC t).

The second variation satisfies

dZ ′′t = a′(Zt)Z
′′
t dt+ b′(Zt)Z

′′
t dW̃t + a′′(Zt)Z

′
tZ
′
t dt+ b′′(Zt)Z

′
tZ
′
t dW̃t.

We have for α = a′′Z ′Z ′ that

‖a′′Z ′Z ′‖2
2 =

∑
i jk

(∑
rq

a′′irq Z ′rj Z
′
qk

)2

≤
∑
i jk

∑
rq

(a′′irq)
2
∑
rq

(Z ′rj Z
′
qk)

2

=
∑
irq

(a′′irq)
2
∑
rqjk

(Z ′rj Z
′
qk)

2

= ‖a′′‖2
2‖Z ′‖4

2, (103)

and similarly for β, which combined with Ito’s formula and Gronwall’s inequality as

above imply √
E[‖Z ′′t ‖2

2 |Z0]=O(δ−1 eC t)

using (97), that (102) yields (E[‖Z ′t‖8
2 | Z0])1/4 =O(eC t) and∫ t

0

√
E[‖a′′s Z ′s Z ′s‖2

2 | Z0] ds≤
∫ t

0
(E[‖a′′s ‖4

2 | Z0])1/4(E[‖Z ′s‖8
2 | Z0])1/4 ds≤ eC tO(δ−1).

Also the higher variations satisfy

dZ (m)
t = a′(Zt)Z

(m)
t dt+ b′(Zt)Z

(m)
t dW̃t + αt dt+ βt dW̃t,
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66 C. Bayer et al.

where the stochastic processes α and β have the bound (99), since following (103) we

have

‖a′′Z ′′Z ′‖2
2 ≤ ‖a′′‖2

2‖Z ′′‖2
2‖Z ′‖2

2,

‖a′′′Z ′Z ′Z ′‖2
2 ≤ ‖a′′′‖2

2‖Z ′‖6
2,

and similarly for the higher order derivatives. Therefore, (101) and (102) yield

(E[‖Z (m)
t ‖2n

2 | Z0])1/(2n) =O(eC tδ(1−m)). (104)

We have by Jensens inequality, for |β| =n,

sup
Z0

‖E[∂βZ0
g(Zt) | Z0]‖2 ≤ sup

Z0

E[‖∂βZ0
g(Zt)‖2 | Z0]

≤ sup
Z0

√
E[‖∂βZ0

g(Zt)‖2
2 | Z0]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
Z0

√
E[‖g′tZ ′t‖2

2 | Z0], n= 1,

sup
Z0

√
E[‖g′tZ ′′t + g′′t Z ′tZ ′t‖2

2 | Z0], n= 2,

sup
Z0

√
E[‖g′tZ ′′′t + 2g′′t Z ′′t Z ′t + g′′′t Z ′tZ ′tZ ′t‖2

2 | Z0], n= 3,

which by (104) proves (98). �

Remark 5.2. We motivate assumption (97) by the behavior for the example of the

avoided conical intersection eigenvalues λ0(X)=±cδ
√
|X|2 + δ for X ∈R2 or X ∈R1 dis-

cussed in Section 4.2 and (54). Although maxX∈K ‖λ′′0(Xt)‖2 =O(δ−1), we assume the

near crossing is weak, that is, that ‖λ′′0(X)‖2 ≤ cδ(dist(X, a)2 + δ2|)−1/2 for some constant

cδ ≤ 1/ log δ−1 and a codimension 2 set a⊂R3N . Then the exponent in Gronwall’s inequal-

ity has the bound

∫ T

t
‖λ′′0(Xs)‖2 ds≤ C (T − t)+ cδ

∫ 1

0

ds√
c2s2 + δ2

≤ C (T − t)+ c−1/2cδ log δ−1

provided the near crossing of potential surfaces is located away from the part of ΣE

where |P | = 0. Here we assume that the velocity through the avoided crossing domain

is bounded from below by c> 0. Similarly, an assumption ‖∂αXλ′′0(X)‖2 ≤ C (dist(X, a)2 +
δ2|)−(|α|+1)/2 satisfies the last estimate in (97). �
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We will use the s-quantization and the notation∫
R3N
〈Φ(X), Ops[h]Φ(X)〉dX =

∫
R6N

h(Z) ·W(s)(Z)dZ

for any smooth symbol h and the Wigner functions W=W(1/2) and W(s) defined in (15).

Lemma 5.3. Assume that h :R6N →C and f :R6N →C can be written as h= h̄ ∗ φη and

f = f̄ ∗ φη, where φη(z) := (2πη)−3N e−|z|
2/(2η), and that h̄ and f̄ have continuous second

derivatives with polynomial growth, that is, for some n∈Z and m ∈Z and |α| ≤ 2 there is

a constant C such that ∂αz h̄(z)≤ C (1+ |z|2)m and ∂αz f̄(z)≤ C (1+ |z|2)n uniformly in z, then

for every s ∈ [0, 1]∣∣∣∣∫
R3N
〈Φ(X), Ops[h(z) f(z)]Φ(X)〉dX

∣∣∣∣= sup
z∈R6N

|h(z) f(z)| +O(η),

uniformly in N. �

Proof. The proof to estimate the L2(R3N) operator norm for a symbol r has three steps:

to determine a representation of the solution of
∫
R3N 〈Φ, Ops[r]Φ〉dX using the FBI trans-

form TΦ, to calculate a Fourier multiplicator applied to r using the representation and

in the third step to verify that the product of two FBI transformed functions is the con-

volution of the Wigner function with a Gaussian.

1. We will use that the components of the Wigner function W=W(1/2) convolved

with the Gaussian φM−1/2 = (2πM−1/2)−3N e−(|X|
2+|P |2)M1/2/2 is the product of the FBI trans-

forms (76) of the components Φi and Φ j

Wij ∗ φM−1/2(X, P )= TΦi(X, P )TΦ j(X, P ) (105)

as verified in Step 3. Consequently, the diagonal entries are non-negative

Wii ∗ φM−1/2(X, P )= |TΦ∗
i (X, P )|2 ≥ 0.

An s∗-quantization remainder r̂s∗ can be related to a remainder r̂ =Op[h] in the

Wigner quantization (with s= 1/2) by∫
R6N

r(X, P ) ·W(s∗)(X, P )dX dP =
∫
R6N

rs∗(X, P ) ·W(1/2)(X, P )dX dP ,

where for s∗ ∈ [0, 1]

rs∗(X, P )= e−iM−1/2(s∗− 1
2 )∇X ·∇P r(X, P ),

which is proved in [32, Remark 2.7.3] and related to the expansion of the exponential

in (112).
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68 C. Bayer et al.

We will introduce the convolution with the Gaussian in the estimate of the

remainder using the Taylor expansion of the exponential

∫
R3N
〈Φ, r̂s∗Φ〉dX =

∫
R6N

rs∗(X, P ) ·W(1/2)(X, P )dX dP

=
∫
R6N

Frs∗(ξX, ξP ) · FW(1/2)(ξX, ξP )dξX dξP

=
∫
R6N

(FφM−1/2(ξX, ξP ))
−1Frs∗(ξX, ξP )

· FW(1/2)(ξX, ξP )FφM−1/2(ξX, ξP )dξX dξP

=
∫
R6N

r∗(X, P ) ·W(1/2) ∗ φM−1/2(X, P )dX dP ,

where the function r∗ is defined by r∗ =F−1{(FφM−1/2(ξX, ξP ))
−1Frs∗(ξX, ξP )}. Here we use

the notation r ·W :=∑i j rijWij. The tensor product property (105) of W ∗ φM−1/2 implies

the matrix norm estimate

∫
R3N
〈Φ(X), r̂s∗Φ(X)〉dX =

∫
R6N

r∗(X, P ) ·W(1/2) ∗ φM−1/2(X, P )dX dP

=
∫
R6N
〈TΦ(X, P ), r∗(X, P )TΦ(X, P )〉dX dP

≤
∫
R6N
‖r∗(X, P )‖2|TΦ(X, P )|2 dX dP

≤ sup
(X,P )∈R6N

‖r∗(X, P )‖2

∫
R6N
|TΦ(X, P )|2 dX dP

= sup
(X,P )∈R6N

‖r∗(X, P )‖2

∫
R3N
〈T∗TΦ,Φ〉dX

= sup
(X,P )∈R6N

‖r∗(X, P )‖2

∫
R3N
〈Φ(X),Φ(X)〉dX︸ ︷︷ ︸

=1

(106)

using the L2 identity T∗T = I in (77) for the FBI transform and the �2 matrix norm

‖r∗(X, P )‖2 (or the less sharp Frobenius norm).

2. We have Fr∗ = e|ω|
2 M−1/2/2 eiωx·ωpM−1/2Fr(ω). The goal is to absorb this exponen-

tially growing pre-factor e|ω|
2 M−1/2/2 eiωx·ωpM−1/2

in Fr(z).

Consider first the case r = r̄ ∗ φη, then Fr∗ = e|ω|
2 M−1/2/2 eiωx·ωpM−1/2Fφη(ω)F r̄(ω). We

have Fφη(ω)= e−|ω|
2η/2 so that

e|ω|
2 M−1/2/2 e−|ω|

2η/2 = e−|ω|
2ν/2 =Fφν(ω),
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Computational Error Estimates for Molecular Dynamics 69

where ν = η − M−1/2 > 0. The inverse Fourier transform of the pre-factor

eisωx·ωpM−1/2Fφν(ω) is

(2π)−6N
∫
R6N

e−ν|ωx|2/2−ν|ωp|2/2+iωx·ωpsM−1/2+iωx·x+iωp·p dωx dωp

= e−
1

2ν(1+s2 M−1ν−2)
(|p|2+|x|2)e−ip·xsM−1/2 1

s2 M−1+ν2 (2πν)−3N

(
1+ s2

ν2M

)−3N/2

=: φν,s,

so that r∗ = r̄ ∗ φν,s. The estimate (106) implies then in the case r = r̄ ∗ φη∫
R3N
〈Φ(X), r̂s∗Φ(X)〉dX ≤ sup

z∈R6N

‖r∗(z)‖2

= sup
z∈R6N

‖r̄ ∗ φν,s(z)‖2.

If r̄ is uniformly bounded in C2(R6N), we have by the two moments
∫
R6N φη(z)dz= 1 and∫

R6N zφη(z)dz= 0 that

r − r̄ =O(η)

and by the properties
∫
R6N φν,s(z)dz= 1 and

∫
R6N zφν,s(z)dz= 0 we obtain

r̄ ∗ φν,s − r̄ =O(η)

so that ∫
R3N
〈Φ(X), r̂s∗Φ(X)〉dX = sup

z∈R6N

|r(z)| +O(ν). (107)

In the case r = (h̄ ∗ φη)( f̄ ∗ φη), we have similarly

(2π)−12N
∫
R12N

F h̄(ω′)F f̄(ω − ω′) e−|ω
′ |2η/2−|ω−ω′ |2η/2 eiωx·ωpsM−1/2+|ω|2/(2M−1/2) eiω·z dω′dω

= (2π)−12N
∫
R12N

F h̄(ω′)F f̄(ω − ω′) e−|ω|
2η/4−|ω′−ω/2|2η eiωx·ωpsM−1/2+|ω|2/(2M−1/2) eiω·z dω′ dω

= (2π)−9Nη−3N
∫
R12N

F−1{F h̄F{ f̄(ω − ·)}}(z′) e−|z
′ |2/(4η)+iω·z′/2 eiωx·ωpsM−1/2−ν|ω|2/2 eiω·z dω dz′

= (2πη)−3N(2πν)−3N

(
1+ s2

ν2M

)−3N/2

︸ ︷︷ ︸
=:σN,M

×
∫
R12N

h̄(z′ − z′′) f̄(−z′′) e−|z
′ |2/(4η) e−|z−z′′+z′/2|2/(4ν(s)) ei

(zx−z′′x+z′x/2)·(zp−z′′p+z′p/2)sM−1/2

ν2+s2 M−1 dz′ dz′′

= σN,M

∫
R12N

h̄(v) f̄(w) e−|w−v|
2/(4η) e−|z+(w+v)/2|

2/(4ν(s)) e
i(zx+(wx+vx)/2)·(zp+(wp+vp)/2)sM−1/2

ν2+s2 M−1 dv dw

= σN,M

∫
R12N

h̄(z− v) f̄(z− w) e−|w−v|
2/(4η) e−|(w+v)/2|

2/(4ν(s)) e
i(wx+vx)·(wp+vp)sM−1/2

4(ν2+s2 M−1) dv dw

=: Q(h̄ f̄)(z).
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70 C. Bayer et al.

We have by the Fourier transform

σN,M

∫
R12N

e−|w−v|
2/(4η) e−|(w+v)/2|

2/(4ν(s)) e
i(wx+vx)·(wp+vp)sM−1/2

4(ν2+s2 M−1) dv dw= 1∫
R12N

v e−|w−v|
2/(4η) e−|(w+v)/2|

2/(4ν(s)) e
i(wx+vx)·(wp+vp)sM−1/2

4(ν2+s2 M−1) dv dw= 0∫
R12N

w e−|w−v|
2/(4η) e−|(w+v)/2|

2/(4ν(s)) e
i(wx+vx)·(wp+vp)sM−1/2

4(ν2+s2 M−1) dv dw= 0

so that

|Q(h̄ f̄)(z)− h̄(z) f̄(z)| = |Q(h̄(·) f̄(·)− h̄(z) f̄(z))|

≤ C

(∥∥∥∥ h̄(z)

1+ |z|m
∥∥∥∥2

C2(R6N )

+ ‖ f̄(z)(1+ |z|m)‖2
C2(R6N )

)
ν(s).

Similarly using the moments
∫
R6N φη(z)dz= 1 and

∫
R6N zφη(z)dz= 0 and the second deriva-

tives ‖h̄‖2
C2(R6N )

+ ‖ f̄‖2
C2(R6N )

≤ C we obtain

h(z) f(z)− h̄(z) f̄(z)=O(η),

and we conclude that |Q(h̄ f̄)(z)− h(z) f(z)| =O(η) which combined with (106), as in (107),

proves the theorem.

3. This step verifies (105) following the proof of [24, Proposition 1]. We have

Wij ∗ φM−1/2(X, P )

= (πM1/2 × 2πM−1/2)−3N
∫
R9N

eiM1/2Y·P ′Φi

(
X′ − Y

2

)
Φ∗

j

(
X′ + Y

2

)
× e−(|X−X′ |2+|P−P ′ |2)M1/2

dY dX′ dP ′

= (πM1/2)−3N/2(2πM−1/2)−3N
∫
R6N

eiM1/2Y·PΦi

(
X′ − Y

2

)
Φ∗

j

(
X′ + Y

2

)
× e−(|X−X′ |2+ 1

4 |Y|2)M1/2
dY dX′.

The change of variables X′ − Y/2= v and X′ + Y/2=w implies

M1/2

(
|X − X′|2 + 1

4
|Y|2

)
= M1/2

2
(|v − X|2 + |w − X|2)

and we conclude that the Wigner function and the FBI transform have the relation

Wij ∗ φM−1/2(X, P )= (21/3π)−3N/4M9N/8
∫
R3N

eiM1/2(X−v)·P e−|X−v|
2 M1/2/2Φi(v)dv

× (21/3π)−3N/4M9N/8
∫
R3N

e−iM1/2(X−w)·P e−|X−w|
2 M1/2/2Φ∗

j (w)dw

= TΦi(X, P )(TΦ j(X, P ))∗. �
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Lemma 5.4. Assume that r :R6N →C is smooth and for each n∈N and |α| ≤n there is a

constant Cn such that supX∈R3N

∫
R3N |∂αP r(X, P )|dP ≤ Cn, then there is a constant C such

that ∣∣∣∣∫
R3N
〈Φ(X), Ops[r]Φ(X)〉dX

∣∣∣∣≤ C sup
n≤3N+3

Cn. (108)

If for |α| ≤n there is a constant Cn such that supz∈R6N |∂αz r(z)| ≤ Cnδ
min(0,−n+1), then there

is a constant C such that∣∣∣∣∫
R3N
〈Φ(X), Ops[r]Φ(X)〉dX

∣∣∣∣≤ C

(
sup
z∈R6N

|r(z)| + M−1/4δ−1 N1/2 sup
n≤C N

Cn

)
. (109)

�

Proof. A proof if this is given, for example, in [51, Theorem 4.21] and presented here

for completeness.

The s-symbol r has the integral kernel

K(X, Y)=
(

1

2πM−1/2

)3N ∫
R3N

eiM1/2(X−Y)·P r((1− s)X + sY, P )dP

so that

Ops[r]Φ(X)=
∫
R3N

K(X, Y)Φ(Y)dY

and

‖Ops[r]Φ(X)‖2
L2(R3N ) =

∫
R9N

K̄(Z , Y)K(Z , X)Φ̄(Y)Φ(X)dX dY dZ

≤ 1

2

∫
R9N
|K(Z , Y)||K(Z , X)|(|Φ(Y)|2 + |Φ(X)|2)dX dY dZ . (110)

Here ∫
R9N
|K(Z , Y)||K(Z , X)||Φ(Y)|2 dX dY dZ

≤ sup
Y∈R3N

(∫
R6N
|K(Z , Y)||K(Z , X)|dX dZ

)∫
R3N
|Φ(Y)|2 dY︸ ︷︷ ︸
=1

≤ sup
Y∈R3N

∫
R3N
|K(Z , Y)|dZ sup

Z∈R3N

∫
R3N
|K(Z , X)|dX (111)

and similarly for the term with Y and X replaced. We have

K(X, Y)= (M1/2)−3NF−1{r((1− s)X + sY, ·)}((X − Y)M1/2)
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and ∫
R3N
|K(X, Y)|dX

=
∫
R3N
|F−1{r((1− s)X′M−1/2 + sY, ·)}(X′)|dX′

=
∫
R3N

(1+ |X′|3N+1)|F−1{r((1− s)X′M−1/2 + sY, ·)}(X′)| 1

1+ |X′|3N+1
dX′

=
∫
R3N
|F−1{(1+Δ(3N+1)/2

· )r((1− s)X′M−1/2 + sY, ·)}(X′)| 1

1+ |X′|3N+1
dX′

≤ ‖F−1{(1+Δ(3N+1)/2
· )r((1− s)X′M−1/2 + sY, ·)}(X′)‖L∞

∫
R3N

1

1+ |X′|3N+1
dX′

≤ C sup
Y′

∫
R3N
|(1+Δ

(3N+1)/2
P )r(Y′, P )|dP ,

where Δ· means the Laplacian with respect to the second variable in r. The func-

tion r satisfies supY′∈R3N

∫
R3N |∂αP r(Y′, P )|dP ≤ Cn which together with (110) and (111)

proves (108).

In the case supz |∂αz r(z)| ≤ Cnδ
−|α|, [51, Theorem 5.1] applied to the symbol r

proves (109). �

Lemma 5.5. The composition Ĉ = ÂB̂ of two Fourier integral operators, with smooth

symbols A(X) and B(X, P ) in the Schwartz space, has the Weyl symbol

C (X, P )= e
i
2 M−1/2 ∑

k(−∂Xk∂P ′k)A(X)B(X′, P ′)|(X,P )=(X′,P ′)

=
2∑

n=0

(iM−1/2)n

2nn!
(−∇X · ∇P ′)

nA(X)B(X′, P ′)

∣∣∣∣∣
(X,P )=(X′,P ′)

+ M−3/2r2. (112)

The remainder r2 is smooth and if B(X0, P0)=E[ḡ ◦ St(·) | X0, P0] ∗ φη(X0, P0), and A(X0)=
Ā∗ φη(X0) the remainder satisfies∫

R3N
〈Φ, r̂2Φ〉dX =O(eĈ tδ−2). (113)

If A∈ C∞(R6N) and B ∈ C∞(R6N) are in the Schwartz Space, there holds

C (X, P )= e
i
2 M−1/2 ∑

k(∂Pk∂X′k−∂Xk∂P ′k)A(X, P )B(X′, P ′)|(X,P )=(X′,P ′)

=
m∑

n=0

(iM−1/2)n

2nn!
(∇P · ∇X′ − ∇X · ∇P ′)

nA(X, P )B(X′, P ′)

∣∣∣∣∣
(X,P )=(X′,P ′)

+ M−(m+1)/2rm, (114)
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where for B(X0, P0)=E[ḡ ◦ St(·) | X0, P0] ∗ φη(X0, P0) and A(X0, P0)= Ā∗ φη(X0, P0)∫
R3N
〈Φ, r̂mΦ〉dX =O(eĈ tδ−m), (115)

for A(X)=∇V(X)−∇λη ∗ φν(X) and B(X0, P0)= ∂PE[ḡ ◦ St(·) | X0, P0] ∗ φη(X0, P0)∫
R3N
〈Φ, r̂1Φ〉dX =O(eĈ tδ−4), (116)

and for A(Z)= Hη(Z) and B(Z)= 2
∫ 1

0 g̃′′MD(sHη(Z)+ (1− s)E)(1− s)ds∫
R3N
〈Φ, r̂1Φ〉dX =O(eĈ tδ−4). (117)

�

Proof. The proof has five steps. The first step uses the definition of the Weyl quantiza-

tion to define an integral kernel for the product Ĉ = ÂB̂ following Hörmander’s work [22].

The next step formulates the Moyal expansion and identifies the remainder as an aver-

age of s-quantizations (16), which proves (112). The third step writes the s-quantized

remainder as a Wigner quantization (with s= 1/2) and estimates the remainder, using

that the product of two FBI transformed functions is the convolution of the Wigner

function with a Gaussian. Step 4 proves (114) and (115). Step 5 proves (117).

1. To verify (112), we start with the definition of the Weyl operator

ĈΦ(X)= (2πM−1/2)−3N︸ ︷︷ ︸
=:γ

∫
R6N

C
(

X + Y

2
, P
)

eiM1/2(X−Y)·PΦ(Y)dY dP .

The L2 inner product∫
R3N

ĈΦ(X)Ψ ∗(X)dX = γ

∫
R9N

C
(

X + Y

2
, P
)

eiM1/2(X−Y)·PΦ(Y)Ψ ∗(X)dP dY dX

=
∫
R6N

C K(X, Y)Φ(Y)Ψ ∗(X)dY dX

defines the kernel

C K(X, Y) := γ

∫
R3N

C
(

X + Y

2
, P
)

eiM1/2(X−Y)·P dP , (118)

and the inverse Fourier transform implies

C (U , P )=
∫
R3N

C K

(
U + Z

2
, U − Z

2

)
e−iM1/2 Z ·P dZ . (119)
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Our examples have A independent of P , that is, A(X, P )= A(X), and the kernel of the

composition ÂB̂ becomes a multiplication

C K(X, Y)= γ

∫
R3N

A(X)B
(

X + Y

2
, P ′

)
eiM1/2(X−Y)·P ′ dP ′.

The definition Ĉ = ÂB̂ and (119) yields

C (U , P )= (2πM−1/2)−3N
∫
R6N

A
(

U + Z

2

)
B(U , P + P ′) eiM1/2 P ′·Z dZ dP ′

= (πM−1/2)−3N
∫
R6N

A(U + Z ′)B(U , P + P ′) e2iM1/2 P ′ ·Z ′ dZ ′ dP ′.

The final step in Hörmander’s derivation uses the standard Fourier transforms

F( f)= f̂ of a Schwartz function f(X, P ) and of eiM1/2 X·P combined with L2(R6N) Fourier

transform isometry and Taylor expansion function of the exponential. Here we modify

this by identifying the remainder in the Moyal expansion for f(X + X′, P + P ′) := A(X +
X′)B(X, P + P ′) as an s-quantization (16).

2. We use in this step the Fourier transform FP in the P -direction defined for

f(X0, P0) ∈R by

FP { f}(X0, Y) :=
∫
R3N

f(X0, ξ) e−iY·ξ dξ .

The remainder is based on a Taylor expansion of the exponential function as follows:∫
R6N

f(X + X′, P + P ′) e2iM1/2 X′ ·P ′ dX′ dP ′

=
(

1

2π

)6N (
π√
M

)3N ∫
R6N

F f(ξX, ξP ) e−
i
2 M−1/2ξX ·ξP dξX dξP

=
(

1

2π

)6N (
π√
M

)3N ∫
R6N

F f(ξX, ξP )

(
m∑

n=0

(−iξX · ξP

2M1/2

)n 1

n!

+
(−iξX · ξP

2M1/2

)m+1 1

m!

∫ 1

0
(1− s)m e−

is
2 M−1/2ξX ·ξP ds

)
dξX dξP

=
(

π√
M

)3N
(

m∑
n=0

1

n!

(−i∇X · ∇P

2M1/2

)n

f(X, P )

+
(

1

2M1/2

)m+1 ∫ 1

0

∫
R6N

F((−i∇X · ∇P )
m+1 f)(ξX, ξP ) e−

is
2 M−1/2ξX ·ξP

(1− s)m

(2π)6Nm!
dξX dξP ds

)

=
( π

M1/2

)3N
(

m∑
n=0

1

n!

(−i∇X · ∇P

2M1/2

)n

f(X, P )+
(

1

2M1/2

)m+1 ∫ 1

0

∫
R3N

FP ((−i∇X · ∇P )
m+1

× f(X + ·, P + ·))
(

sξP

2M1/2
, ξP

)
(1− s)m

(2π)3Nm!
dξP ds

)
. (120)
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The remainder term can be written as follows:(
1

2M1/2

)m+1 ∫ 1

0

∫
R3N

FP ((−i∇X · ∇P )
m+1 f(X + ·, P + ·))

(
sξP

2M1/2
, ξP

)
(1− s)m

(2π)3Nm!
dξP ds

=
(

1

2M1/2

)m+1 ∫ 1

0

∫
R6N

(−i∇X · ∇P )
m+1 f

(
X + sξP

2M1/2
, P + P ′

)
× eiP ′ ·ξP

(1− s)m

(2π)3Nm!
dP ′ dξP ds

=:
(

1

2M1/2

)m+1

rm,

where rm is smooth since f is a Schwartz function. The change of variables P + P ′ = P ′′

and (118) shows that kernel of the remainder becomes

rm,K(X, Y)= γ

∫ 1

0

∫
R9N

(−i∇X · ∇P )
m+1 f

(
X + Y

2
+ sξP

2M1/2
, P ′′

)
× eiM1/2(X−Y)·P ei(P ′′−P )·ξP

(1− s)m

(2π)3Nm!
dP ′′ dξP dP ds

= γ

∫ 1

0

∫
R3N

(−i∇X · ∇P )
m+1 f

(
X+Y

2
+ s(X−Y)

2
, P ′′

)
eiM1/2(X−Y)·P ′′ (1− s)m

m!
dP ′′ ds

= γ

∫ 1

0
FP {(−i∇X · ∇P )

m+1 f}
(

X + Y

2
+ s(X − Y)

2
, M1/2(X − Y)

)
(1− s)m

m!
ds.

We note that the kernel As∗
K(X, Y) for any symbols A in the s∗-quantization (16) is

As∗
K(X, Y)= γ

∫
R3N

A(X + s∗(Y − X), P ) eiM1/2(X−Y)·P dP

= γFP {A}(X + s∗(Y − X), M1/2(X − Y))

= γFP {A}
(

X + Y

2
+ s

2
(Y − X), M1/2(X − Y)

)
for s∗ = (1− s)/2. Consequently, we have∫

R3N
〈Φ, r̂mΦ〉dX =

∫ 1

0

∫
R6N

(∇X · ∇P )
m+1 f(X, P )W(s∗)(X, P )dX dP

(1− s)m

m!
ds (121)

and the next step shows the final bound∫
R3N
〈Φ, r̂2Φ〉dX =O(eĈ Tδ−2). (122)

3. It remains to estimate the remainder for r = r2 in (122). Lemmas 5.1 and 5.3

imply that we have

sup
(X,P )∈R6N

‖r∗(X, P )‖2 ≤ C sup
(X,P )∈R6N

‖r2(X, P )‖∞ +O(η)=O(eĈ Tδ−2),

uniformly in N, which proves (122).
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4. The general case Ĉ = ÂB̂ of two Fourier integral operators, with smooth sym-

bols A, B ∈ C∞(R6N) in the Schwartz space yields

C (U , P )= γ 2
∫
R12N

A
(

U + Z

2
+ T

4
, P ′′

)
B
(

U + Z

2
− T

4
, P ′

)
eiM1/2 F dP ′′ dP ′ dZ dT

= γ 2
∫
R12N

A
(

U + Z

2
+ T

4
, P ′′

)
B
(

U + Z

2
− T

4
, P ′

)
eiM1/2 F dP ′′ dP ′ dZ dT ,

where

F :=
(

U − Z + T

2

)
· P ′′ +

(
Z −U + T

2

)
· P ′ − T · P

=
(

U − Z + T

2

)
· (P ′′ − P )+

(
Z −U + T

2

)
· (P ′ − P ).

The change of variables (P ′′ − P , P ′ − P , (Z −U + T
2 )/2, (Z −U − T

2 )/2) replacing

(P ′′, P ′, Z , T) has the Jacobian 26N and implies

C (U , P )= (πM−1/2)−6N
∫
R12N

A(U + Z , P + P ′′)

× B(U + T , P + P ′) eiM1/2(P ′ ·Z−T ·P ′′) dZ dP ′′ dT dP ′.

The same expansion as in (120) shows that

C (X, P )= e
i
2 M−1/2 ∑

k(∂Pk∂X′k−∂Xk∂P ′k)A(X, P )B(X′, P ′)|(X,P )=(X′,P ′)

=
m∑

n=0

(iM−1/2)n

2nn!
(∇P · ∇X′ − ∇X · ∇P ′)

nA(X, P )B(X′, P ′)

∣∣∣∣∣
(X,P )=(X′,P ′)

+ M−(m+1)/2rm

based on the representation∫
R6N

f(X + X′, P + P ′, X + X′′, P + P ′′) e2iM1/2(X′ ·P ′−X′′ ·P ′′) dX′ dP ′ dX′′ dP ′′

=
( π

M1/2

)3N
(

m∑
n=0

1

n!
(i(∇X′′ · ∇P ′ −∇X′ · ∇P ′′))

m+1 f(X+ X′, P + P ′, X+ X′′, P + P ′′)

∣∣∣∣∣
X′=X′′=0
P ′=P ′′=0

+
(

1

2M1/2

)m+1

rm

)
,

rm :=
∫ 1

0

∫
R12N

i(∇X′′ · ∇P ′ − ∇X′ · ∇P ′′)
m+1 f

(
X + sξP ′

2M1/2
, P + P ′, X − sξP ′′

2M1/2
, P + P ′′

)
× ei(P ′ ·ξP ′−P ′′ ·ξP ′′ )

(1− s)m

(2π)6Nm!
dP ′ dξP ′ dP ′′ dξP ′′ ds.
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The kernel for m= 1 becomes

r1,K(X, Y)= γ

∫ 1

0
FP ′P ′′ {(i(∇X′′ · ∇P ′ − ∇X′ · ∇P ′′))

2 f}

×
(

X + Y

2
− s(X − Y)

2M1/2
, M1/2(X − Y),

X + Y

2
− s(X − Y)

2M1/2
, M1/2(X − Y)

)
(1− s)ds

and as in (121) we obtain∫
R3N
〈Φ, r̂1Φ〉dX

=
∫ 1

0

∫
R6N

(∇X′′ · ∇P ′ − ∇X′ · ∇P ′′)
2 f(X + X′, P + P ′, X + X′′, P + P ′′)

∣∣∣∣
X′=X′′=P ′=P ′′=0

×W(s∗)(X, P )dX dP (1− s)ds.

We apply this to the special case C (X, P )= Hη(X, P )B(X, P ) where B(Z)=
E[ḡ ◦ St(·) | X0, P0] ∗ φη(Z) is a Schwartz function. Then we have f(X′, P ′, X′′, P ′′)=
Hη(X′, P ′)B(X′′, P ′′) and for B = ∂PE[ḡ ◦ ST (·) | X0, P0] ∗ φη(X, P ). Lemma 5.3 yields as in

Step 3 the bound ∫
R3N
〈Φ, r̂1Φ〉dX =O(eĈ Tδ−4).

5. If A= Hη and B(Z)= 2
∫ 1

0 g̃′′MD(sHη(Z)+ (1− s)E)(1− s)ds the symbol D := AB

is a smooth product of two convolutions, by (38), and D(Z) tends to zero fast for large

|Z |. We obtain as in Step 3 ∫
R3N
〈Φ, r̂1Φ〉dX =O(eĈ Tδ−4). �

Appendix 1. Fourier Integral WKB States Including Caustics

A.1 A preparatory example with the simplest caustic

As an example of a caustic, we study first the simplest example of a fold caustic based

on the Airy function A :R→R which solves

− ∂xxA(x)+ xA(x)= 0. (A.1)

The scaled Airy function

u(x)= C A(M1/3x)

solves the Schrödinger equation

− 1

M
∂xxu(x)+ xu(x)= 0, (A.2)
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78 C. Bayer et al.

Fig. A1. The Airy function.

for any constant C . In our context, an important property of the Airy function is the fact

that it is the inverse Fourier transform of the function

Â(p)=
√

2

π
eip3/3,

that is,

A(x)= 1

π

∫
R

ei(xp+p3/3) dp. (A.3)

In the next section, we will consider a general Schrödinger equation and determine a

WKB Fourier integral corresponding to (A.3) for the Airy function; as an introduction to

the general case we show how the derive (A.3): by taking the Fourier transform of the

ordinary differential equation (A.1)

0=
∫
R
(−∂xx + x)A(x)e−ixp dx= (p2 + i∂p)Â(p), (A.4)

we obtain an ordinary differential equation for the Fourier transform Â(p) with the solu-

tion Â(p)= C eip3
, for any constant C . Then, by differentiation, it is clear that the scaled

Airy function u solves (A.2). Furthermore, the stationary phase method, cf. Appendix 2,

shows that to the leading order u is approximated by

u(x)� C (−xM1/3)−1/4 cos(M1/2(−x)3/2 − π/4) for x< 0, (A.5)

and u(x)� 0 to any order (i.e., O(M−K) for any positive K) when x> 0. The behavior of

the Airy function is illustrated in Figure A1.
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A.1.1 Molecular dynamics for the Airy function

The eikonal equation corresponding to (A.2) is

p2 + x= 0

with solutions for x≤ 0, which leads to the phase

p= θ ′(x)=±(−x)1/2 and θ(x)=∓ 2
3 (−x)3/2. (A.6)

We have the Legendre transform

θ∗(p)=min
y
(yp− θ(y))

with the solution p= θ ′(y). Consequently, we obtain by (A.6) that x= y and

θ∗(p)= xp− θ(x)=−p2 p+ 2

3
p3 =− p3

3
.

We note that this solution is also obtained from the eikonal equation

p2 + ∂pθ
∗(p)= 0,

which is solved by

θ∗(p)=−p3/3.

Thus, we recover the relation for the Legendre transform −xp+ θ∗(p)=−θ(x).

A.2 A general Fourier integral ansatz

In order to treat a more general case with a caustic of the dimension d, we use the

Fourier integral ansatz

Φ(X)=
∫
Rd
φ(X) e−iM1/2Θ(X̌,X̂, P̌ ) d P̌ , (A.7)

where

φ(X) ∈CJ ,

X = (X̂, X̌) ∈R3N , P = ( P̂ , P̌ ) ∈R3N ,

X̌ · P̌ =
d∑

j=1

X̌ j P̌ j, X̂ · P̂ =
N∑

j=d+1

X̂ j P̂ j,

Θ(X̌, X̂, P̌ )= X̌ · P̌ − θ∗(X̂, P̌ ),
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based on the Legendre transform relationships (cf. [11])

θ∗(X̂, P̌ )=min
X̌
(X̌ · P̌ − θ(X̂, X̌)),

θ(X̂, X̌)=min
P̌
(X̌ · P̌ − θ∗(X̂, P̌ )).

If the function θ∗(X̂, P̌ ) is not defined for all P̌ ∈Rd, but only for P̌ ∈ U ⊂Rd we replace

the integral over Rd by integration over U using a smooth cut-off function χ( P̌ ). The

cut-off function is zero outside U and equal to one in a large part of the interior of U .

The ansatz (A.7) is inspired by Maslov’s work [34], although it is not the same since our

amplitude function φ depends on (X̂, X̌) but not on P̌ .

A.2.1 Making the ansatz for a Schrödinger solution

In this section, we construct a solution to the Schrödinger equation from the ansatz (A.7).

The constructed solution will be an actual solution and not only an asymptotic solution

as in [34]. We consider first the case when the integration is over Rd and then conclude

in Remark A.2 that the cut-off function χ( P̌ ) can be included in all integrals without

changing the property of the Fourier integral ansatz being a solution in the X̌-domain

where X̌ =∇ P̌ θ
∗(X̂, P̌ ) for some P̌ satisfying χ( P̌ )= 1.

The requirement to be a solution means that there should hold

0= (Ĥ − E)Φ

=
∫
Rd

(
1

2
|∇X̂θ

∗(X̂, P̌ )|2 + 1

2
| P̌ |2 + V0(X)− E

)
φ(X)e−iM1/2Θ(X̌,X̂, P̌ ) d P̌

−
∫
Rd

(
iM−1/2

(
∇X̂φ · ∇X̂θ

∗ − ∇X̌φ · P̌ + 1

2
φΔX̂θ

∗
)
− (V − V0)φ + 1

2M
ΔXφ

)
× e−iM1/2Θ(X̌,X̂, P̌ ) d P̌ . (A.8)

Comparing this expression to the previously discussed case of a single WKB-mode, we

see that the zero-order term is now ΔX̂θ
∗ instead of ΔXθ and that we have −∇X̌φ · P̌

instead of ∇X̌φ · ∇X̌θ . However, the main difference is that the first integral is not zero

(only the leading order term of its stationary phase expansion is zero, cf. (A.19)). There-

fore, the first integral contributes to the second integral. The goal is now to determine a

function F (X̂, X̌, P̌ ) satisfying∫
Rd

(
1

2
|∇X̂θ

∗|2 + 1

2
| P̌ |2 + V0(X)− E

)
e−iM1/2Θ(X̌,X̂, P̌ ) d P̌

= iM−1/2
∫
Rd

F (X̂, X̌, P̌ ) e−iM1/2Θ(X̌,X̂, P̌ ) d P̌ , (A.9)

and verify that it is bounded.
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Lemma A.1. There holds F = F0 + F1 where

F0 = 1

2

∑
i, j

∂X̌i X̌ j V0(∇ P̌ θ
∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ ),

F1 = iM−1/2
∫ 1

0

∫ 1

0

∫
Rd

∑
i, j,k

t(1− t)∂ P̌ k[∂X̌i X̌ j X̌kV0(∇ P̌ θ
∗( P̌ )

+ s t δθ∗( P̌ ))∂ P̌ j P̌i
∇ P̌ θ

∗( P̌ )] dt ds. �

Proof. The function θ∗(X̂, P̌ ) is defined as a solution to the Hamilton–Jacobi (eikonal)

equation

1
2 |∇X̂θ

∗(X̂, P̌ )|2 + 1
2 | P̌ |2 + V0(X̂,∇ P̌ θ

∗(X̂, P̌ ))− E = 0 (A.10)

for all (X̂, P̌ ). Consequently, the integral on the left-hand side of (A.9) is∫
Rd
(V0(X̂, X̌))− V0(X̂,∇ P̌ θ

∗(X̂, P̌ )) e−iM1/2(X̌· P̌−θ∗(X̂, P̌ )) d P̌ .

Let P̌0(X̌) be any solution to the stationary phase equation X̌ =∇ P̌ θ
∗(X̂, P̌0) and introduce

the notation

Θ ′(X̌, X̂, P̌ ) :=∇ P̌ θ
∗(X̂, P̌0) · P̌ − θ∗(X̂, P̌ ).

Then by writing a difference as V(y1)− V(y2)=
∫ 1

0 ∂yV(y2 + t(y1 − y2))dt · (y1 − y2), iden-

tifying a derivative ∂ P̌i
and integrating by parts the integral can be written as follows:∫

Rd
(V0(X̂,∇ P̌ θ

∗(X̂, P̌0))− V0(X̂,∇ P̌ θ
∗(X̂, P̌ ))) e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌

=
∫ 1

0

∫
Rd

∑
i

∂X̌i V0(∇ P̌ θ
∗( P̌ )+ t[∇ P̌ θ

∗( P̌0)−∇ P̌ θ
∗( P̌ )])

×
(
∂ P̌ iθ

∗( P̌0)− ∂ P̌ iθ
∗( P̌ )

)
e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt

=−iM−1/2
∫ 1

0

∫
Rd

∑
i

∂X̌i V0(∇ P̌ θ
∗( P̌ )+ t[∇ P̌ θ

∗( P̌0)− ∇ P̌ θ
∗( P̌ )])∂ P̌i

e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt

= iM−1/2
∫ 1

0

∫
Rd

∑
i

∂ P̌i
∂X̌i V0(∇ P̌ θ

∗( P̌ )+ t[∇ P̌ θ
∗( P̌0)−∇ P̌ θ

∗( P̌ )]) e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt.

Therefore, the leading order term in F =: F0 + F1 is

F0 :=
∫ 1

0

∑
i, j

(1− t)∂X̌i X̌ j V0(∇ P̌ θ
∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ )dt

= 1

2

∑
i, j

∂X̌i X̌ j V0(∇ P̌ θ
∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ ).
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Denoting δθ∗( P̌ ) :=∇ P̌ θ
∗( P̌0)− ∇ P̌ θ

∗( P̌ ), the remainder becomes

− iM−1/2
∫ 1

0

∫
Rd

∑
i, j

[∂X̌i X̌ j V0(∇ P̌ θ
∗( P̌ ))− ∂X̌i X̌ j V0(∇ P̌ θ

∗( P̌ )+ tδθ∗( P̌ ))]

× (1− t)∂ P̌ j P̌ iθ
∗( P̌ ) e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt

= iM−1/2
∫ 1

0

∫ 1

0

∫
Rd

∑
i, j,k

t(1− t)∂X̌i X̌ j X̌kV0(∇ P̌ θ
∗( P̌ )+ stδθ∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ )

× (∂ P̌ kθ
∗( P̌0)− ∂ P̌ kθ

∗( P̌ )) e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt ds

=− 1

M

∫ 1

0

∫ 1

0

∫
Rd

∑
i, j,k

t(1− t)∂ P̌ k[∂X̌i X̌ j X̌kV0(∇ P̌ θ
∗( P̌ )+ stδθ∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ )]

× e−iM1/2Θ ′(X̌,X̂, P̌ ) d P̌ dt ds,

hence the function F1 is purely imaginary and small

F1 = iM−1/2
∫ 1

0

∫ 1

0

∫
Rd

∑
i, j,k

t(1− t)∂ P̌ k[∂X̌i X̌ j X̌kV0(∇ P̌ θ
∗( P̌ )+ stδθ∗( P̌ ))∂ P̌ j P̌i

∇ P̌ θ
∗( P̌ )] dt ds

and

2Re F =
∑
i, j

∂X̌i X̌ j V0(∇ P̌ θ
∗( P̌ ))∂ P̌ j P̌ iθ

∗( P̌ ). (A.11)

�

The eikonal equation (A.10) and the requirement that (Ĥ − E)Φ = 0 in (A.8) then

imply that

0=
∫
Rd

[
iM−1/2

(
∇X̂φ · ∇X̂θ

∗ − ∇X̌φ · P̌ + 1

2
φ(ΔX̂θ

∗ − 2F (X, P̌ ))
)

−(V − V0)φ + 1

2M
ΔXφ

]
e−iM1/2Θ(X̌,X̂, P̌ ) d P̌ . (A.12)

The Hamilton–Jacobi eikonal equation (A.10), in the primal variable (X̂, P̌ ) with the cor-

responding dual variable ( P̂ , X̌), can be solved locally by the characteristics

˙̂X = P̂ ,

˙̂P =−∇X̂V0(X̂, X̌),

˙̌X =− P̌ ,

˙̌P =∇X̌V0(X̂, X̌),

(A.13)
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using the definition

∇X̂θ
∗(X̂, P̌ )= P̂ ,

∇ P̌ θ
∗(X̂, P̌ )= X̌.

The characteristics give

d

dt
φ =∇X̂φ · ∇X̂θ

∗ − ∇X̌φ · P̌ ,

so that the Schrödinger transport equation becomes, as in (47),

iM−1/2

(
φ̇ + φ

Ġ

G

)
= (V − V0)φ − 1

2M
ΔXφ (A.14)

and for ψ =Gφ

iM−1/2ψ̇ = (V − V0)ψ − G

2M
ΔX

ψ

G
(A.15)

with the complex-valued weight function G defined by

d

dt
log Gt= 1

2
ΔX̂θ

∗(X̂t, P̌t)− F (X̂t, P̌t). (A.16)

This transport equation is of the same form as the transport equation for a single WKB-

mode, with a modification of the weight function G.

Differentiation of the second equation in the Hamiltonian system (A.13) implies

that the first variation ∂ P̌t/∂ X̌0 satisfies

d

dt

(
∂ P̌ i

t

∂ X̌0

)
=
∑
j,k

∂X̌i X̌ j V0(X̂, X̌t)∂ P̌ j P̌ kθ
∗( P̌ )

∂ P̌ k
t

∂ X̌0

,

which by the Liouville formula (A.18) and the equality

2Re F =
∑
i, j

∂X̌i X̌ j V0∂ P̌ j P̌ iθ
∗ =Tr

⎛⎝∑
j

∂X̌i X̌ j V0∂ P̌ j P̌ kθ
∗

⎞⎠
in (A.11) yields the relation,

e−2
∫ t

0 Re F dt′ = C

∣∣∣∣∣det
∂ P̌t

∂ X̌0

∣∣∣∣∣ , (A.17)

for the constant C := |det ∂ X̌0

∂ P̌0
|.
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Remark A.2. The conclusion in this section holds also when all integrals over dP̌

in Rd are replaced by integrals with the measure χ( P̌ )d P̌ . Then there holds 2Re F =∑
i j ∂X̌i X̌ j V∂ P̌ i (χ∂ P̌ jθ

∗). �

A.2.2 Liouville’s formula

Here we state Liouville’s formula

G2
0

G2
t
= e−

∫ t
0 Tr (∇P (Xt))dt=

∣∣∣∣det
∂(X0)

∂(Xt)

∣∣∣∣ , (A.18)

given in [34].

Appendix 2. The Stationary Phase Expansion

Consider the phase function X̌ · P̌ − θ∗(X̂, P̌ ) and let P̌0(X̂) be any solution to the sta-

tionary phase equation X̌ =∇ P̌ θ
∗(X̂, P̌0). We rewrite the phase function

X̌ · P̌ − θ∗(X̌, P̌ )= X̌ · P̌0 − θ∗(X̌, P̌0)︸ ︷︷ ︸
=θ(X̂,X̌)

+( P̌ − P̌0) ·
∫ 1

0
(1− t)∂P P θ

∗( P̌0 + t[ P̌ − P̌0])dt[ P̌ − P̌0].

The relation

1

2
Y · ∂P P θ̄ ( P̌0)Y= ( P̌ − P̌0) ·

∫ 1

0
(1− t)∂P P θ̄ ( P̌0 + t[ P̌ − P̌0])dt[ P̌ − P̌0]

defines the function Y( P̌ ), and its inverse P̌ (Y), so that the phase is a quadratic function

in Y. The stationary phase expansion of an integral takes the form, see [51],∫
Rd
w( P̌ ) e−iM1/2(X̌· P̌−θ∗(X̂, P̌ )) d P̌

∼
∑

{ P̌0:∇ P̌ θ
∗( P̌0)=X̌}

(2πM−1/2)d/2

∣∣∣∣∣det
∂( P̌0)

∂(X̌)

∣∣∣∣∣
1/2

ei π4 sgn(∂P P θ
∗( P̌0)) e−iM1/2θ(X̂,X̌; P̌0)

×
∞∑

k=0

M−k/2

k!

⎛⎝∑
l, j

i(∂P l P jθ∗)−1( P̌0)∂Yl Y j

⎞⎠k (
w( P̌ (Y))

∣∣∣∣∣det
∂( P̌ )

∂(Y)

∣∣∣∣∣
)∣∣∣∣∣

Y=0

. (A.19)

Appendix 3. An Alternative Motivation for Assumption (26)

The double average (26) in time and phase-space is in Monte Carlo methods approx-

imated by sampling several paths with random initial points (X0, P0). For a single

path, one expects O(T−1/2) convergence rate, in the case of bounded correlation times.
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Fig. A2. Ergodicity test results for Born–Oppenheimer molecular dynamics simulations.

Many paths correspond in some sense to longer averaging time for a single path and

one may ask how long. This answer is related to how the dynamics maps an initial

phase-space neighborhood D to ST/2(D). The exponential eĈ T growth of the first vari-

ation |∂αP0
g ◦ ST (X0, P0)|, for |α| = 1, implies that an initial domain D, on the constant

energy hyper-surface F := {(X, P ) | H0(X, P )= constant}, is stretched but mapped to the

bounded energy surface F . If the dynamics is ergodic, the sampling density becomes

uniform on this energy hyper-surface, asymptotically in time. Paths that are very close

are not acting as independent samples for finite T . The assumption (26) means that the

exponential growth of the first variation measures how small the initial distance, e−Ĉ T/2,

of the paths can be in order to lead to approximately independent paths after time T/2.

The paths that are initially e−Ĉ T/2 close will after time T/2 have a distance of order 1. The

remaining T/2 time this O(eĈ T/2) number of paths would act as approximately indepen-

dent samples (over time T/2), as tested in Figure A2, and would give the expected decay

e−Ĉ T/4, if the Lyapunov exponent is positive in only one direction, d= 1. If d Lyapunov

exponents are similar to the maximal, we expect the decay e−Ĉ Td/4.

Figure A2 tests ergodicity for Born–Oppenheimer molecular dynamics sim-

ulations with the potential λs(X)= X2
1/2+ X2

2/
√

2+ 2 sin(X1 X2) and the double

average over time and N initial points {(X0[n], P0[n])= (0, 0,
√

2(E − λs(0)) cos(1.2+
nΔv),

√
2(E − λs(0)) sin(1.2+ nΔv)}Nn=1 in (26). The vertical axis shows the sampling error∑N

n=1
2
T

∫ T
T/2(g(Xt)− gMD)(X0[n], P0[n])dt/N and the horizontal axis shows the number of

samples N for the symplectic Euler method. The convergence rate O(N−1/2) for Δv= 10−6

(left figure) and Δv= 10−10 (middle figure) indicate independent sample paths while the

closer paths with Δv = 10−14 in (right figure) are not acting independently since the

convergence is slower. The maximal Lyapunov exponent is in this case computed to be

roughly 0.35 (the others are (−0.35, 0, 0)), so that the expansion of the path distance from
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time zero to time 70 becomes e0.35×70 ≈ 1010 and the approximate N−1/2 convergence rate

for Δv ≥ 10−10 indicates that γ ≈ 1/4 as suggested in the paragraph following (26). Here

T = 140, Δt= 0.01, E = 1.5, g(X)= sin(X1 X2). The ergodic limit gMD is approximated in

two different ways: by a single symplectic Euler path to −0.4389 and by the Monte Carlo

samples (93) to −0.4388. The dashed line shows N−1/2.
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