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Abstract A formal mean square error expansion (MSE) is derived for Euler–
Maruyama numerical solutions of stochastic differential equations (SDE). The error
expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler–
Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is
incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approxima-
tions of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling
a number of low-regularity approximation problems. In low-regularity numerical
example problems, the developed adaptive MLMC algorithm is shown to outperform
the uniform time-stepping MLMC algorithm by orders of magnitude, producing out-
put whose error with high probability is bounded by TOL > 0 at the near-optimal
MLMC cost rate O

(
TOL−2 log(TOL)4

)
that is achieved when the cost of sample

generation is O(1).

Keywords Multilevel monte carlo · Stochastic differential equations · Euler–
Maruyama method · Adaptive methods · A posteriori error estimation · Adjoints

1 Introduction

SDE models are frequently applied in mathematical finance [12, 28, 29], where an
observable may, for example, represent the payoff of an option. SDE are also used
to model the dynamics of multiscale physical, chemical or biochemical systems
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[11, 25, 30, 32], where, for instance, concentrations, temperature and energy may
be sought observables.

Given a filtered, complete probability space (Ω,F , (Ft)0≤t≤T , P), we consider
the Itô SDE

dXt = a(t,Xt)dt + b(t,Xt)dWt, t ∈ (0,T ],
X0 = x0,

(1)

where X : [0,T ] × Ω → R
d1 is a stochastic process with randomness generated by a

d2-dimensional Wiener process, W : [0,T ] × Ω → R
d2 , with independent compo-

nents, W = (W (1),W (2), . . . ,W (d2)), and a : [0,T ] × R
d1 → R

d1 and b : [0,T ] ×
R

d1 → R
d1×d2 are the drift and diffusion coefficients, respectively. The initial con-

dition x0 is a random variable on (Ω, P,F ) independent of W . The considered
filtration Ft is generated from the history of the Wiener process W up to time t and
the possible outcomes of the initial data X0, and succeedingly completed with all
P-outer measure zero sets of the sample space Ω . That is

Ft := σ({Ws}0≤s≤t) ∨ σ(X0)

where the operationA ∨ B denotes theσ -algebra generated by the pair ofσ -algebras
A and B, i.e., A ∨ B := σ(A ,B), and A denotes the P-outer measure null-set
completion of A ,

A := A ∨
{

A ⊂ Ω
∣
∣∣ inf
Â∈{Ǎ∈A | Ǎ⊃A}

P
(
Â
)

= 0

}

.

The contributions of this work are twofold. First, an a posteriori adaptive time-
stepping algorithm for computing numerical realizations of SDEs using the Euler–
Maruyama method is developed. And second, for a given observable g : Rd1 → R,
we construct a mean square error (MSE) adaptive time-stepping multilevel Monte
Carlo (MLMC) algorithm for approximating the expected value, E

[
g(XT )

]
, under

the following constraint:

P
(∣∣E

[
g(XT)

]− A
∣
∣ ≤ TOL

) ≥ 1 − δ. (2)

Here, A denotes the algorithm’s approximation of E
[
g(XT )

]
(examples of which

are given in Item (A.2) and Eq. (6) and TOL and δ > 0 are accuracy and confidence
constraints, respectively.

The rest of this paper is organized as follows: First, in Sect. 1.1, we review the
Monte Carlo methods and their use with the Euler–Maruyama integrator. This is fol-
lowed by discussion of Multilevel Monte Carlo methods and adaptivity for SDEs. The
theory, framework and numerical examples for the MSE adaptive algorithm is pre-
sented in Sect. 2. In Sect. 3, we develop the framework for the MSE adaptive MLMC
algorithm and present implementational details in algorithms with pseudocode. In
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Sect. 4, we compare the performance of the MSE adaptive and uniform MLMC
algorithms in a couple of numerical examples, one of which is a low-regularity SDE
problem. Finally, we present brief conclusions followed by technical proofs and the
extension of the main result to higher-dimensional problems in the appendices.

1.1 Monte Carlo Methods and the Euler–Maruyama Scheme

Monte Carlo (MC) methods provide a robust and typically non-intrusive way to
compute weak approximations of SDE. The convergence rate of MC methods does
not depend on the dimension of the problem; for that reason, MC is particularly
effective on multi-dimensional problems. In its simplest form, an approximation by
the MC method consists of the following two steps:

(A.1) Make M independent and identically distributed numerical approximations,
{Xm,T }m=1,2,...,M , of the numerical solution of the SDE (1).

(A.2) Approximate E
[
g(XT)

]
a realization of the sample average

A :=
M∑

m=1

g
(
Xm,T

)

M
. (3)

Regarding ordinary differential equations (ODE), the theory for numerical integrators
of different orders for scalar SDE is vast. Provided sufficient regularity, higher order
integrators generally yield higher convergence rates [22]. With MC methods it is
straightforward to determine that the goal (2) is fulfilled at the computational cost
O
(
TOL−2−1/α

)
, where α ≥ 0 denotes the weak convergence rate of the numerical

method, as defined in Eq. (5).
As a method of temporal discretization, the Euler–Maruyama scheme is given by

Xtn+1 = Xtn + a(tn,Xtn)Δtn + b(tn,Xtn)ΔWn,

X0 = x0,
(4)

using time steps Δtn = tn+1 − tn and Wiener increments ΔWn = Wtn+1 − Wtn ∼
N(0,ΔtnId2), where Id2 denotes the d2 × d2 identity matrix. In this work, we will
focus exclusively on Euler–Maruyama time-stepping. The Euler–Maruyama scheme,
which may be considered the SDE-equivalent of the forward-Euler method for ODE,
has, under sufficient regularity, first-order weak convergence rate

∣∣E
[
g(XT) − g

(
XT
)]∣∣ = O

(
max
n

Δtn
)

, (5)
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and also first-order MSE convergence rate

E
[(
g(XT) − g

(
XT
))2
]

= O
(

max
n

Δtn
)

, (6)

cf. [22]. For multi-dimensional SDE problems, higher order schemes are generally
less applicable, as either the diffusion coefficient matrix has to fulfill a rigid commu-
tativity condition, or Levy areas, required in higher order numerical schemes, have to
be accurately approximated to achieve better convergence rates than those obtained
with the Euler–Maruyama method [22].

1.2 Uniform and Adaptive Time-Stepping MLMC

MLMC is a class of MC methods that uses a hierarchy of subtly correlated and
increasingly refined realization ensembles to reduce the variance of the sample esti-
mator. In comparison with single-level MC, MLMC may yield orders of magnitude
reductions in the computational cost of moment approximations. MLMC was first
introduced by Heinrich [14, 15] for approximating integrals that depend on random
parameters. For applications in SDE problems, Kebaier [21] introduced a two-level
MC method and demonstrated its potential efficiency gains over single-level MC.
Giles [8] thereafter developed an MLMC algorithm for SDE, exhibiting even higher
potential efficiency gains. Presently, MLMC is a vibrant and growing research topic,
(cf. [3, 4, 9, 10, 13, 26, 34], and references therein).

1.2.1 MLMC Notation

We define the multilevel estimator by

AML :=
L∑

�=0

M�∑

m=1

Δ�gm
M�

, (7)

where

Δ�gm :=
⎧
⎨

⎩

g
(
X

{0}
T

)
, if � = 0,

g
(
X

{�}
m,T

)
− g

(
X

{�−1}
m,T

)
, otherwise.

Here, the positive integer, L, denotes the final level of the estimator, M� is the number

of sample realizations on the �th level, and the realization pair, X
{�}
m,T and X

{�−1}
m,T , are

copies of the by the Euler–Maruyama method (4) approximations of the SDE using
the same Wiener path, Wm, sampled on the respective meshes, Δt{�} and Δt{�−1},
(cf. Fig. 1).
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Fig. 1 (Left) A sample Wiener path, W , generated on the coarse mesh, Δt{0}, with uniform step
size 1/10 (blue line). The path is thereafter Brownian bridge interpolated onto a finer mesh, Δt{1},
which has uniform step size of 1/20 (green line). (Right) Euler–Maruyama numerical solutions of the
Ornstein–Uhlenbeck SDE problem, dXt = 2(1 − Xt)dt + 0.2dWt , with initial condition X0 = 3/2,
are computed on the meshes Δt{0} (blue line) and Δt{1} (green line) using Wiener increments from
the respective path resolutions

1.2.2 Uniform Time-Stepping MLMC

In the uniform time-stepping MLMC introduced in [8], the respective SDE realiza-

tions {X{�}
T }� are constructed on a hierarchy of uniform meshes with geometrically

decaying step size, min Δt{�} = max Δt{�} = T/N�, and N� = c�N0 with c ∈ N\{1}
and N0 an integer. For simplicity, we consider the uniform time-stepping MLMC
method with c = 2.

1.2.3 Uniform Time-Stepping MLMC Error
and Computational Complexity

By construction, the multilevel estimator is telescoping in expectation, i.e.,

E
[
AML

] = E
[
g
(
X

{L}
T

)]
. Using this property, we may conveniently bound the mul-

tilevel approximation error:

∣∣E
[
g(XT)

]− AML

∣∣ ≤
∣∣∣E
[
g(XT) − g

(
X

{L}
T

)]∣∣∣
︸ ︷︷ ︸

=:ET

+
∣∣∣E
[
g
(
X

{L}
T

)
− AML

]∣∣∣
︸ ︷︷ ︸

=:ES

.

The approximation goal (2) is then reached by ensuring that the sum of the bias, ET ,
and the statistical error, ES , is bounded from above by TOL, e.g., by the constraints
ET ≤ TOL/2 and ES ≤ TOL/2, (see Sect. 3.2 for more details on the MLMC error
control). For the MSE error goal,

E
[(

E
[
g(XT)

]− AML

)2
]

≤ TOL2,

the following theorem states the optimal computational cost for MLMC:
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Theorem 1 (Computational cost of deterministic MLMC; Cliffe et al. [4]) Suppose
there are constants α, β, γ such that α ≥ min(β,γ )

2 and

(i)
∣∣∣E
[
g
(
X

{�}
T

)
− g(XT)

]∣∣∣ = O
(
N−α

�

)
,

(ii) Var(Δ�g) = O
(
N−β

�

)
,

(iii) Cost(Δ�g) = O
(
Nγ

�

)
.

Then, for any TOL < e−1, there exists an L and a sequence {M�}L�=0 such that

E
[(
AML − E

[
g(XT)

])2
]

≤ TOL2, (8)

and

Cost(AML ) =

⎧
⎪⎪⎨

⎪⎪⎩

O
(
TOL−2

)
, if β > γ,

O
(
TOL−2 log(TOL)2

)
, if β = γ,

O
(

TOL−2+ β−γ
α

)
, if β < γ.

(9)

In comparison, the computational cost of achieving the goal (8) with single-level
MC is O

(
TOL−2−γ /α

)
. Theorem 1 thus shows that for any problem with β > 0,

MLMC will asymptotically be more efficient than single-level MC. Furthermore,
the performance gain of MLMC over MC is particularly apparent in settings where
β ≥ γ . The latter property is linked to the contributions of this work. In low-regularity
SDE problems, e.g., Example 6 below and [1, 35], the uniform time-stepping Euler–
Maruyama results in convergence rates for which β < γ . More sophisticated inte-
grators can preserve rates such that β ≥ γ .

Remark 1 Similar accuracy versus complexity results to Theorem 1, requiring
slightly stronger moment bounds, have also been derived for the approximation
goal (2) in the asymptotic setting when TOL ↓ 0, cf. [5, 16].

1.2.4 MSE A Posteriori Adaptive Time-Stepping

In general, adaptive time-stepping algorithms seek to fulfill one of two equivalent
goals [2]:

(B.1) Provided a computational budget N and a norm ‖ · ‖, determine the possibly
non-uniform mesh, which minimizes the error

∥∥g(XT) − g
(
XT
)∥∥.

(B.2) Provided an error constraint
∥
∥g(XT) − g

(
XT
)∥∥ ≤ TOL, determine the possibly

non-uniform mesh, which achieves the constraint at the minimum computa-
tional cost.

Evidently, the refinement criterion of an adaptive algorithm depends on the error
one seeks to minimize. In this work, we consider adaptivity goal (B.1) with the error
measured in terms of the MSE. This error measure is suitable for MLMC algorithms
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as it often will lead to improved convergence rates, β (since Var(Δ�g) ≤ E
[
Δ�g2

]
),

which by Theorem 1 may reduce the computational cost of MLMC. In Theorem 2,
we derive the following error expansion for the MSE of Euler–Maruyama numerical
solutions of the SDE (1):

E
[(
g(XT ) − g

(
XT
))2
]

= E

[
N−1∑

n=0

ρnΔt2n + o
(
Δt2n

)
]

, (10)

where the error density, ρn, is a function of the local error and sensitivities from the
dual solution of the SDE problem, as defined in (24). The error expansion (10) is an
a posteriori error estimate for the MSE, and in our adaptive algorithm, the mesh is
refined by equilibration of the expansion’s error indicators

rn := ρnΔt2n , for n = 0, 1, . . . ,N − 1. (11)

1.2.5 An MSE Adaptive MLMC Algorithm

Using the described MSE adaptive algorithm, we construct an MSE adaptive MLMC

algorithm in Sect. 3. The MLMC algorithm generates SDE realizations, {X{�}
T }�, on

a hierarchy of pathwise adaptively refined meshes, {Δt{�}}�. The meshes are nested,
i.e., for all realizations ω ∈ Ω ,

Δt{0}(ω) ⊂ Δt{1}(ω) ⊂ . . . Δt{�}(ω) ⊂ . . . ,

with the constraint that the number of time steps in Δt{�},
∣∣Δt{�}

∣∣, is bounded by 2N�:

∣∣Δt{�}
∣∣ < 2N� = 2�+2N−1.

Here, N−1 denotes the pre-initial number of time steps; it is an integer set in advance
of the computations. This corresponds to the hierarchy setup for the uniform time-
stepping MLMC algorithm in Sect. 1.2.2.

The potential efficiency gain of adaptive MLMC is experimentally illustrated in
this work using the drift blow-up problem

dXt = rXt

|t − ξ |p dt + σXt dWt, X0 = 1.

This problem is addressed in Example 6 for the three different singularity exponents
p = 1/2, 2/3 and 3/4, with a pathwise, random singularity point ξ ∼ U(1/4, 3/4),
an observable g(x) = x, and a final time T = 1. For the given singularity expo-
nents, we observe experimental deteriorating convergence rates, α = (1 − p) and
β = 2(1 − p), for the uniform time-stepping Euler–Maruyama integrator, while for
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Table 1 Observed computational cost—disregarding log(TOL) multiplicative factors of finite
order—for the drift blow-up study in Example 6

Singularity exponent p Observed computational cost

Adaptive MLMC Uniform MLMC

1/2 TOL−2 TOL−2

2/3 TOL−2 TOL−3

3/4 TOL−2 TOL−4

the adaptive time-step Euler–Maruyama we observe α ≈ 1 and β ≈ 1. Then, as
predicted by Theorem 1, we also observe an order of magnitude difference in com-
putational cost between the two algorithms (cf. Table 1).

1.2.6 Earlier Works on Adaptivity for SDE

Gaines’ and Lyons’ work [7] is one of the seminal contributions on adaptive algo-
rithms for SDE. They present an algorithm that seeks to minimize the pathwise error
of the mean and variation of the local error conditioned on the σ -algebra generated by
(i.e., the values at which the Wiener path has been evaluated in order to numerically
integrate the SDE realization) {Wtn}Nn=1. The method may be used in combination
with different numerical integration methods, and an approach to approximations of
potentially needed Levy areas is proposed, facilitated by a binary tree representation
of the Wiener path realization at its evaluation points. As for a posteriori adaptive
algorithms, the error indicators in Gaines’ and Lyons’ algorithm are given by prod-
ucts of local errors and weight terms, but, unlike in a posteriori methods, the weight
terms are computed from a priori estimates, making their approach a hybrid one.

Szepessy et al. [31] introduced a posteriori weak error based adaptivity for
the Euler–Maruyama algorithm with numerically computable error indicator terms.
Their development of weak error adaptivity took inspiration from Talay and Tubaro’s
seminal work [33], where an error expansion for the weak error was derived for the
Euler–Maruyama algorithm when uniform time steps were used. In [16], Szepessy
et al.’s weak error adaptive algorithm was used in the construction of a weak error
adaptive MLMC algorithm. To the best of our knowledge, the present work is the
first on MSE a posteriori adaptive algorithms for SDE both in the MC- and MLMC
setting.

Among other adaptive algorithms for SDE, many have refinement criterions based
only or primarily on estimates of the local error. For example in [17], where the step-
size depends on the size of the diffusion coefficient for a MSE Euler–Maruyama
adaptive algorithm; in [23], the step-size is controlled by the variation in the size of
the drift coefficient in the constructed Euler–Maruyama adaptive algorithm, which
preserves the long-term ergodic behavior of the true solution for many SDE problems;
and in [19], a local error based adaptive Milstein algorithm is developed for solving
multi-dimensional chemical Langevin equations.
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2 Derivation of the MSE A Posteriori Adaptive Algorithm

In this section, we construct an MSE a posteriori adaptive algorithm for SDE whose
realizations are numerically integrated by the Euler–Maruyama algorithm (4). Our
goal is, in rough terms, to obtain an algorithm for solving the SDE problem (1) that
for a fixed number of intervalsN , determines the time-stepping, Δt0,Δt1, . . . , ΔtN−1

such that the MSE, E
[(
g
(
XT
)− g(XT)

)2
]

is minimized. That is,

E
[(
g
(
XT
)− g(XT)

)2
]

→ min!, N given. (12)

The derivation of our adaptive algorithm consists of two steps. First, an error expan-
sion for the MSE is presented in Theorem 2. Based on the error expansion, we
thereafter construct a mesh refinement algorithm. At the end of the section, we apply
the adaptive algorithm to a few example problems.

2.1 The Error Expansion

Let us now present a leading-order error expansion for the MSE (12) of the SDE prob-
lem (1) in the one-dimensional (1D) setting, i.e., when Xt attains values in R and the
drift and diffusion coefficients are respectively of the form a : [0,T ] × R → R and
b : [0,T ] × R → R. An extension of the MSE error expansion to multi-dimensions
is given in Appendix “Error Expansion for the MSE in Multiple Dimensions”. To state
the error expansion Theorem, some notation is needed. Let Xx,t

s denote the solution
of the SDE (1) at time s ≥ t, when the initial condition is Xt = x at time t, i.e.,

Xx,t
s := x +

∫ s

t
a(u,Xu)du +

∫ s

t
b(u,Xu)dWu, s ∈ [t,T ], (13)

and in light of this notation, Xt is shorthand for Xx0,0
t . For a given observable g, the

payoff-of-flow map function is defined by ϕ(t, x) = g(Xx,t
T ). We also make use of

the following function space notation

C(U) := {f : U → R | f is continuous},
Cb(U) := {f : U → R | f is continuous and bounded},

Ck
b(R) :=

{
f : R → R | f ∈ C(R) and

dj

dxj
f ∈ Cb(R) for all integers 1 ≤ j ≤ k

}
,

Ck1,k2
b ([0,T ] × R) :=

{
f : [0,T ] × R → R | f ∈ C([0,T ] × R) and

∂
j1
t ∂ j2x f ∈ Cb([0,T ] × R) for all integers j1 ≤ k1 and 1 ≤ j1 + j2 ≤ k2

}
.
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We are now ready to present our mean square expansion result, namely,

Theorem 2 (1D MSE leading-order error expansion)Assume that drift and diffusion
coefficients and input data of the SDE (1) fulfill

(R.1) a, b ∈ C2,4
b ([0,T ] × R),

(R.2) there exists a constant C > 0 such that

|a(t, x)|2 + |b(t, x)|2 ≤ C(1 + |x|2), ∀x ∈ R and ∀t ∈ [0,T ],

(R.3) The gradient of g, g′ : R → R satisfies g′ ∈ C3
b(R),

(R.4) for the initial data, X0 isF0-measurable and E[|X0|p] < ∞ for all p ≥ 1.

Assume further the mesh points 0 = t0 < t1 < . . . < tN = T

(M.1) are stopping times for which tn isFtn−1-measurable for n = 1, 2, . . . ,N,
(M.2) there exists Ň ∈ N, and a c1 > 0 such that c1Ň ≤ infω∈Ω N(ω) and supω∈Ω

N(ω) ≤ Ň holds for each realization. Furthermore, there exists a c2 > 0 such
that supω∈Ω maxn∈{0,1,...,N−1} Δtn(ω) < c2Ň−1,

(M.3) and there exists a c3 > 0 such that for all p ∈ [1, 8] and n ∈ {0, 1, . . . , Ň − 1}

E
[
Δt2pn

] ≤ c3
(
E
[
Δt2n

])p
.

Then, as Ň increases,

E
[(
g(XT ) − g

(
XT
))2
]

=
Ň−1∑

n=0

E

[
ϕx
(
tn,Xtn

) (bxb)2

2
(tn,Xtn)Δt2n + o

(
Δt2n

)]
, (14)

where we have defined tn = T and Δtn = 0 for all n ∈ {N,N + 1, . . . , Ň}. And
replacing the first variation, ϕx

(
tn,Xn

)
, by the numerical approximation, ϕx,n, as

defined in (23), yields the following to leading order all-terms-computable error
expansion:

E
[(
g(XT ) − g

(
XT
))2
]

=
Ň−1∑

n=0

E

[
ϕ2
x,n

(bxb)2

2
(tn,Xtn)Δt2n + o

(
Δt2n

)]
. (15)

We present the proof to the theorem in Appendix “Error Expansion for the MSE
in 1D”

Remark 2 In condition (M.2) of the above theorem we have introduced Ň to denote
the deterministic upper bound for the number of time steps in all mesh realizations.
Moreover, from this point on the mesh points {tn}n and time steps {Δtn}n are defined
for all indices {0, 1, . . . , Ň} with the natural extension tn = T and Δtn = 0 for all
n ∈ {N + 1, . . . , Ň}. In addition to ensuring an upper bound on the complexity of a
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numerical realization and that maxn Δtn → 0 as Ň → ∞, replacing the random N
(the smallest integer value for which tN = T in a given mesh) with the deterministic
Ň in the MSE error expansion (15) simplifies our proof of Theorem 2.

Remark 3 For most SDE problems on which it is relevant to apply a posteriori
adaptive integrators, at least one of the regularity conditions (R.1), (R.2), and (R.3)
and the mesh adaptedness assumption (M.1) in Theorem 2 will not be fulfilled. In
our adaptive algorithm, the error expansion (15) is interpreted in a formal sense and
only used to facilitate the systematic construction of a mesh refinement criterion.

When applied to low-regularity SDE problems where some of the conditions (R.1),
(R.2), or (R.3), do not hold, the actual leading-order term of the error expansion (15)
may contain other or additional terms besides ϕ2

x,n
(bxb)2

2 (tn,Xtn) in the error density.
Example 6 presents a problem where ad hoc additional terms are added to the error
density.

2.1.1 Numerical Approximation of the First Variation

The first variation of the flow map, ϕ(t, x), is defined by

ϕx(t, x) = ∂xg(X
x,t
t ) = g′(Xx,t

T )∂xX
x,t
T

and the first variation of the path itself, ∂xXx,t
s , is the solution of the linear SDE

d(∂xX
x,t
s ) = ax(s,X

x,t
s )∂xX

x,t
s ds + bx(s,X

x,t
s )∂xX

x,t
s dWs, s ∈ (t,T ],

∂xX
x,t
t = 1,

(16)

where ax denotes the partial derivative of a with respect to its spatial argument. To
describe conditions under which the terms g′(Xx,t

s ) and ∂xXx,t
s are well defined, let us

first recall that if Xx,t
s solves the SDE (13) and

E

[∫ T

t
|Xx,t

s |2ds
]

< ∞,

then we say that there exists a solution to the SDE. If a solution Xx,t
s exists and all

solutions X̃x,t
s satisfy

P

(
sup

s∈[t,T ]

∣∣Xx,t
s − X̃x,t

s

∣∣ > 0

)
= 0,

we say the solution Xx,t
s is pathwise unique.



40 H. Hoel et al.

Lemma 1 Assume the regularity assumptions (R.1), (R.2), (R.3), and (R.4) in Theo-
rem 2 hold, and that for any fixed t ∈ [0,T ], x isFt -measurable and E

[|x|2p] < ∞,
for all p ∈ N. Then there exist pathwise unique solutions Xx,t

s and ∂xXx,t
s to the respec-

tive SDE (13) and (16) for which

max

{
E

[
sup

s∈[t,T ]

∣
∣Xx,t

s

∣
∣2p
]
, E

[
sup

s∈[t,T ]

∣
∣∂xXx,t

s

∣
∣2p
]}

< ∞, ∀p ∈ N.

Furthermore, ϕx(t, x) isFT -measurable and

E
[|ϕx(t, x) |2p] < ∞, ∀p ∈ N.

We leave the proof of the Lemma to Appendix “Variations of the flow map”.

To obtain an all-terms-computable error expansion in Theorem 2, which will be
needed to construct an a posteriori adaptive algorithm, the first variation of the flow
map, ϕx, is approximated by the first variation of the Euler–Maruyama numerical
solution,

ϕx,n := g′(XT )∂Xtn
XT .

Here, for k > n, ∂xX
Xtn ,tn v is the solution of the Euler–Maruyama scheme

(∂xX
Xtn ,tn )tj+1 = (∂Xtn

X)tj + ax(tj,Xtj )(∂xX
Xtn ,tn )tjΔtj + bx(tj,Xtj )(∂xX

Xtn ,tn )tjΔWj, (17)

for j = n, n + 1, . . . k − 1 and with the initial condition ∂xX
Xtn ,tn = 1, which is cou-

pled to the numerical solution of the SDE, Xtj .

Lemma 2 If the assumptions (R.1), (R.2), (R.3), (R.4), (M.1) and (M.2) in Theorem2
hold, then the numerical solution X of (4) converges in mean square sense to the
solution of the SDE (1),

max
1≤n≤Ň

(
E
[∣∣Xtn − Xtn

∣∣2p
])1/2p ≤ CŇ−1/2, (18)

and
max

1≤n≤Ň
E
[∣∣Xtn

∣∣2p
]

< ∞, ∀p ∈ N. (19)

For any fixed instant of time tn in the mesh, 1 ≤ n ≤ N, the numerical solution ∂Xtn
X

of (17) converges in mean square sense to ∂xXXtn ,tn ,

max
n≤k≤Ň

(

E

[∣∣∣∣∂xX
Xtk ,tk − ∂xX

Xtn ,tn
tk

∣∣∣∣

2p
])1/2p

≤ CŇ−1/2. (20)
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and

max
n≤k≤Ň

E

[∣∣∣∣∂xX
Xtk ,tk

∣∣∣∣

2p
]

< ∞, ∀p ∈ N. (21)

Furthermore, ϕx,n isFT -measurable and

E
[|ϕx,n|2p

]
< ∞, ∀p ∈ N. (22)

From the SDE (16), it is clear that

∂xX
Xtn ,tn
T =

N−1∏

k=n

(
1 + ax(tk,Xtk )Δtk + bx(tk,Xtk )ΔWk

)
,

and this implies that ϕx,n solves the backward scheme

ϕx,n = cx(tn,Xtn)ϕx,n+1, n = N − 1,N − 2, . . . , 0, (23)

with the initial condition ϕx,N = g′(XT ) and the shorthand notation

c(tn,Xtn) := Xtn + a(tn,Xtn)Δtn + b(tn,Xtn)ΔWn.

The backward scheme (23) is convenient from a computational perspective since it
implies that the set of points, {ϕx,n}Nn=0, can be computed at the same cost as that of
one-path realization, {Xtn}Nn=0, which can be verified as follows

ϕx,n = g′(XT )

N−1∏

k=n

cx(tk,Xtk )

= cx(tn,Xtn)g
′(XT )

N−1∏

k=n+1

cx(tk,Xtk )

= cx(tn,Xtn)g
′(XT )∂tn+1XT

= cx(tn,Xtn)ϕx,n+1.

2.2 The Adaptive Algorithm

Having derived computable expressions for all terms in the error expansion, we next
introduce the error density using a heuristic leading-order expansion

ρn := ϕ2
x,n

(bxb)2

2
(tn,Xtn), n = 0, 1, . . . ,N − 1, (24)
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and, for representing the numerical solution’s error contribution from the time interval
(tn, tn+1), the error indicators

rn := ρnΔt2n , n = 0, 1, . . . ,N − 1. (25)

The error expansion (15) may then be written as

E
[(
g(XT ) − g

(
XT
))2
]

=
Ň−1∑

n=0

E
[
rn + o

(
Δt2n

)]
. (26)

The final goal of the adaptive algorithm is minimization of the leading order of the

MSE in (26), namely, E
[∑N−1

n=0 rn
]
, which (for each realization) is approached by

minimization of the error expansion realization
∑N−1

n=0 rn. An approximately optimal
choice for the refinement procedure can be derived by introducing the Lagrangian

L (Δt, λ) =
∫ T

0
ρ(s)Δt(s)ds + λ(

∫ T

0

1

Δt(s)
ds − Ň), (27)

for which we seek to minimize the pathwise squared error

(
g(XT ) − g

(
XT
))2 =

∫ T

0
ρ(s)Δt(s)ds

under the constraint that ∫ T

0

1

Δt(s)
ds = Ň,

for a fixed number of time steps, Ň , and the implicit constraint that the error indicators
are equilibrated,

rn = ρnΔt2n =
(
g(XT ) − g

(
XT
))2

Ň
, n = 0, 1, . . . , Ň − 1. (28)

Minimizing (27) yields

Δtn =
√√√
√
(
g(XT ) − g

(
XT
))2

Ň ρ(tn)
and MSEadaptive ≤ 1

Ň
E

[(∫ T

0

√
ρ(s) ds

)2
]

, (29)
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where the above inequality follows from using Hölder’s inequality,

E
[(
g(XT ) − g

(
XT
))2
]

= 1
√
Ň

E

[∣∣g(XT ) − g
(
XT
)∣∣
∫ T

0

√
ρ(s) ds

]

≤ 1
√
Ň

√

E
[∣
∣g(XT ) − g

(
XT
)∣∣2
]
√√√√E

[(∫ T

0

√
ρ(s) ds

)2
]

.

In comparison, we notice that if a uniform mesh is used, the MSE becomes

MSEuniform = T

Ň
E

[∫ T

0
ρ(s) ds

]
. (30)

A consequence of observations (29) and (30) is that for many low-regularity prob-
lems, for instance, if ρ(s) = s−p with p ∈ [1, 2), adaptive time-stepping Euler–
Maruyama methods may produce more accurate solutions (measured in the MSE)
than are obtained using the uniform time-stepping Euler–Maruyama method under
the same computational budget constraints.

2.2.1 Mesh Refinement Strategy

To equilibrate the error indicators (28), we propose an iterative mesh refinement
strategy to identify the largest error indicator and then refining the corresponding
time step by halving it.

To compute the error indicators prior to refinement, the algorithm first computes
the numerical SDE solution, Xtn , and the corresponding first variation ϕx,n (using
Eqs. (4) and (23) respectively) on the initial mesh, Δt{0}. Thereafter, the error indi-
cators rn are computed by Eq. (25) and the mesh is refined a prescribed number of
times, Nrefine, as follows:

(C.1) Find the largest error indicator

n∗ := arg max
n

rn, (31)

and refine the corresponding time step by halving

(tn∗ , tn∗+1) →
(
tn∗ ,

tn∗ + tn∗+1

2︸ ︷︷ ︸
=tnewn∗+1

, tn∗+1︸︷︷︸
=tnewn∗+2

)
, (32)

and increment the number of refinements by one.
(C.2) Update the values of the error indicators, either by recomputing the whole

problem or locally by interpolation, cf. Sect. 2.2.3.
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(C.3) Go to step (C.4) if Nrefine mesh refinements have been made; otherwise, return
to step (C.1).

(C.4) (Postconditioning) Do a last sweep over the mesh and refine by halving every

time step that is strictly larger than Δtmax, where Δtmax = O
(
Ň−1

)
denotes

the maximum allowed step size.

The postconditioning step (C.4) ensures that all time steps become infinitesimally
small as the number of time steps N → ∞ with such a rate of decay that condition
(M.2) in Theorem 2 holds and is thereby one of the necessary conditions from
Lemma 2 to ensure strong convergence for the numerical solutions of the MSE
adaptive Euler–Maruyama algorithm. However, the strong convergence result should
primarily be interpreted as a motivation for introducing the postconditioning step
(C.4) since Theorem 2’s assumption (M.1), namely that the mesh points are stopping
times tn measurable with respect to Ftn−1 , will not hold in general for our adaptive
algorithm.

2.2.2 Wiener Path Refinements

When a time step is refined, as described in (32), the Wiener path must be refined
correspondingly. The value of the Wiener path at the midpoint between Wtn∗ and
Wtn∗+1 can be generated by Brownian bridge interpolation,

Wtnewn∗+1
= Wtn∗ + Wtn∗+1

2
+ ξ

√
Δtn∗

2
, (33)

where ξ ∼ N(0, 1), cf. [27]. See Fig. 1 for an illustration of Brownian bridge inter-
polation applied to numerical solutions of an Ornstein–Uhlenbeck SDE.

2.2.3 Updating the Error Indicators

After the refinement of an interval, (tn∗ , tn∗+1), and its Wiener path, error indicators
must also be updated before moving on to determine which interval is next in line for
refinement. There are different ways of updating error indicators. One expensive but
more accurate option is to recompute the error indicators completely by first solving
the forward problem (4) and the backward problem (23). A less costly but also less
accurate alternative is to update only the error indicators locally at the refined time
step by one forward and backward numerical solution step, respectively:

X
new
tn∗+1

= Xtn∗ + a(tn∗ ,Xtn∗ )Δtnewn∗ + b(tn∗ ,Xtn∗ )ΔWnew
n∗ ,

ϕnew
x,n∗+1 = cx(t

new
n∗ ,Xtnewn∗ )ϕx,n∗+1.

(34)
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Thereafter, we compute the resulting error density, ρnew
n∗+1, by Eq. (24), and finally

update the error locally by

rn∗ = ρn∗
(
Δtnewn∗

)2
, rn∗+1 = ρnew

n∗+1

(
Δtnewn∗+1

)2
. (35)

As a compromise between cost and accuracy, we here propose the following mixed
approach to updating error indicators post refinement: With Nrefine denoting the pre-
scribed number of refinement iterations of the input mesh, let all error indicators
be completely recomputed every Ñ = O(log(Nrefine))th iteration, whereas for the

remaining Nrefine − Ñ iterations, only local updates of the error indicators are com-
puted. Following this approach, the computational cost of refining a mesh holding
N time steps into a mesh of 2N time steps becomes O

(
N log(N)2

)
. Observe that

the asymptotically dominating cost is to sort the mesh’s error indicators O(log(N))
times. To anticipate the computational cost for the MSE adaptive MLMC algo-
rithm, this implies that the cost of generating an MSE adaptive realization pair is
Cost(Δ�g) = O

(
�22�

)
.

2.2.4 Pseudocode

The mesh refinement and the computation of error indicators are presented in Algo-
rithms 1 and 2, respectively.

Algorithm 1 meshRefinement
Input: Mesh Δt, Wiener path W , number of refinements Nrefine, maximum time step Δtmax
Output: Refined mesh Δt and Wiener path W .

Set the number of re-computations of all error indicators to a number Ñ = O(log(Nrefine)) and
compute the refinement batch size N̂ = �Nrefine/Ñ�.
for i = 1 to Ñ do

Completely update the error density by applying
[r,X, ϕx, ρ] = computeErrorIndicators(Δt,W ).
if Nrefine > 2N̂ then

Set the below for-loop limit to J = N̂ .
else

Set J = Nrefine.
end if
for j = 1 to J do

Locate the largest error indicator rn∗ using Eq. (31).
Refine the interval (tn∗ , tn∗+1) by the halving (32), add a midpoint value Wnew

n∗+1 to the Wiener
path by the Brownian bridge interpolation (33), and set Nrefine = Nrefine − 1.
Locally update the error indicators rnewn∗ and rnewn∗+1 by the steps (34) and (35).

end for
end for
Do a final sweep over the mesh and refine all time steps of the input mesh which are strictly larger
than Δtmax.
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Algorithm 2 computeErrorIndicators
Input: mesh Δt, Wiener path W .
Output: error indicators r, path solutions X and ϕx , error density ρ.
Compute the SDE path X using the Euler–Maruyama algorithm (4).
Compute the first variation ϕx using the backward algorithm (23).
Compute the error density ρ and error indicators r by the formulas (24) and (25), respectively.

2.3 Numerical Examples

To illustrate the procedure for computing error indicators and the performance of the
adaptive algorithm, we now present four SDE example problems. To keep matters
relatively elementary, the dual solutions, ϕx(t), for these examples are derived not
from a posteriori but a priori analysis. This approach results in adaptively generated
mesh points which for all problems in this section will contain mesh points which are
stopping times for which tn is Ftn−1 -measurable for all n ∈ {1, 2, . . . ,N}. In Exam-
ples 1–3, it is straightforward to verify that the other assumptions of the respective
single- and multi-dimensional MSE error expansions of Theorems 2 and 3 hold,
meaning that the adaptive approach produces numerical solutions whose MSE to
leading order are bounded by the respective error expansions (14) and (67).

Example 1 We consider the classical geometric Brownian motion problem

dXt = Xtdt + XtdWt, X0 = 1,

for which we seek to minimize the MSE

E
[
(XT − XT )2] = min!, N given, (36)

at the final time, T = 1, (cf. the goal (B.1)). One may derive that the dual solution
of this problem is of the form

ϕx(Xt, t) = ∂XtX
Xt ,t
T = XT

Xt
,

which leads to the error density

ρ(t) = (bxb)2(Xt, t) (ϕx(Xt, t))
2

2
= X2

T

2
.

We conclude that uniform time-stepping is optimal. A further reduction of the MSE
could be achieved by allowing the number of time steps to depend on the magnitude
of X2

T for each realization. This is however outside the scope of the considered
refinement goal (B.1), where we assume the number of time steps, N , is fixed for
all realizations and would be possible only to a very weak degree under the slight
generalization of (B.1) given in assumption (M.2) of Theorem 2.
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Example 2 Our second example is the two-dimensional (2D) SDE problem

dWt = 1dWt, W0 = 0,

dXt = WtdWt, X0 = 0.

Here, we seek to minimize the MSE E
[
(XT − XT )2

]
for the observable

XT =
∫ T

0
WtdWt

at the final time T = 1. With the diffusion matrix represented by

b((Wt,Xt), t) =
[

1
Wt

]
,

and observing that

∂XtX
Xt ,t
T = ∂Xt

(
Xt +

∫ T

t
WsdWs

)
= 1,

it follows from the error density in multi-dimensions in Eq. (65) that ρ(t) = 1
2 . We

conclude that uniform time-stepping is optimal for this problem as well.

Example 3 Next, we consider the three-dimensional (3D) SDE problem

dW (1)
t = 1dW (1)

t , W (1)
0 = 0,

dW (2)
t = 1dW (2)

t , W (2)
0 = 0,

dXt = W (1)
t dW (2)

t − W (2)
t dW (1)

t , X0 = 0,

where W (1)
t and W (2)

t are independent Wiener processes. Here, we seek to minimize
the MSE E

[
(XT − XT )2

]
for the Levy area observable

XT =
∫ T

0
(W (1)

t dW (2)
t − W (2)

t dW (1)
t ),

at the final time, T = 1. Representing the diffusion matrix by

b((Wt,Xt), t) =
⎡

⎣
1 0
0 1

−W (1)
t W (2)

t

⎤

⎦ ,
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and observing that

∂XtX
Xt ,t
T = ∂Xt

(
Xt +

∫ T

t
(W (1)

s dW (2)
s − W (2)

s dW (1)
s ),

)
= 1,

it follows from Eq. (65) that ρ(t) = 1. We conclude that uniform time-stepping is
optimal for computing Levy areas.

Example 4 As the last example, we consider the 2D SDE

dWt = 1dWt, W0 = 0,

dXt = 3(W 2
t − t)dWt, X0 = 0.

We seek to minimize the MSE (36) at the final time T = 1. For this problem, it
may be shown by Itô calculus that the pathwise exact solution is XT = W 3

T − 3WTT .
Representing the diffusion matrix by

b((Wt,Xt), t) =
[

1
3(W 2

t − t)

]
,

Equation (65) implies that ρ(t) = 18W 2
t . This motivates the use of discrete error

indicators, rn = 18W 2
tnΔt2n , in the mesh refinement criterion. For this problem, we

may not directly conclude that the error expansion (67) holds since the diffusion
coefficient does not fulfill the assumption in Theorem 3. Although we will not include
the details here, it is easy to derive that ∂

j
xX

x,t
T = 0 for all j > 1 and to prove that

the MSE leading-order error expansion also holds for this particular problem by
following the steps of the proof of Theorem 2. In Fig. 2, we compare the uniform
and adaptive time-stepping Euler–Maruyama algorithms in terms of MSE versus the
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Fig. 2 Comparison of the performance of uniform and adaptive time-stepping Euler–Maruyama
numerical integration for Example 4 in terms of MSE versus number of time steps
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number of time steps, N . Estimates for the MSE for both algorithms are computed
by MC sampling using M = 106 samples. This is a sufficient sample size to render
the MC estimates’ statistical error negligible. For the adaptive algorithm, we have
used the following input parameter in Algorithm 1: uniform input mesh, Δt, with
step size 2/N (and Δtmax = 2/N). The number of refinements is set to Nrefine = N/2.
We observe that the algorithms have approximately equal convergence rates, but, as
expected, the adaptive algorithm is slightly more accurate than the uniform time-
stepping algorithm.

3 Extension of the Adaptive Algorithm
to the Multilevel Setting

In this section, we incorporate the MSE adaptive time-stepping algorithm presented
in the preceding section into an MSE adaptive MLMC algorithm for weak approx-
imations. First, we shortly recall the approximation goal and important concepts
for the MSE adaptive MLMC algorithm, such as the structure of the adaptive mesh
hierarchy and MLMC error control. Thereafter, the MLMC algorithm is presented
in pseudocode form.

3.1 Notation and Objective

For a tolerance, TOL > 0, and confidence, 0 < 1 − δ < 1, we recall that our objec-
tive is to construct an adaptive time-stepping MLMC estimator, AML , which meets
the approximation constraint

P
(∣∣E

[
g(XT)

]− AML

∣∣ ≤ TOL
) ≥ 1 − δ. (37)

We denote the multilevel estimator by

AML :=
L∑

�=0

M�∑

m=1

Δ�gm
M�

︸ ︷︷ ︸
=:A (Δ�g;M�)

,

where

Δ�gm :=
{
g
(
Xm,T

)
, if � = 0,

g
(
X

�

m,T

)
− g

(
X

�−1
m,T

)
, else.

Section 1.2.5 presents further details on MLMC notation and parameters.
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3.1.1 The Mesh Hierarchy

A realization, Δ�g
(
ωi,�

)
, is generated on a nested pair of mesh realizations

. . . ⊂ Δt{�−1}(ωi,�) ⊂ Δt{�}(ωi,�).

Subsequently, mesh realizations are generated step by step from a prescribed and
deterministic input mesh, Δt{−1}, holding N−1 uniform time steps. First, Δt{−1} is
refined into a mesh, Δt{0}, by applying Algorithm 1, namely

[Δt{0},W {0}] = meshRefinement
(
Δt{−1},W {−1},Nrefine = N−1,Δtmax = N−1

0

)
.

The mesh refinement process is iterated until meshes Δt{�−1} and Δt{�−1} are pro-
duced, with the last couple of iterations being

[Δt{�−1},W {�−1}] = meshRefinement
(
Δt{�−2},W {�−2},Nrefine = N�−2,Δtmax = N−1

�−1

)
,

and

[Δt{�},W {�}] = meshRefinement
(
Δt{�−1},W {�−1},Nrefine = N�−1,Δtmax = N−1

�

)
.

The output realization for the difference Δ�gi = g
(
X

{�}
i

)
− g

(
X

{�−1}
i

)
is thereafter

generated on the output temporal mesh and Wiener path pairs, (Δt{�−1},W {�−1}) and
(Δt{�},W {�}).

For later estimates of the computational cost of the MSE adaptive MLMC algo-
rithm, it is useful to have upper bounds on the growth of the number of time steps
in the mesh hierarchy, {Δt{�}}�, as � increases. Letting |Δt| denote the number of
time steps in a mesh, Δt (i.e., the cardinality of the set Δt = {Δt0,Δt1, . . .}), the
following bounds hold

N� ≤ ∣∣Δt{�}
∣∣ < 2N� ∀� ∈ N0.

The lower bound follows straightforwardly from the mesh hierarchy refinement pro-
cedure described above. To show the upper bound, notice the maximum number of
mesh refinements going from a level � − 1 mesh, Δt{�−1} to a level � mesh, Δt{�} is
2N�−1 − 1. Consequently,

|Δt{�}| ≤ |Δt{−1}| +
�−1∑

j=0

Maximum number of refinements going from Δt{j−1} to Δt{j}

≤ N−1 + 2
�∑

j=0

Nj−1 − (� + 1) < 2N�.
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Remark 4 For the telescoping property E
[
AML

] = E
[
g
(
X

{�}
T

)]
to hold, it is not

required that the adaptive mesh hierarchy is nested, but non-nested meshes make it
more complicated to compute Wiener path pairs (W {�−1},W {�}). In the numerical
tests leading to this work, we tested both nested and non-nested adaptive meshes and
found both options performing satisfactorily.

3.2 Error Control

The error control for the adaptive MLMC algorithm follows the general framework
of a uniform time-stepping MLMC, but for the sake of completeness, we recall the
error control framework for the setting of weak approximations. By splitting

∣
∣E
[
g(XT)

]− AML

∣
∣ ≤

∣
∣∣E
[
g(XT) − g

(
X

{L}
T

)]∣∣∣
︸ ︷︷ ︸

=:ET

+
∣
∣∣E
[
g
(
X

{L}
T

)
− AML

]∣∣∣
︸ ︷︷ ︸

=:ES

and

TOL = TOLT + TOLS, (38)

we seek to implicitly fulfill (37) by imposing the stricter constraints

ET ≤ TOLT, the time discretization error, (39)

P
(
ES ≤ TOLS

) ≥ 1 − δ, the statistical error. (40)

3.2.1 The Statistical Error

Under the moment assumptions stated in [6], Lindeberg’s version of the Central
Limit Theorem yields that as TOL ↓ 0,

AML − E
[
g
(
X

{L}
T

)]

√
Var

(
AML

)
D−→ N(0, 1).

Here,
D−→ denotes convergence in distribution. By construction, we have

Var
(
AML

) =
L∑

�=0

Var(Δ�g)

M�

.
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This asymptotic result motivates the statistical error constraint

Var
(
AML

) ≤ TOLS
2

CC
2(δ)

, (41)

where CC(δ) is the confidence parameter chosen such that

1 − 1√
2π

∫ CC

−CC(δ)

(δ)e−x2/2 dx = (1 − δ), (42)

for a prescribed confidence (1 − δ).
Another important question is how to distribute the number of samples, {M�}�,

on the level hierarchy such that both the computational cost of the MLMC estimator
is minimized and the constraint (41) is met. Letting C� denote the expected cost of
generating a numerical realization Δ�g

(
ωi,�

)
, the approximate total cost of generating

the multilevel estimator becomes

CML :=
L∑

�=0

C�M�.

An optimization of the number of samples at each level can then be found through
minimization of the Lagrangian

L (M0,M1, . . . ,ML, λ) = λ

(
L∑

�=0

Var(Δ�g)

M�

− TOLS
2

CC
2(δ)

)

+
L∑

�=0

C�M�,

yielding

M� =
⌈
CC

2(δ)

TOLS
2

√
Var(Δ�g)

C�

L∑

�=0

√
C�Var(Δ�g)

⌉

, � = 0, 1, . . . ,L.

Since the cost of adaptively refining a mesh, Δt{�}, is O
(
N� log(N�)

2
)
, as noted in

Sect. 2.2.3, the cost of generating an SDE realization, is of the same order: C� =
O
(
N� log(N�)

2
)
. Representing the cost by its leading-order term and disregarding the

logarithmic factor, an approximation to the level-wise optimal number of samples
becomes

M� =
⌈
CC

2(δ)

TOLS
2

√
Var(Δ�g)

N�

L∑

�=0

√
N�Var(Δ�g)

⌉

, � = 0, 1, . . . ,L. (43)
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Remark 5 In our MLMC implementations, the variances, Var(Δ�g), in Eq. (43)
are approximated by sample variances. To save memory in our parallel computer
implementation, the maximum permitted batch size for a set of realizations,
{Δ�g

(
ωi,�

)}i, is set to 100,000. For the initial batch consisting of M� = M̂ samples,
the sample variance is computed by the standard approach,

V (Δ�g;M�) = 1

M� − 1

M�∑

i=1

(Δ�g
(
ωi,�

)− A (Δ�g;M�))
2.

Thereafter, for every new batch of realizations, {Δ�g
(
ωi,�

)}M�+M
i=M�+1 (M here denotes

an arbitrary natural number smaller or equal to 100,000), we incrementally update
the sample variance,

V (Δ�g;M� + M) = M�

M� + M
× V (Δ�g;M�)

+ 1

(M� + M − 1)

M�+M∑

i=M�+1

(Δ�g
(
ωi,�

)− A (Δ�g;M� + M))2,

and update the total number of samples on level � accordingly, M� = M� + M.

3.2.2 The Time Discretization Error

To control the time discretization error, we assume that a weak order convergence
rate, α > 0, holds for the given SDE problem when solved with the Euler–Maruyama
method, i.e.,

∣∣∣E
[
g(XT) − g

(
X

{L}
T

)]∣∣∣ = O
(
N−α
L

)
,

and we assume that the asymptotic rate is reached at level L − 1. Then

∣∣
∣E
[
g(XT) − g

(
X

{L}
T

)]∣∣
∣ =

∣∣∣
∣∣

∞∑

�=L+1

E
[
Δ�g

]
∣∣∣
∣∣
≤ ∣
∣E
[
ΔLg

]∣∣
∞∑

�=1

2−α� =
∣∣E
[
ΔLg

]∣∣

2α − 1
.

In our implementation, we assume the weak convergence rate, α, is known prior to
sampling and, replacing E

[
ΔLg

]
with a sample average approximation in the above

inequality, we determine L by the following stopping criterion:
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max
(
2−α |A (ΔL−1g;ML−1)| , |A (ΔLg;ML)|

)

2α − 1
≤ TOLT, (44)

(cf. Algorithm 3). Here we implicitly assume that the statistical error in estimating
the bias condition is not prohibitively large.

A final level L of order log(TOLT
−1) will thus control the discretization error.

3.2.3 Computational Cost

Under the convergence rate assumptions stated in Theorem 1, it follows that the cost
of generating an adaptive MLMC estimator,AML , fulfilling the MSE approximation
goal E

[
(AML − E

[
g(XT)

]
)2
] ≤ TOL2 is bounded by

CML =
L∑

�=0

M�C� ≤

⎧
⎪⎪⎨

⎪⎪⎩

O
(
TOL−2

)
, if β > 1,

O
(
TOL−2 log(TOL)4

)
, if β = 1,

O
(

TOL−2+ β−1
α log(TOL)2

)
, if β < 1.

(45)

Moreover, under the additional higher moment approximation rate assumption

E

[∣∣∣g
(
X

{�}
T

)
− g(XT)

∣∣∣
2+ν
]

= O
(
2−β+ν/2

)
,

the complexity bound (45) also holds for fulfilling criterion (2) asymptotically as
TOL ↓ 0, (cf. [5]).

3.3 MLMC Pseudocode

In this section, we present pseudocode for the implementation of the MSE adaptive
MLMC algorithm. In addition to Algorithms 1 and 2, presented in Sect. 2.2.4, the
implementation consists of Algorithms 3 and 4. Algorithm 3 describes how the stop-
ping criterion for the final level L is implemented and how the multilevel estimator
is generated, and Algorithm 4 describes the steps for generating a realization Δ�g.
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Algorithm 3 mlmcEstimator
Input: TOLT, TOLS, confidence δ, initial mesh Δt{−1}, initial number of mesh steps N−1, input
weak rate α, initial number of samples M̂.
Output: Multilevel estimator AML .

Compute the confidence parameter CC(δ) by (42).
Set L = −1.
while L < 2 or (44), using the input α for the weak rate, is violated do

Set L = L + 1.
Set ML = M̂, generate a set of realizations {Δ�g

(
ωi,�

)}ML
i=1 by applying

adaptiveRealizations(Δt{−1}).
for � = 0 to L do

Compute the sample variance V (Δ�g;Ml).
end for
for � = 0 to L do

Determine the number of samples M� by (43).
if new value of M� is larger than the old value then

Compute additional realizations {Δ�g
(
ωi,�

)}Mnew
�

i=M�+1 by applying

adaptiveRealizations(Δt{−1}).
end if

end for
end while
Compute AML from the generated samples by using formula (7).

Remark 6 For each increment of L in Algorithm 3, all realizations Δ�g that have
been generated up to that point are reused in later computations of the multilevel
estimator. This approach, which is common in MLMC, (cf. [8]), seems to work fine
in practice although the independence between samples is then lost. Accounting for
the lack of independence complicates the convergence analysis.

4 Numerical Examples for the MLMC Algorithms

To illustrate the implementation of the MSE adaptive MLMC algorithm and to show
its robustness and potential efficiency gain over the uniform MLMC algorithm, we
present two numerical examples in this section. The first example considers a geo-
metric Brownian motion SDE problem with sufficient regularity, such that there is
very little (probably nothing) to gain by introducing adaptive mesh refinement. The
example is included to show that in settings where adaptivity is not required, the
MSE adaptive MLMC algorithm is not excessively more expensive than the uniform
MLMC algorithm. In the second example, we consider an SDE with a random time
drift coefficient blow-up of order t−p with p ∈ [0.5, 1). The MSE adaptive MLMC
algorithm performs progressively more efficiently than does the uniform MLMC
algorithm as the value of the blow-up exponent p increases. We should add, however,
that although we observe numerical evidence for the numerical solutions converg-
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Algorithm 4 adaptiveRealization
Input: Mesh Δt{−1}.
Outputs: One realization Δ�g(ω)

Generate a Wiener path W {−1} on the initial mesh Δt{−1}.
for j = 0 to � do

Refine the mesh by applying

[Δt{j},W {j}] = meshRefinement(Δt{j−1},W {j−1},Nrefine = Nj−1,Δtmax = N−1
j ).

end for
Compute Euler–Maruyama realizations (X

{�−1}
T ,X

{�}
T )(ω) using the mesh pair (Δt{�−1},Δt{�})(ω)

and Wiener path pair (W {�−1},W {�})(ω), cf. (4), and return the output

Δ�g(ω) = g
(
X

{�}
T (ω)

)
− g

(
X

{�−1}
T (ω)

)
.

ing for both examples, all of the assumptions in Theorem 2 are not fulfilled for our
adaptive algorithm, when applied to either of the two examples. We are therefore not
able to prove theoretically that our adaptive algorithm converges in these examples.

For reference, the implemented MSE adaptive MLMC algorithm is described in
Algorithms 1–4, the standard form of the uniform time-stepping MLMC algorithm
that we use in these numerical comparisons is presented in Algorithm 5, Appendix “A
Uniform Time Step MLMC Algorithm”, and a summary of the parameter values used
in the examples is given in Table 2. Furthermore, all average properties derived from
the MLMC algorithms that we plot for the considered examples in Figs. 3, 4, 5, 6, 7,
8, 9, 10, 11 and 12 below are computed from 100 multilevel estimator realizations,
and, when plotted, error bars are scaled to one sample standard deviation.

Example 5 We consider the geometric Brownian motion

dXt = Xtdt + XtdWt, X0 = 1,

where we seek to fulfill the weak approximation goal (2) for the observable, g(x) = x,
at the final time, T = 1. The reference solution is E

[
g(XT)

] = eT . From Example 1,
we recall that the MSE minimized in this problem by using uniform time steps.
However, our a posteriori MSE adaptive MLMC algorithm computes error indicators
from numerical solutions of the path and the dual solution, which may lead to slightly
non-uniform output meshes. In Fig. 3, we study how close to uniform the MSE
adaptive meshes are by plotting the level-wise ratio, E

[∣∣Δt{�}
∣∣]/N�, where we recall

that
∣∣Δt{�}

∣∣ denotes the number of time steps in the mesh, Δt{�}, and that a uniform
mesh on level � has N� time steps. As the level, �, increases, E

[∣∣Δt{�}
∣∣]/N� converges

to 1, and to interpret this result, we recall from the construction of the adaptive mesh
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Table 2 List of parameter values used by the MSE adaptive MLMC algorithm and (when required)
the uniform MLMC algorithm for the numerical examples in Sect. 4

Parameter Description of parameter Example 5 Example 6

δ Confidence parameter, cf. (37) 0.1 0.1

TOL Accuracy parameter, cf. (37) [10−3, 10−1] [10−3, 10−1]
TOLS Statistical error tolerance, cf. (38) TOL/2 TOL/2

TOLT Bias error tolerance, cf. (38) TOL/2 TOL/2

Δt{−1} Pre-initial input uniform mesh
having the following step size

1/2 1/2

N0 Number of time steps in the initial
mesh Δt{0}

4 4

Ñ(�) The number of complete updates
of the error indicators in the MSE
adaptive algorithm, cf. Algorithm 1

⌊
log(�+2)

log(2)

⌋ ⌊
log(�+2)

log(2)

⌋

Δtmax(�) Maximum permitted time step size N−1
� N−1

�

Δtmin Minimum permitted time step size
(due to the used double-precision
binary floating-point format)

2−51 2−51

M̂ Number of first batch samples for a
(first) estimate of the variance
Var(Δ�g)

100 20

αU Input weak convergence rate used
in the stopping rule (44) for
uniform time step
Euler–Maruyama numerical
integration

1 (1 − p)

αA Input weak convergence rate used
in the stopping rule (44) for the
MSE adaptive time step
Euler–Maruyama numerical
integration

1 1

hierarchy in Sect. 3 that if
∣∣Δt{�}

∣∣ = N�, then the mesh, Δt{�}, is uniform. We thus
conclude that for this problem, the higher the level, the more uniform the MSE
adaptive mesh realizations generally become.

Since adaptive mesh refinement is costly and since this problem has sufficient
regularity for the first-order weak and MSE convergence rates (5) and (6) to hold,
respectively, one might expect that MSE adaptive MLMC will be less efficient than
the uniform MLMC. This is verified in Fig. 5, which shows that the runtime of the
MSE adaptive MLMC algorithm grows slightly faster than the uniform MLMC algo-
rithm and that the cost ratio is at most roughly 3.5, in favor of uniform MLMC. In
Fig. 4, the accuracy of the MLMC algorithms is compared, showing that both algo-
rithms fulfill the goal (2) reliably. Figure 6 further shows that both algorithms have
roughly first-order convergence rates for the weak error

∣∣E
[
Δ�g

]∣∣ and the variance
Var(Δ�g), and that the decay rates for Ml are close to identical. We conclude that
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0 2 4 6 8 10 12

Level �

1.000

1.002

1.004

1.006

1.008

1.010
Number of time steps ratio E[|Δt{�}|]/N�

Fig. 3 The ratio of the level-wise mean number of time steps E
[∣∣Δt{�}

∣
∣]/N�, of MSE adaptive

mesh realizations to uniform mesh realizations for Example 6

Fig. 4 For a set of TOL values, 100 realizations of the MSE adaptive multilevel estimator are
computed using both MLMC algorithms for Example 5. The errors |AML (ωi; TOL, δ) − E

[
g(XT)

]|
are respectively plotted as circles (adaptive MLMC) and triangles (uniform MLMC), and the number
of multilevel estimator realizations failing the constraint |AML (ωi; TOL, δ) − E

[
g(XT)

]| < TOL
is written above the (TOL−1, TOL) line. Since the confidence parameter is set to δ = 0.1 and less
than 10 realizations fail for any of the tested TOL values, both algorithms meet the approximation
goal (37)

although MSE adaptive MLMC is slightly more costly than uniform MLMC, the
algorithms perform comparably in terms of runtime for this example.

Remark 7 The reason why we are unable to prove theoretically that the numerical
solution of this problem computed with our adaptive algorithm asymptotically con-
verges to the true solution is slightly subtle. The required smoothness conditions in
Theorem 2 are obviously fulfilled, but due to the local update of the error indicators
in our mesh refinement procedure, (cf. Sect. 2.2.3), we cannot prove that the mesh
points will asymptotically be stopping times for which tn is Ftn−1 -measurable for all
n ∈ {1, 2, . . . ,N}. If we instead were to use the version of our adaptive algorithm
that recomputes all error indicators for each mesh refinement, the definition of the
error density (24) implies that, for this particular problem, it would take the same
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Fig. 5 Average runtime versus TOL−1 for the two MLMC algorithms solving Example 5
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Fig. 6 Output for Example 5 solved with the MSE adaptive and uniform time-stepping MLMC
algorithms. (Top) Weak error

∣
∣E
[
Δ�g

]∣∣ for solutions at TOL = 10−3. (Middle) Variance Var(Δ�g)
for solutions at TOL = 10−3. (Bottom) Average number of samples E[Ml]
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value, ρn = ∏N−1
k=0 cx(tk,Xtk )

2/2, for all indices, n ∈ {0, 1, . . . ,N}. The resulting
adaptively refined mesh would then become uniform and we could verify conver-
gence, for instance, by using Theorem 2. Connecting this to the numerical results for
the adaptive algorithm that we have implemented here, we notice that the level-wise
mean number of time steps ratio, E

[∣∣Δt{�}
∣∣]/N�, presented in Fig. 3 seems to tend

towards 1 as � increases, a limit ratio that is achieved only if Δt{�} is indeed a uniform
mesh.

Example 6 We next consider the two-dimensional SDE driven by a one-dimensional
Wiener process

dXt = a(t,Xt; ξ)dt + b(t,Xt; ξ)dWt

X0 = [1, ξ ]T ,
(46)

with the low-regularity drift coefficient, a(t, x) = [r|t − x(2)|−p, 0]T , interest rate,
r = 1/5, and volatility b(t, x) = [σ, 0]T with, σ = 0.5, and observable, g(x) = x, at
the final time T = 1. The ξ in the initial condition is distributed as ξ ∼ U(1/4, 3/4)
and it is independent from the Wiener process, W . Three different blow-up exponent
test cases are considered,p = (1/2, 2/3, 3/4), and to avoid blow-ups in the numerical
integration of the drift function component, f (·; ξ), we replace the fully explicit
Euler–Maruyama integration scheme with the following semi-implicit scheme:

Xtn+1 = Xtn +
{
rf (tn; ξ)XtnΔtn + σXtnΔWn, if f (tn; ξ) < 2f (tn+1; ξ),

rf (tn+1; ξ)XtnΔtn + σXtnΔWn, else,
(47)

where we have dropped the superscript for the first component of the SDE, writing
out only the first component, since the evolution of the second component is trivial.
For p ∈ [1/2, 3/4] it may be shown that for any singularity point, any path integrated
by the scheme (47) will have at most one drift-implicit integration step. The reference
mean for the exact solution is given by

E[XT ] = 2
∫ 3/4

1/4
exp

(
r(x1−p + (1 − x)1−p)

1 − p

)
dx,

and in the numerical experiments, we approximate this integral value by quadrature
to the needed accuracy.

The MSE Expansion for the Adaptive Algorithm

Due to the low-regularity drift present in this problem, the resulting MSE expansion
will also contain drift-related terms that formally are of higher order. From the proof
of Theorem 2, Eq. (59), we conclude that, to leading order the MSE is bounded by
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Fig. 7 (Top) One MSE adaptive numerical realization of the SDE problem (46) at different mesh
hierarchy levels. The blow-up singularity point is located at ξ ≈ 0.288473 and the realizations
are computed for three singularity exponent values. We observe that as the exponent, p, increases,
the more jump at t = ξ becomes more pronounced. (Bottom) Corresponding MSE adaptive mesh
realizations for the different test cases

E
[∣∣XT − XT

∣∣2
]

≤ E

[
N−1∑

n=0

ϕ2
x,n

(
N(at + axa)2Δt2n + (bxb)2

)
(tn,Xtn; ξ)

2
Δt2n

]

.

This is the error expansion we use for the adaptive mesh refinement (in Algorithm 1)
in this example. In Fig. 7, we illustrate the effect that the singularity exponent, p, has
on SDE and adaptive mesh realizations.

Implementation Details and Observations

Computational tests for the uniform and MSE adaptive MLMC algorithms are imple-
mented with the input parameters summarized in Table 2. The weak convergence
rate, α, which is needed in the MLMC implementations’ stopping criterion (44), is
estimated experimentally as α(p) = (1 − p) when using the Euler–Maruyama inte-
grator with uniform time steps, and roughly α = 1 when using the Euler–Maruyama
integrator with adaptive time steps, (cf. Fig. 8). We further estimate the variance con-
vergence rate to β(p) = 2(1 − p), when using uniform time-stepping, and roughly
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Fig. 8 (Top) Average errors
∣
∣E
[
Δ�g

]∣∣ for Example 6 solved with the MSE adaptive MLMC algo-
rithm for three singularity exponent values. (Bottom) Corresponding average errors for the uniform
MLMC algorithm

to β = 1 when using MSE adaptive time-stepping, (cf. Fig. 9). The low weak con-
vergence rate for uniform MLMC implies that the number of levels L in the MLMC
estimator will be become very large, even with fairly high tolerances. Since compu-
tations of realizations on high levels are extremely costly, we have, for the sake of
computational feasibility, chosen a very low value, M̂ = 20, for the initial number
of samples in both MLMC algorithms. The respective estimators’ use of samples,
M�, (cf. Fig. 10), shows that the low number of initial samples is not strictly needed
for the the adaptive MLMC algorithm, but for the sake of fair comparisons, we have
chosen to use the same parameter values in both algorithms.

From the rate estimates of α and β, we predict the computational cost of reaching
the approximation goal (37) for the respective MLMC algorithms to be

Costadp(AML ) = O
(
log(TOL)4TOL−2

)
and Costunf(AML ) = O

(
TOL− 1

1−p

)
,



Construction of a Mean Square Error Adaptive … 63

2 4 6 8 10

Level �

10−6

10−5

10−4

10−3

10−2

10−1

100

101
p = 0.5, TOL = 10−3

1 2 3 4 5 6 7 8 9 10

Level �

p = 0.67, TOL = 10−2

V(g�; M�)
V(Δ�g; M�)

c2−�

1 2 3 4 5 6 7 8 9 10

Level �

p = 0.75, TOL = 10−1.5

5 10 15 20

Level �

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101

p = 0.5, TOL = 10−3

c2−1�

5 10 15 20 25

Level �

p = 0.67, TOL = 10−2

V(g�; M�)
V(Δ�g; M�)

c2−0.67�

5 10 15 20 25

Level �

p = 0.75, TOL = 10−1

c2TOL−0.5

Fig. 9 (Top) Variances Var(Δ�g) for for Example 6 solved with the MSE adaptive MLMC algorithm
for three singularity exponent values. (Bottom) Corresponding variances for the uniform MLMC
algorithm. The more noisy data on the highest levels is due to the low number used for the initial
samples, M̂ = 20, and only a subset of the generated 100 multilevel estimator realizations reached
the last levels

by using the estimate (45) and Theorem 1 respectively. These predictions fit well
with the observed computational runtime for the respective MLMC algorithms,
(cf. Fig. 11). Lastly, we observe that the numerical results are consistent with both
algorithms fulfilling the goal (37) in Fig. 12.

Computer Implementation

The computer code for all algorithms was written in Java and used the “Stochastic
Simulation in Java” library to sample the random variables in parallel from thread-
independent MRG32k3a pseudo random number generators, [24]. The experiments
were run on multiple threads on Intel Xeon(R) CPU X5650, 2.67GHz processors
and the computer graphics were made using the open source plotting library Mat-
plotlib, [18].
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Fig. 10 (Top) Average number of samples M� for for Example 6 solved with the MSE adaptive
MLMC algorithm for three singularity exponent values. (Bottom) Corresponding average number of
samples for the uniform MLMC algorithm. The plotted decay rate reference lines, c2−((β(p)+1)/2)�,
for M� follow implicitly from Eq. (43) (assuming that β(p) = 2(1 − p) is the correct variance decay
rate)
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Fig. 11 Average runtime versus TOL−1 for the two MLMC algorithms for three singularity expo-
nent values in Example 6
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Fig. 12 Approximation errors for both of the MLMC algorithms solving Example 6. At every
TOL value, circles and triangles represent the errors from 100 independent multilevel estimator
realizations of the respective algorithms

5 Conclusion

We have developed an a posteriori, MSE adaptive Euler–Maruyama time-stepping
algorithm and incorporated it into an MSE adaptive MLMC algorithm. The MSE
error expansion presented in Theorem 2 is fundamental to the adaptive algorithm.
Numerical tests have shown that MSE adaptive time-stepping may outperform uni-
form time-stepping, both in the single-level MC setting and in the MLMC setting,
(Examples 4 and 6). Due to the complexities of implementing adaptive time-stepping,
the numerical examples in this work were restricted to quite simple, low-regularity
SDE problems with singularities in the temporal coordinate. In the future, we aim
to study SDE problems with low-regularity in the state coordinate (preliminary tests
and analysis do however indicate that then some ad hoc molding of the adaptive
algorithm is required).

Although a posteriori adaptivity has proven to be a very effective method for
deterministic differential equations, the use of information from the future of the
numerical solution of the dual problem makes it a somewhat unnatural method to
extend to Itô SDE: It can result in numerical solutions that are not Ft-adapted,
which consequently may introduce a bias in the numerical solutions. [7] provides
an example of a failing adaptive algorithm for SDE. A rigorous analysis of the
convergence properties of our developed MSE adaptive algorithm would strengthen
the theoretical basis of the algorithm further. We leave this for future work.
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Theoretical Results

Error Expansion for the MSE in 1D

In this section, we derive a leading-order error expansion for the MSE (12) in the 1D
setting when the drift and diffusion coefficients are respectively mappings of the form
a : [0,T ] × R → R and b : [0,T ] × R → R. We begin by deriving a representation
of the MSE in terms of products of local errors and weights.

Recalling the definition of the flow map, ϕ(x, t) := g(Xx,t
T ), and the first variation

of the flow map and the path itself given in Sect. 2.1.1, we use the Mean Value
Theorem to deduce that

g(XT) − g
(
XT
) = ϕ(0, x0) − ϕ(0,XT )

=
N−1∑

n=0

ϕ(tn,Xtn) − ϕ(tn+1,Xtn+1)

=
N−1∑

n=0

ϕ
(
tn+1,X

Xtn ,tn
tn+1

)
− ϕ(tn+1,Xtn+1)

=
N−1∑

n=0

ϕx
(
tn+1,Xtn+1 + snΔen

)
Δen,

(48)

where the local error is given by Δen := X
Xtn ,tn
tn+1

− Xtn+1 and sn ∈ [0, 1]. Itô expansion
of the local error gives the following representation:

Δen =
∫ tn+1

tn
a(t,X

Xtn ,tn
t ) − a(tn,Xtn ) dt

︸ ︷︷ ︸
Δan

+
∫ tn+1

tn
b(t,X

Xtn ,tn
t ) − b(tn,Xtn ) dWt

︸ ︷︷ ︸
Δbn

=
∫ tn+1

tn

∫ t

tn
(at + axa + axx

2
b2)(s,X

Xtn ,tn
s ) ds dt

︸ ︷︷ ︸
=:|Δan

+
∫ tn+1

tn

∫ t

tn
(axb)(s,X

Xtn ,tn
s ) dWs dt

︸ ︷︷ ︸
=:Δ̃an

+
∫ tn+1

tn

∫ t

tn
(bt + bxa + bxx

2
b2)(s,X

Xtn ,tn
s )ds dWt

︸ ︷︷ ︸
=:|Δbn

+
∫ tn+1

tn

∫ t

tn
(bxb)(s,X

Xtn ,tn
s )dWs dWt

︸ ︷︷ ︸
=:Δ̃bn

.

(49)
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By Eq. (48) we may express the MSE by the following squared sum

E
[(
g(XT ) − g

(
XT
))2
]

= E

⎡

⎣

⎛

⎝
Ň−1∑

n=0

ϕx
(
tn+1,Xtn+1 + snΔen

)
Δen

⎞

⎠

2⎤

⎦

=
Ň−1∑

n,k=0

E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
ΔekΔen

]
.

This is the first step in deriving the error expansion in Theorem 2. The remaining
steps follow in the proof below.

Proof of Theorem 2. The main tools used in proving this theorem are Taylor and
Itô–Taylor expansions, Itô isometry, and truncation of higher order terms. For errors
attributed to the leading-order local error term, Δ̃bn, (cf. Eq. (49)), we do detailed
calculations, and the remainder is bounded by stated higher order terms.

We begin by noting that under the assumptions in Theorem 2 Lemmas 1 and 2
respectively verify then the existence and uniqueness of the solution of the SDE X
and the numerical solution X, and provide higher order moment bounds for both.
Furthermore, due to the assumption of the mesh points being stopping times for
which tn is Ftn−1 -measurable for all n, it follows also that the numerical solution is
adapted to the filtration, i.e., Xtn is Ftn -measurable for all n.

We further need to extend the flow map and the first variation notation from
Sect. 2.1.1. Let X

x,tk
tn for n ≥ k denote the numerical solution of the Euler–Maruyama

scheme

X
x,tk
tj+1

= X
x,tk
tj + a(tj,X

x,tk
tj )Δtj + b(tj,X

x,tk
tj )ΔWj, j ≥ k, (50)

with initial conditionXtk = x. The first variation ofX
x,tk
tn is defined by ∂xX

x,tk
tn . Provided

that E
[|x|2p] < ∞ for all p ∈ N, x is Ftk -measurable and provided the assumptions

of Lemma 2 hold, it is straightforward to extend the proof of the lemma to verify
that (X

x,tk
, ∂xX

x,tk
) converges strongly to (Xx,tk , ∂xXx,tk ) for t ∈ [tk,T ],

max
k≤n≤Ň

((
E

[∣∣∣X
x,tk
tn − Xx,tk

tn

∣∣∣
2p
])1/2p

)

≤ CŇ−1/2, ∀p ∈ N

max
k≤n≤Ň

((
E

[∣∣
∣∂xX

x,tk
tn − ∂xX

x,tk
tn

∣∣
∣
2p
])1/2p

)

≤ CŇ−1/2, ∀p ∈ N

and

max
k≤n≤Ň

(
max

(
E

[∣∣∣X
x,tk
tn

∣∣∣
2p
]
, E

[∣∣∣∂xX
x,tk
tn

∣∣∣
2p
]))

< ∞, ∀p ∈ N. (51)
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In addition to this, we will also make use of moment bounds for the second and
third variation of the flow map in the proof, i.e., ϕxx(t, x) and ϕxxx(t, x). The second
variation is described in Section “Variations of the flow map”, where it is shown in
Lemma 3 that provided that x isFt-measurable and E

[|x|2p] < ∞ for all p ∈ N, then

max
(
E
[|ϕxx(t, x)|2p

]
, E
[|ϕxxx(t, x)|2p

]
, E
[|ϕxxxx(t, x)|2p

])
< ∞, ∀p ∈ N.

Considering the MSE error contribution from the leading order local error terms
Δ̃bn, i.e.,

E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃bkΔ̃bn

]
, (52)

we have for k = n,

E
[(

ϕx
(
tn+1,Xtn+1

)+ ϕxx
(
tn+1,Xtn+1 + ŝnΔen

)
snΔen

)2
Δ̃b

2
n

]

= E
[
ϕx
(
tn+1,Xtn+1

)2
Δ̃b

2
n + o

(
Δt2n

)]
.

The above o
(
Δt2n

)
follows from Young’s and Hölder’s inequalities,

E
[
2ϕx
(
tn+1,Xtn+1

)
ϕxx
(
tn+1,Xtn+1 + ŝnΔen

)
snΔenΔ̃b

2
n

]

≤ C

(

E
[(

ϕx
(
tn+1,Xtn+1

)
ϕxx
(
tn+1,Xtn+1 + ŝnΔen

))2
Δt3n

]
+ E

[
Δe2

nΔ̃b
4
n

Δt3n

])

≤ C

(
E
[
E
[(

ϕx
(
tn+1,Xtn+1

)
ϕxx
(
tn+1,Xn+1 + ŝnΔen

))2
∣∣∣Ftn

]
Δt3n

]

+ E

[
|Δa

2

nΔ̃b
4
n

Δt3n

]

+ E

[
Δ̃a

2
nΔ̃b

4
n

Δt3n

]

+ E

[
|Δb

2

nΔ̃b
4
n

Δt3n

]

+ E

[
Δ̃b

6
n

Δt3n

])

≤ C

{
E
[
Δt3n

]+
(√

E

[
E
[
|Δa

4

n|Ftn

] 1

Δtn

]
+
√

E

[
E
[
Δ̃a

4
n|Ftn

] 1

Δtn

]

+
√

E

[
E
[
|Δb

4

n|Ftn

] 1

Δtn

]
+
√

E

[
E
[
Δ̃b

4
n|Ftn

] 1

Δtn

])√

E

[
E
[
Δ̃b

8
n|Ftn

] 1

Δt5n

]}

= E
[
o(Δt2n)

]

(53)

where the last inequality is derived by applying the moment bounds for multiple
Itô integrals described in [22, Lemma 5.7.5] and under the assumptions (R.1), (R.2),
(M.1), (M.2) and (M.3). This yields
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E
[
|Δa

4

n|Ftn

]
≤ CE

[

sup
s∈[tn,tn+1)

∣
∣∣at + axa + axx

2
b2
∣
∣∣
4
(s,XXtn ,tn

s )
∣
∣∣Ftn

]

Δt8n,

E
[
Δ̃a

4
n|Ftn

]
≤ CE

[

sup
s∈[tn,tn+1)

|axb|4 (s,XXtn ,tn
s )

∣∣∣Ftn

]

Δt6n,

E
[
|Δb

4

n|Ftn

]
≤ CE

[

sup
s∈[tn,tn+1)

∣∣∣∣bt + bxa + bxx
2
b2

∣∣∣∣

4

(s,XXtn ,tn
s )

∣∣∣Ftn

]

Δt6n,

E
[
Δ̃b

4
n|Ftn

]
≤ CE

[

sup
s∈[tn,tn+1)

|bxb|4 (s,XXtn ,tn
s )

∣
∣∣Ftn

]

Δt4n,

E
[
Δ̃b

8
n|Ftn

]
≤ CE

[

sup
s∈[tn,tn+1)

|bxb|8 (s,XXtn ,tn
s )

∣∣∣Ftn

]

Δt8n .

(54)

And by similar reasoning,

E
[
ϕxx
(
Xtn+1 + ŝnΔen, tn+1

)2
s2
nΔe2

nΔ̃b
2
n

]
≤ CE

[
Δt4n

]
.

For achieving independence between forward paths and dual solutions in the expec-
tations, an Itô–Taylor expansion of ϕx leads to the equality

E
[
ϕx
(
tn+1,Xtn+1

)2
Δ̃b

2
n

]
= E

[
ϕx
(
tn+1,Xtn

)2
Δ̃b

2
n + o

(
Δt2n

)]
.

Introducing the null set completed σ -algebra

F̂ n = σ
(
σ({Ws}0≤s≤tn) ∨ σ({Ws − Wtn+1}tn+1≤s≤T )

) ∨ σ(X0),

we observe that ϕx
(
tn+1,Xtn

)2
is F̂ n measurable by construction, (cf. [27, Appen-

dix B]). Moreover, by conditional expectation,

E
[
ϕx
(
tn+1,Xtn

)2
Δ̃b

2
n

]
= E

[
ϕx
(
tn+1,Xtn

)2
E
[
Δ̃b

2
n|F̂ n

]]

= E

[
ϕx
(
tn+1,Xtn

)2
(bxb)

2(tn,Xtn)
Δt2n

2
+ o

(
Δt2n

)]
,

where the last equality follows from using Itô’s formula,

(bxb)
2(t,X

Xtn ,tn
t ) = (bxb)

2(tn,Xtn ) +
∫ t

tn

(
(
∂t + a∂x + b2

2
∂2
x

)
(bxb)

2

)

(s,X
Xtn ,tn
s ) ds

+
∫ t

tn

(
b∂x(bxb)

2
)

(s,X
Xtn ,tn
s ) dWs, t ∈ [tn, tn+1),
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to derive that

E
[
Δ̃b

2
n|F̂ n

]
= E

[(∫ tn+1

tn

∫ t

tn

(bxb)(s,X
Xtn ,tn
s )dWs dWt

)2 ∣
∣∣Xtn

]

= (bxb)2(tn,Xtn)

2
Δt2n + o

(
Δt2n

)
.

Here, the higher order o
(
Δt2n

)
terms are bounded in a similar fashion as the terms in

inequality (53), by using [22, Lemma 5.7.5].
For the terms in (52) for which k < n, we will show that

Ň−1∑

k,n=0

E
[
ϕx

(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃bkΔ̃bn

]
=

Ň−1∑

n=0

E
[
o
(
Δt2n

)]
,

(55)
which means that the contribution to the MSE from these terms is negligible to
leading order. For the use in later expansions, let us first observe by use of the chain
rule that for any Ftn -measurable y with bounded second moment,

ϕx(tk+1, y) = g′(Xy,tk+1
T )∂xX

y,tk+1
T

= g′(X
Xtk+1 +smΔek ,tk+1

T )∂xX
X
y,tk+1
tn+1

,tn+1

T ∂xX
y,tk+1
tn+1

= ϕx
(
tn+1,X

y,tk+1
tn+1

)
∂xX

y,tk+1
tn+1

,

and that

∂xX
Xtk+1 +skΔek ,tk+1

tn+1
= ∂xX

Xtk+1 +skΔek ,tk+1

tn

+
∫ tn+1

tn

ax(s,X
Xtk+1 +skΔek ,tk+1
s )∂xX

Xtk+1 +skΔek ,tk+1
s ds

+
∫ tn+1

tn

bx(s,X
Xtk+1 +skΔek ,tk+1
s )∂xX

Xtk+1 +skΔek ,tk+1
s dWs.

We next introduce the σ -algebra

F̂ k,n := σ({Ws}0≤s≤tk ) ∨ σ({Ws − Wtk+1 }tk+1≤s≤tn ) ∨ σ({Ws − Wtn+1 }tn+1≤s≤T ) ∨ σ(X0),

and Itô–Taylor expand the ϕx functions in (55) about center points that are F̂ k,n-
measurable:

ϕx
(
tk+1,Xtk+1 + skΔek

) = ϕx

(
tn+1,X

Xtk+1 +skΔek ,tk+1

tn+1

)
∂xX

Xtk+1 +skΔek ,tk+1

tn+1

=
[
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
+ ϕxx

(
tn+1,X

Xtk ,tk+1

tn

)(
X
Xtk+1 +skΔek ,tk+1

tn+1
− X

Xtk ,tk+1

tn

)
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+ ϕxxx

(
tn+1,X

Xtk ,tk+1

tn

)
(
X
Xtk+1 +skΔek ,tk+1

tn+1
− X

Xtk ,tk+1

tn

)2

2

+ ϕxxxx

(
tn+1, (1 − šn)X

Xtk ,tk+1

tn + šnX
Xtk+1 +skΔek ,tk+1

tn+1

)

× (X
Xtk+1 +skΔek ,tk+1

tn+1
− X

Xtk ,tk+1

tn )2

2

]

×
[
∂xX

Xtk ,tk+1

tn + ∂xxX
Xtk ,tk+1

tn (a(tk,Xtk )Δtk + b(tk,Xtk )ΔWk + skΔek)

+ ∂xxxX
Xtk +s̀k(a(tk ,Xtk )Δtk+(b(tk ,Xtk )ΔWk+skΔek),tk+1

tn

× (a(tk,Xtk )Δtk + b(tk,Xtk )ΔWk + skΔek)2

2

+
∫ tn+1

tn

ax(s,X
Xtk+1 +skΔek ,tk+1
s )∂xX

Xtk+1 +skΔek ,tk+1
s ds

+
∫ tn+1

tn

bx(s,X
Xtk+1 +skΔek ,tk+1
s )∂xX

Xtk+1 +skΔek ,tk+1
s dWs

]
, (56)

where

X
Xtk+1 +skΔek ,tk+1
tn+1

− X
Xtk ,tk+1
tn

=
∫ tn+1

tn
a(s,X

Xtk+1 +skΔek ,tk+1
s )ds +

∫ tn+1

tn
b(s,X

Xtk+1 +skΔek ,tk+1
s )dWs

+ ∂xX
Xtk+s̃k (a(tk ,Xtk )Δtk+b(tk ,Xtk )ΔWk+skΔek ),tk+1
tn (a(tk ,Xtk )Δtk + b(tk ,Xtk )ΔWk + skΔek),

and

ϕx
(
tn+1,Xtn+1 + snΔen

) = ϕx

(
tn+1,X

Xtk ,tk+1

tn

)

+ ϕxx

(
tn+1,X

Xtk ,tk+1

tn

)
Δνk,n + ϕxxx

(
tn+1,X

Xk ,tk+1

n

)
Δν2

k,n

2

+ ϕxxxx

(
tn+1, (1 − śn)X

Xtk ,tk+1

tn + śn(Xtn+1 + snΔen)

)
Δν3

k,n

6
, (57)

with

Δνk,n := a(tn,Xtn)Δtn + b(tn,Xtn)ΔWn + snΔen

+ ∂xX
Xtk +ŝk(a(tk ,Xtk )Δtk+b(tk ,Xtk )ΔWk),tk+1

tn (a(tk,Xtk )Δtk + b(tk,Xtk )ΔWk + skΔek).

Plugging the expansions (56) and (57) into the expectation
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E
[
ϕx
(
tk+1,Xk+1 + skΔek

)
ϕx
(
tn+1,Xn+1 + snΔen

)
Δ̃bkΔ̃bn

]
,

the summands in the resulting expression that only contain products of the first
variations vanishes,

E

[
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
∂xX

Xtk ,tk+1

tn ϕx

(
tn+1,X

Xtk+1 ,tk+1

tn

)
Δ̃bkΔ̃bn

]

= E

[
E
[
Δ̃bnΔ̃bk|F̂ k,n

]
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
∂xX

Xtk ,tk+1

tn ϕx

(
tn+1,X

Xtk ,tk+1

tn

)]
= 0.

One can further deduce that all of the the summands in which the product of multiple
Itô integrals Δ̃bk and Δ̃bn are multiplied only with one additional Itô integral of
first-order vanish by using the fact that the inner product of the resulting multiple
Itô integrals is zero, cf. [22, Lemma 5.7.2], and by separating the first and second
variations from the Itô integrals by taking a conditional expectation with respect to
the suitable filtration. We illustrate this with a couple of examples,

E

[
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
∂xxX

Xtk ,tk+1

tn b(tk,Xtk )ΔWkϕx

(
tn+1,X

Xtk ,tk+1

tn

)
Δ̃bkΔ̃bn

]

= E

[
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
∂xxX

Xtk ,tk+1

tn b(tk,Xtk )ΔWkϕx

(
tn+1,X

Xtk ,tk+1

tn

)
Δ̃bk

× E
[
Δ̃bn|F̂ n

]] = 0,

and

E

[
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
∂xX

Xtk ,tk+1

tn b(tn,Xtn)ΔWnϕx

(
tn+1,X

Xtk ,tk+1

tn

)
Δ̃bkΔ̃bn

]

= E

[
ϕx

(
tn+1,X

Xtk ,tk+1

tn+1

)
ϕx

(
tn+1,X

Xtk ,tk+1

tn

)
Δ̃bkb(tn,Xtn)E

[
Δ̃bnΔWn|F̂ n

]] = 0.

From these observations, assumption (M.3), inequality (54), and, when necessary,
additional expansions of integrands to render the leading order integrand either F̂ k-
or F̂ n-measurable and thereby sharpen the bounds (an example of such an expan-
sion is

Δ̃bn =
∫ tn+1

tn

∫ t

tn

(bxb)(s,X
Xtn ,tn
s )dWs dWt

=
∫ tn+1

tn

∫ t

tn

(bxb)

(
s,X

X
Xtk ,tk+1
tn ,tn

s

)
dWs dWt + h.o.t.).
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We derive after a laborious computation which we will not include here that

∣∣E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃bkΔ̃bn

]∣∣

≤ CŇ−3/2
√

E
[
Δt2k

]
E
[
Δt2n

]
.

This further implies that

Ň−1∑

k,n=0,k �=n

E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃bkΔ̃bn

]

≤ CŇ−3/2
Ň−1∑

k,n=0,k �=n

√
E
[
Δt2k

]
E
[
Δt2n

]

≤ CŇ−3/2

⎛

⎝
Ň−1∑

n=0

√
E
[
Δt2n

]
⎞

⎠

2

≤ CŇ−1/2
Ň−1∑

n=0

E
[
Δt2n

]
,

such that inequality (55) holds.
So far, we have shown that

E

⎡

⎣

(
N−1∑

n=0

ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃bn

)2
⎤

⎦

= E

[
N−1∑

n=0

ϕx
(
tn+1,Xtn

)2 (bxb)2

2
(tn,Xtn)Δt2n + o

(
Δt2n

)
]

. (58)

The MSE contribution from the other local error terms, |Δan, Δ̃an and |Δbn, can also be
bounded using the above approach with Itô–Taylor expansions, F̂m,n-conditioning
and Itô isometries. This yields that

E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
|Δak |Δan

]

= E

[
ϕx
(
Xtk , tk

)
ϕx
(
tn,Xtn

) (at + axa + axxb2/2

2

)
(tk,Xtk )×

(at + axa + axxb2/2

2

)
(tn,Xtn)Δt2kΔt2n + o

(
Δt2kΔt2n

) ]
,

(59)
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E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
Δ̃akΔ̃an

]

=
⎧
⎨

⎩

E
[
ϕx
(
tn,Xtn

)2 (axb)2

2 (tn,Xtn)Δt3n + o
(
Δt3n

)]
, if k = n,

O
(
Ň−3/2

(
E
[
Δt3k

]
E
[
Δt3n

])1/2
)

, if k �= n,

and

E
[
ϕx
(
tk+1,Xtk+1 + skΔek

)
ϕx
(
tn+1,Xtn+1 + snΔen

)
|Δbk |Δbn

]

=
⎧
⎨

⎩

E
[
ϕx
(
tn,Xtn

)2 (bt+bxa+bxxb2/2)2

3 (tn,Xtn)Δt3n + o
(
Δt3n

)]
, if k = n,

O
(
Ň−3/2

(
E
[
Δt3k

]
E
[
Δt3n

])1/2
)

, if k �= n.

Moreover, conservative bounds for error contributions involving products of different
local error terms, e.g., |ΔakΔ̃bn, can be induced from the above bounds and Hölder’s
inequality. For example,

∣
∣∣∣
∣∣
E

⎡

⎣
Ň−1∑
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=
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∣∣∣
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⎞

⎠

⎤

⎦

∣∣
∣∣∣
∣

≤

√√
√√√
√E

⎡

⎢
⎣

⎛

⎝
Ň−1∑

k=0

ϕx

(
tk+1,Xtk+1 + skΔek

)
|Δak

⎞

⎠

2⎤

⎥
⎦

×
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√√√E
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⎢
⎣

⎛
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⎞

⎠
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⎥
⎦

= O

⎛

⎝Ň−1/2
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E
[
Δt2n

]
⎞

⎠ .

The proof is completed in two replacement steps applied to ϕx on the right-hand
side of equality (58). First, we replaceϕx

(
tn+1,Xtn

)
byϕx

(
tn,Xtn

)
. Under the regularity

assumed in this theorem, the replacement is possible without introducing additional
leading order error terms as

E
[|ϕx

(
tn+1,Xtn

)− ϕx
(
tn,Xtn

) |] = E

[∣∣∣
∣g

′(XXtn ,tn+1
T )∂xX

Xtn ,tn+1
T − g′(XXtn ,tn

T )∂xX
Xtn ,tn
T

∣∣∣
∣

]

≤ E

[∣∣
∣∣(g
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T ))∂xX
Xtn ,tn+1
T

∣∣
∣∣

]

+ E

[∣∣
∣∣g

′(XXtn ,tn
T )(∂xX
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T − ∂xX

Xtn ,tn
T )

∣∣
∣∣

]

= O
(
Ň−1/2

)
.
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Here, the last equality follows from the assumptions (M.2), (M.3), (R.2), and (R.3),
and Lemmas 1 and 2,
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(
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∂xX
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∣∣∣
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∣∣∣∣∣
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Ň−1/2

)
,

and that
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= O
(
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.

The last step is to replace the first variation of the exact path ϕx
(
tn,Xtn

)
with the

first variation of the numerical solution ϕx,n = g′(XT )∂xX
Xtn ,tn
T . This is also possible

without introducing additional leading order error terms by the same assumptions
and similar bounding arguments as in the two preceding bounds as
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E
[∣∣ϕx,n − ϕx

(
tn,Xtn

)∣∣] = E

[∣∣
∣∣g

′(XT )∂xX
Xtn ,tn
T − g′(XXtn ,tn

T )∂xX
Xtn ,tn
T

∣∣
∣∣

]

≤ E

[
|g′(XT )|

∣∣∣∣∂xX
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T
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= O
(
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)
. �

Variations of the Flow Map

The proof of Theorem 2 relies on bounded moments of variations of order up to
four of the flow map ϕ. Furthermore, the error density depends explicitly on the
first variation. In this section, we we will verify that these variations are indeed well
defined random variables with all required moments bounded. First, we present the
proof of Lemma 1. Having proven Lemma 1, we proceed to present how essentially
the same technique can be used in an iterative fashion to prove the existence, pathwise
uniqueness and bounded moments of the higher order moments. The essentials of
this procedure are presented in Lemma 3.

First, let us define the following set of coupled SDE

dY (1)
u =a(u, Y (1)

u )du + b(u, Y (1)
u )dWu,

dY (2)
u =ax(u,Y

(1)
u )Y (2)

u du + bx(u, Y
(1)
u )Y (2)

u dWu,

dY (3)
u =

(
axx(u,Y

(1)
u )

(
Y (2)
u

)2 + ax(u, Y
(1)
u )Y (3)

u

)
du

+
(
bxx(u, Y

(1)
u )

(
Y (2)
u

)2 + bx(u,Y
(1)
u )Y (3)

u

)
dWu,

dY (4)
u =
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u )
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(1)
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u Y (3)
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u

)
du

+
(
bxxx(u,Y

(1)
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u

)
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(
axxxx(u,Y

(1)
u )

(
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u )
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)2
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+
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(
3
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)
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+
(
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(
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+
(
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(
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(
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)
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(60)
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defined for u ∈ (t,T ] with the initial condition Yt = (x, 1, 0, 0, 0). The first compo-
nent of the vector coincides with Eq. (13), whereas the second one is the first variation
of the path from Eq. (16). The last three components can be understood as the second,
third and fourth variations of the path, respectively.

Making use of the solution of SDE (60), we also define the second, third and
fourth variations as

ϕxx(t, x) = g′(Xx,t
T )∂xxX

x,t
T + g′′(Xx,t

T )(∂xX
x,t
T )2,

ϕxxx(t, x) = g′(Xx,t
T )∂xxxX

x,t
T + · · · + g′′′(Xx,t

T )(∂xX
x,t
T )3, (61)

ϕxxxx(t, x) = g′(Xx,t
T )∂xxxxX

x,t
T + · · · + g′′′′(Xx,t

T )(∂xX
x,t
T )4.

In the sequel, we prove that the solution to Eq. (60) when understood in the integral
sense that extends (13) is a well defined random variable with bounded moments.
Given sufficient differentiability of the payoff g, this results in the boundedness of
the higher order variations as required in Theorem 2.

Proof of Lemma 1. By writing (Y (1)
s ,Y (2)

s ) := (Xx,t
s , ∂xXx,t

s ), (13) and (16) together
form an SDE:

dY (1)
s = a(s,Y (1)

s )ds + b(s,Y (1)
s )dWs

dY (2)
s = ax(s,Y

(1)
s )Y (2)

s ds + bx(s,Y
(1)
s )Y (2)

s dWs

(62)

for s ∈ (t,T ] and with initial condition Yt = (x, 1). As before, ax stands for the
partial derivative of the drift function with respect to its spatial argument. We note
that (62) has such a structure that dynamics of Y (2)

s depends on Y (1)
s , that, in turn, is

independent of Y (2)
s . By the Lipschitz continuity of a(s,Y (1)

s ) and the linear growth
bound of the drift and diffusion coefficients a(s,Y (1)

s ) and b(s,Y (1)
s ), respectively,

there exists a pathwise unique solution of Y (1)
s that satisfies

E

[
sup

s∈[t,T ]
|Y (1)

s |2p
]

< ∞, ∀p ∈ N,

(cf. [22, Theorems 4.5.3 and 4.5.4 and Exercise 4.5.5]). As a solution of an Itô SDE,
Xx,t
T is measurable with respect to FT it generates.

Note that Theorem [20, Theorem 5.2.5] establishes that the solutions of (62) are
pathwise unique. Kloeden and Platen [22, Theorems 4.5.3 and 4.5.4] note that the
existence and uniqueness theorems for SDEs they present can be modified in order
to account for looser regularity conditions, and the proof below is a case in point.
Our approach below follows closely presentation of Kloeden and Platen, in order to
prove the existence and moment bounds for Y (2)

s .
Let us define Y (2)

u,n , n ∈ N by

Y (2)
u,n+1 =

∫ u

t
ax(s,Y

(2)
s )Y (2)

s,n ds +
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t
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with Y (2)
u,1 = 1, for all u ∈ [t,T ]. We then have, using Young’s inequality, that
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Boundedness of the partial derivatives of the drift and diffusion terms in (62) gives
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By induction, we consequently obtain that
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Thus, by Grönwall’s inequality,
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Next, let us show that E
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Define

Zn = sup
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and note that
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Using Doob’s and Schwartz’s inequalities, as well as the boundedness of ax and bx,
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for some C ∈ R. Using the Markov inequality, we get
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The right-hand side of the equation above converges by the ratio test, whereas the
Borel–Cantelli Lemma guarantees the (almost sure) existence of K∗ ∈ N, such that
Zk < k2,∀k > K∗. We conclude that Y (2)

u,n converges uniformly in L2(P) to the limit
Y (2)
u = ∑∞

n=1 ΔY (2)
u,n and that since {Y (2)

u,n}n is a sequence of continuous andFu-adapted
processes, Y (2)

u is also continuous and Fu-adapted. Furthermore, as n → ∞,
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This implies that (Y (1)
u ,Y (2)

u ) is a solution to the SDE (62).
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Having established that Y (2)
u solves the relevant SDE and that it has a finite second

moment, we may follow the principles laid out in [22, Theorem 4.5.4] and show that
all even moments of
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Taking expectations, the Itô integral vanishes,
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2

(
bx(s,Y

(1)
s )Y (2)

s

)2
ds

]

.

Using Young’s inequality and exploiting the boundedness of ax, we have that

E
[∣∣Y (2)

u

∣∣l
]

≤ C
∫ u

t
E
[|Y2,u|l

]
ds

+ E

[∫ u

t

l(l − 1)
∣
∣Y (2)

s

∣
∣l−2

2

(
bx
(
s,Y (1)

s

)
Y (2)
s

)2
ds

]

.

By the same treatment for the latter integral, using that bx is bounded,

E
[∣∣Y (2)

u

∣∣l
]

≤ C
∫ u

t
E
[∣∣Y (2)

u

∣∣l
]
ds.

Thus, by Grönwall’s inequality, E
[∣∣Y (2)

u

∣∣l
]

< ∞. �

Lemma 3 Assume that (R.1), (R.2), and (R.3) in Theorem 2 hold and that for any
fixed t ∈ [0,T ] and x isFt -measurable such that E

[|x|2p] < ∞ for all p ∈ N. Then,
Eq. (60) has pathwise unique solutions with finite moments. That is,

max
i∈{1,2,...,5}

(
sup

u∈[t,T ]
E
[∣
∣Y (i)

u

∣
∣2p
])

< ∞, ∀p ∈ N.
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Furthermore, the higher variations as defined by Eq. (61) satisfy areFT -measurable
and for all p ∈ N,

max
{
E
[|ϕx(t, x)|2p

]
, E
[|ϕxx(t, x)|2p

]
, E
[|ϕxxx(t, x)|2p

]
, E
[|ϕxxxx(t, x)|2p

]}
< ∞.

Proof We note that (60) shares with (62) the triangular dependence structure. That
is, the truncated SDE for {Y (j)

u }d1
j=1 for d1 < 5 has drift and diffusion functions â :

[0,T ] × R
d1 → R

d1 and b̂ : [0,T ] × R
d1 → R

d1×d2 that do not depend on Y (j)
u for

j ≥ d1.
This enables verifying existence of solutions for the SDE in stages: first for

(Y (1),Y (2)), thereafter for (Y (1),Y (2),Y (3)), and so forth, proceeding iteratively to
add the next component Y (d1+1) of the SDE. We shall also exploit this structure
for proving the result of bounded moments for each component. The starting point
for our proof is Lemma 1, which guarantees existence, uniqueness and the needed
moment bounds for the first two components Y (1), and Y (2). As one proceeds to Y (i),
i > 2, the relevant terms in (64) feature derivatives of a and b of increasingly high
order. The boundedness of these derivatives is guaranteed by assumption (R.1).

Defining a successive set of approximations Y (3)
u,n , n ∈ N by

Y (3)
u,n+1 =

∫ u

t
axx(s,Y

(1)
s )

(
Y (2)
s

)2 + ax(s,Y
(2)
s )Y (3)

s,n ds

+
∫ u

t
bxx(s,Y

(1)
s )

(
Y (2)
s

)2 + bx(s,Y
(2)
s )Y (3)

s,n dWs,

with the initial approximation defined by Y (3)
u,1 = 0, for all u ∈ [t,T ]. Let us denote by

Q =
∫ u

t
axx(s,Y

(1)
s )

(
Y (1)
s

)2
ds +

∫ u

t
bxx(s,Y

(1)
s )

(
Y (2)
s

)2
dWs (63)

the terms that do not depend on the, highest order variation Y (3)
u,n . We then have, using

Young’s inequality, that

E

[∣
∣∣Y (3)

u,n+1

∣
∣∣
2
]

≤ 3E
[|Q|2]+ 3E

[∣∣
∣∣

∫ u

t
ax(s,Y

(1)
s )Y (3)

s,n ds

∣∣
∣∣

2
]

+ 3E

[∣∣
∣∣

∫ u

t
bx(s,Y

(1)
s )Y (3)

s,n dWs

∣∣
∣∣

2
]

≤ 3E
[|Q|2]+ 3(u − t)E

[∫ u

t

∣∣∣ax(s,Y (1)
s )Y (3)

s,n

∣∣∣
2
ds

]
+ 3E

[∫ u

t

∣∣∣bx(s,Y (1)
s )Y (3)

s,n

∣∣∣
2
ds

]
.

The term Q is bounded by Lemma 1 and the remaining terms can be bounded by
the same methods as in the proof of 1. Using the same essential tools: Young’s
and Doob’s inequalities, Grönwall’s lemma, Markov inequality and Borel–Cantelli
Lemma, we can establish the existence of a limit to which Y (3)

u,n converges. This limit
is the solution of of Y (3)

u , and has bounded even moments through arguments that are
straightforward generalisations of those already presented in the proof of Lemma 1.
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Exploiting the moment bounds of Y (3)
u and the boundedness of derivatives of g,

we can establish the measurability of the second order variation ϕx(t, x). Repeating
the same arguments in an iterative fashion, we can establish the same properties for
Y (4)
u and Y (5)

u as well as ϕxx(t, x), ϕxxx(t, x), ϕxxxx(t, x). �

Error Expansion for the MSE in Multiple Dimensions

In this section, we extend the 1D MSE error expansion presented in Theorem 2 to
the multi-dimensional setting.

Consider the SDE

dXt = a (t,Xt) dt + b (t,Xt) dWt, t ∈ (0,T ]
X0 = x0,

(64)

where X : [0,T ] → R
d1 , W : [0,T ] → R

d2 , a : [0,T ] × R
d1 → R

d1 and
b : [0,T ] × R

d1 → R
d1×d2 . Let further xi denote the ith component of x ∈ R

d1 , a(i),
the ith component of a drift coefficient and b(i,j) and bT denote the (i, j)th element
and the transpose of the diffusion matrix b, respectively. (To avoid confusion, this
derivation does not make use of any MLMC notation, particularly not the multilevel
superscript ·{�}.)

Using the Einstein summation convention to sum over repeated indices, but not
over the time index n, the 1D local error terms in Eq. (49) generalize into

|Δa
(i)

n =
∫ tn+1

tn

∫ t

tn

(
a(i)
t + a(i)

xj a
(j) + 1

2
a(i)
xjxk (bb

T )(j,k)
)

ds dt,

Δ̃a
(i)
n =

∫ tn+1

tn

∫ t

tn

a(i)
xj b

(j,k) dW (k)
s dt,

|Δb
(i)

n =
∫ tn+1

tn

∫ t

tn

b(i,j)
t + b(i,j)

xk a(k) + 1

2
b(i,j)
xkx�

(bbT )(k,�) ds dW (j)
t ,

Δ̃b
(i)
n =

∫ tn+1

tn

∫ t

tn

b(i,j)
xk b(k,�) dW (�)

s dW (j)
t ,

where all the above integrand functions in all equations implicitly depend on the

state argument XXtn ,tn
s . In flow notation, a(i)

t is shorthand for a(i)
t (s,X

Xtn ,tn
s ).

Under sufficient regularity, a tedious calculation similar to the proof of Theorem 2
verifies that, for a given smooth payoff, g : Rd1 → R,

E
[(
g(XT) − g

(
XT
))2
]

≤ E

[
N−1∑

n=0

ρnΔt2n + o
(
Δt2n

)
]

,
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where

ρn := 1

2
ϕxi,n

(
(bbT)(k,�)(bxk b

T
x�
)
)(i,j)

(tn,Xtn)ϕxj,n. (65)

In the multi-dimensional setting, the ith component of first variation of the flow map,
ϕx = (ϕx1 , ϕx2 , . . . , ϕxd1

), is given by

ϕxi (t, y) = gxj (X
y,t
T )∂xi

(
Xy,t
T

)(j)
.

The first variation is defined as the second component to the solution of the SDE,

dY (1,i)
s = a(i)

(
s,Y (1)

s

)
ds + b(i,j)

(
s,Y (1)

s

)
dW (j)

s

dY (2,i,j)
s = a(i)

xk

(
s,Y (1)

s

)
Y (2,k,j)
s ds + b(i,�)

xk

(
s,Y (1)

s

)
Y (2,k,j)
s dW (�)

s ,

where s ∈ (t,T ] and the initial conditions are given by Y (1)
t = x ∈ R

d1 , Y (2)
t = Id1 ,

with Id1 denoting the d1 × d1 identity matrix. Moreover, the extension of the numer-
ical method for solving the first variation of the 1D flow map (23) reads

ϕxi,n = c(j)
xi (tn,Xtn)ϕxj,n+1, n = N − 1,N − 2, . . . 0. (66)

ϕxi,N = gxi(XT ),

with the jth component of c : [0,T ] × R
d1 → R

d1 defined by

c(j)
(
tn,Xtn

) = X
(j)
tn + a(j)(tn,Xtn)Δtn + b(j,k)(tn,Xtn)ΔW (k)

n .

Let U and V denote subsets of Euclidean spaces and let us introduce the
multi-index ν = (ν1, ν2, . . . , νd) to represent spatial partial derivatives of order
|ν| := ∑d

j=1 νj on the following short form ∂xν
:= ∏d

j=1 ∂ν
xj . We further introduce

the following function spaces.

C(U;V) := {f : U → V | f is continuous},
Cb(U;V) := {f : U → V | f is continuous and bounded},
Ck
b(U;V) :=

{
f : U → V | f ∈ C(U;V) and

dj

dxj
f ∈ Cb(U;V)

for all integers 1 ≤ j ≤ k
}
,

Ck1,k2
b ([0,T ] × U;V) :=

{
f : [0,T ] × U → V | f ∈ C([0,T ] × U;V), and

∂
j
t ∂ν f ∈ Cb([0,T ] × U;V) for all integers j ≤ k1 and 1 ≤ j + |ν| ≤ k2

}
.

Theorem 3 (MSE leading order error expansion in the multi-dimensional setting)
Assume that drift and diffusion coefficients and input data of the SDE (64) fulfill
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(R.1) a ∈ C2,4
b ([0,T ] × R

d1;Rd1) and b ∈ C2,4
b ([0,T ] × R

d1;Rd1×d2),
(R.2) there exists a constant C > 0 such that

|a(t, x)|2 + |b(t, x)|2 ≤ C(1 + |x|2), ∀x ∈ R
d1 and ∀t ∈ [0,T ],

(R.3) g ∈ C4
b(R

d1),
(R.4) for the initial data, X0 isF0-measurable and E[|X0|p] < ∞ for all p ≥ 1.

Assume further the mesh points 0 = t0 < t1 < · · · < tN = T

(M.1) are stopping times such that tn isFtn−1 -measurable for n = 1, 2, . . . ,N,
(M.2) there exists Ň ∈ N, and a c1 > 0 such that c1Ň ≤ infω∈Ω N(ω) and supω∈Ω

N(ω) ≤ Ň holds for each realization. Furthermore, there exists a c2 > 0 such
that supω∈Ω maxn∈{0,1,...,N−1} Δtn(ω) < c2Ň−1,

(M.3) and there exists a c3 > 0 such that for all p∈[1, 8] and n∈{0, 1, . . . , Ň − 1},

E
[
Δt2pn

] ≤ c3
(
E
[
Δt2n

])p
.

Then, as Ň increases,

E
[(
g(XT ) − g

(
XT
))2
]

= E

⎡

⎣
N−1∑

n=0

(
ϕxi

(
(bbT)(k,�)(bxk b

T
x�
)
)(i,j)

ϕxj

)
(tn,Xtn)

2
Δt2n + o(Δt2n)

⎤

⎦,

where we have dropped the arguments of the first variation as well as the diffusion
matrices for clarity.

Replacing the first variation ϕxi
(
tn,Xn

)
by the numerical approximation ϕxi,n,

as defined in (66) and using the error density notation ρ from (65), we obtain the
following to leading order all-terms-computable error expansion:

E
[(
g(XT ) − g

(
XT
))2
]

= E

[
N−1∑

n=0

ρnΔt2n + o(Δt2n)

]

. (67)

A Uniform Time Step MLMC Algorithm

The uniform time step MLMC algorithm for MSE approximations of SDE was
proposed in [8]. Below, we present the version of that method that we use in the
numerical tests in this work for reaching the approximation goal (2).
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Algorithm 5 mlmcEstimator
Input: TOLT, TOLS, confidence δ, input mesh Δt{−1}, input mesh intervals N−1, inital number

of samples M̂, weak convergence rate α, SDE problem.
Output: Multilevel estimator AML .

Compute the confidence parameter CC(δ) by (42).
Set L = −1.
while L < 3 or (44), using the input rate α, is violated do

Set L = L + 1.
Set ML = M̂, generate a set of (Euler–Maruyama) realizations {Δ�g

(
ωi,�

)}ML
i=1 on mesh and

Wiener path pairs (Δt{L−1},Δt{L}) and (W {L−1},W {L}), where the uniform mesh pairs have
step sizes Δt{L−1} = T/NL−1 and Δt{L} = T/NL), respectively.
for � = 0 to L do

Compute the sample variance V (Δ�g;Ml).
end for
for � = 0 to L do

Determine the number of samples by

M� =
⌈
CC

2(δ)

TOLS
2

√
Var(Δ�g)

N�

L∑

�=0

√
N�Var(Δ�g)

⌉

.

(The equation for Ml is derived by Lagrangian optimization, cf. Sect. 3.2.1.)
if New value of M� is larger than the old value then

Compute additional (Euler–Maruyama) realizations {Δ�g
(
ωi,�

)}Mnew
�

i=M�+1 on mesh and

Wiener path pairs (Δt{�−1},Δt{�}) and (W {�−1},W {�}), where the uniform mesh pairs
have step sizes Δt{�−1} = T/(2�N−1) and Δt{�} = T/(2�+1N−1), respectively.

end if
end for

end while
Compute AML using the generated samples by the formula (7).
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