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HÅKON ANDREAS HOEL

Doctoral Thesis
Stockholm, Sweden, 2012



TRITA-CSC-A 2012:06
ISSN-1653-5723
ISRN KTH/CSC/A–12/06-SE
ISBN 978-91-7501-350-3

School of Computer Science and Communication
KTH

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillst̊and av Kungl Tekniska högskolan framlägges till of-
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Abstract

This thesis consists of four papers considering different aspects of stochastic process
modeling, error analysis, and minimization of computational cost.

In Paper I, we construct a Multipath Fading Channel (MFC) model for wireless
channels with noise introduced through scatterers flipping on and off. By coarse grain-
ing the MFC model a Gaussian process channel model is developed. Complexity and
accuracy comparisons of the models are conducted.

In Paper II, we generalize a multilevel Forward Euler Monte Carlo method intro-
duced by Giles [16] for the approximation of expected values depending on solutions of
Itô stochastic differential equations. Giles work [16] proposed and analyzed a Forward
Euler Multilevel Monte Carlo (MLMC) method based on realizations on a hierarchy of
uniform time discretizations and a coarse graining based control variates idea to reduce
the computational cost required by a standard single level Forward Euler Monte Carlo
method. This work is an extension of Giles’ MLMC method from uniform to adaptive
time grids. It has the same improvement in computational cost and is applicable to a
larger set of problems.

In paper III, we consider the problem to estimate the mean of a random variable by
a sequential stopping rule Monte Carlo method. The performance of a typical second
moment based sequential stopping rule is shown to be unreliable both by numerical
examples and by analytical arguments. Based on analysis and approximation of er-
ror bounds we construct a higher moment based stopping rule which performs more
reliably.

In paper IV, Born-Oppenheimer dynamics is shown to provide an accurate approx-
imation of time-independent Schrödinger observables for a molecular system with an
electron spectral gap, in the limit of large ratio of nuclei and electron masses, without
assuming that the nuclei are localized to vanishing domains. The derivation, based
on a Hamiltonian system interpretation of the Schrödinger equation and stability of
the corresponding hitting time Hamilton-Jacobi equation for non ergodic dynamics,
bypasses the usual separation of nuclei and electron wave functions, includes caus-
tic states and gives a different perspective on the Born-Oppenheimer approximation,
Schrödinger Hamiltonian systems and numerical simulation in molecular dynamics
modeling at constant energy.
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Chapter 1

Introduction

If a system does not always produce the same output from a given initial state, we call it
a non-deterministic system. Considering a non-deterministic system whose uncertainty is
described in form of a density P , mean value quantities on the form

∫
g(x)dP (x) (1.0.1)

are often sought. For example:

• Let X be a random variable modeling the number of active users in a network with
the with P (n) denoting the probability for having n ∈ N active users (within a fixed
time interval). Then (1.0.1) with g(n) = n represents the mean number of active users
in the network.

• A mechanical system with N particles positioned at q ∈ R3N , with momentum p ∈
R3N , potential function V (q), and P (q, p) denoting the probability for the particles
having the phase space configuration (q, p). Then the average potential energy of the
system g(q) = V (q) is a quantity of interest.

In some settings, e.g., if the density P is not explicitly known or if it takes a subtle
form, integrals on the form (1.0.1) have to be approximated. A typical way of approximat-
ing (1.0.1) is by Monte Carlo sampling

M∑

i=1

g(Xi)

M
,

where the realizations Xi are generated according to or approximately according to the
density P . In this thesis, we will for four different non-deterministic systems study questions
on how to efficiently generate realizations that are approximately distributed according to
a density P and give estimates on weak approximation errors of type

∣∣∣∣∣

∫
g(x)dP (x)−

M∑

i=1

g(Xi)

M

∣∣∣∣∣ (1.0.2)

in terms of the computational cost. Let us be more specific.

3



4 CHAPTER 1. INTRODUCTION

Paper I

Wireless channel models model the received version of a signal transmitted wirelessly from
a transmitter to a receiver. For industries developing wireless transmission equipment, such
models are used to estimate the performance of equipment and software by simulations
instead of more costly real world tests. But for such models to be of interest, they must be
accurate and computationally efficient with respect to running time.

One of the most popular models of today, the Multipath Fading Channel model (MFC),
is based on approximating the signal from superpositioning a finite number of contributing
wave paths yielding an output signal on the form

Yt =
1√
M

M∑

k=1

ake
iθk(t).

The superpositioning of wave paths is computationally costly, and, consequently, it is also
costly to generate output signal realizations using MFC models. In Paper I, we propose a
new MFC model with scatterers flipping on and off adding noise to the total signal, and
by coarse graining this MFC model we derive a Gaussian process wireless channel model.
Computational cost estimates in Paper I indicate that signal realizations are generated more
efficiently by using a Gaussian process algorithm than by using an MFC algorithm.

Paper II

Stochastic Differential Equations (SDE) are non-deterministic processes whose future evo-
lution is described by a probability distribution, as opposed to the deterministic evolution of
an ordinary differential equation. Complex phenomena which might seem non-deterministic,
such as stock market evolution, are frequently modeled by stochastic processes, cf. [5, 24].

In the second paper, we develop an adaptive Forward Euler Monte Carlo algorithm
which for any sufficiently well behaved function g : Rd → R approximates the expected
value

E[g(XT )] =

∫
g(XT (ω))dP (ω), (1.0.3)

where XT is the solution of an Itô SDE. The algorithm we have developed constructs
numerical realizations of the SDE on adaptive time grids using the adaptive Forward Euler
method. To obtain variance reduction, realizations are constructed on different tolerance
levels and the expected value (1.0.3) is approximated from the numerical realizations by
the Monte Carlo method.

The multilevel Monte Carlo method, first introduced by Giles in [16], showed the im-
provement of computational cost of approximating E[g(XT )] with accuracy O(TOL) from
O
(
TOL−3

)
by a single level method to O

(
TOL−2 log(TOL)2

)
by the multilevel method

when the realizations XT (ω) of the given SDE problem were generated numerically on uni-
form time grids. In Paper II we extend Giles’ multilevel method to the setting of adaptive
time grid SDE realizations relying on the adaptive weak approximation methods for SDE
developed by Szepessy et al. [30, 25, 26]. Our extended multilevel method is applicable to
a larger set of SDE problems and, when comparable, it is shown to have the same compu-
tational cost as Giles’ method has.
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Paper III

Given i.i.d. random variables X1, X2, . . . the typical way of approximating their expected
value µ = E[X] using M samples is the sample average

XM :=

M∑

i=1

Xi

M
.

In Paper III, we consider the objective of choosing M sufficiently large so that

P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ, (1.0.4)

for small, fixed accuracy-confidence constants TOL > 0 and δ > 0. Clearly, P (
∣∣XM − µ

∣∣ >
TOL) decreases as M increases, but at the same time the cost of computing XM increases.
From an application and cost point of view it is therefore of interest to have theory giving
sharp bounds on the number of samples M needed to fulfill (1.0.4). For some settings this
exists. For example, if E[|X|∞] < C, it is possible to derive good theoretical upper bounds
for M , but in the general case when no or little information of the distribution is given,
however, little theory is known and the typical way of estimating E[X] is by a sequential
stopping rule; sequentially increasing the number of samples M until the sampled moments
fulfill a stopping criterion. In Paper III, we show that the “intuitive” stopping criterion

2

(
1− Φ

(√
MTOL

σM

))
< δ,

where

Φ(z) :=
1√
2π

∫ z

−∞
e−x

2/2 dx

gives a stopping rule that performs unreliably when sampling heavy-tailed r.v. From ap-
proximations of error bounds we construct a new stopping criterion based on second, third,
and fourth order sample moments which according to numerical experiments performs more
reliably and is only slightly more costly than the stopping rule with the “intuitive” stopping
criterion.

Paper IV

Molecular dynamics is a computational method to study molecular systems in materials
science, chemistry and molecular biology. The simulations are used, for example, in de-
signing and understanding new materials or for determining biochemical reactions in drug
design. The wide popularity of molecular dynamics simulations relies on the fact that in
many cases it agrees very well with experiments. Indeed, given experimental data it is easy
to verify correctness of the method by comparing with experiments at certain parameter
regimes. However, if we want the simulation to predict something that has no comparing
experiment, we need a mathematical estimate of the accuracy of the computation. In the
case of molecular systems with few particles such studies are made by directly solving the
Schrödinger equation. A fundamental and still open question in classical molecular dynam-
ics simulations is how to verify the accuracy computationally, i.e., when the solution of the
Schrödinger equation is not a computational alternative.

The aim of this paper is to derive qualitative error estimates for molecular dynamics
and present new mathematical methods which could be used also for a more demanding
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quantitative accuracy estimation, without solving the Schrödinger equation. That is, let Φ
be a solution of the time-independent Schrödinger equation

(
−1

2
M−1

N∑

n=1

∆Xn + V
)

Φ = EΦ,

where V is a given potential operator, E ∈ R is energy and M is a the mass constant, and
let X(t) be a molecular dynamics path with total energy also equal to E. Then, our object
of study is the approximation error of

∫

R3(N+n)

g(X)Φ(X,x)∗Φ(X,x) dX dx− lim
T→∞

1

T

∫ T

0

g(X(t))dt (1.0.5)

in terms of M as M →∞, for any observable g(X).
Having molecular dynamics error estimates opens, for instance, the possibility of sys-

tematically evaluating which density functionals or empirical force fields are good approxi-
mations and under what conditions the approximation properties hold. Computations with
such error estimates could also give improved understanding when quantum effects are im-
portant and when they are not, in particular in cases when the Schrödinger equation is too
computationally complex to solve.

Outline of the Introductory Chapters

In Chapter 2, we give a short description of random variables, probability distributions,
and limit theorems in probability theory. In Chapter 3, we present topics on Monte Carlo
methods such as variance reduction and dimension independent convergence rate. In Chap-
ter 4, we give a short introduction to numerical methods and weak solution approximation
for SDE. Chapter 5 presents statistical wave path modeling of wireless channels, and in
Chapter 6, we give a short outline on Classical and Quantum Mechanics.



Chapter 2

Probability background

Although the Events of Games, which Fortune solely governs, are uncertain, yet
it may be certainly determin’d, how much one is more ready to lose than gain. . .

It is impossible for a Die, with such determin’d force and direction, not to fall
on such determin’d side, only I don’t know the force and direction which makes
it fall on such determin’d side, and therefore I call it Chance, which is nothing
but the want of art.

—John Arbuthnot, Of the Laws of Chance 1.

2.1 Random Variables and Probability Measures

During renaissance times, loose guidelines involving reason, intuition, and observations
were applied when assessing the uncertainty of evidence material in court, for discussing
betting strategies in terms of odds, and for setting maritime insurance premiums. A first
mathematical treatment of probability can be traced back to letters between Piere de Fermat
and Blaise Pascal in the year 1654 where they discuss, among other things, the division of
stakes in fair gambling games. Let us therefore, in the spirit of gambling, develop our first
random variable (r.v.) as a model of the game Heads or Tails. Heads or Tails is the game
of predicting which side will face up when a coin is flipped. The game is quite successfully
modeled by

Outcome =

{
Heads, with probability p

Tails, with probability (1− p), (2.1.1)

where p ∈ [0, 1] models the coin’s proclivity towards Heads. (Typically with p = 1/2 when
the coin is of fair shaped, or alternatively configured from experiments or measurements.
For example, tossing the coin N times and setting p = #Heads/N .)

It is often possible to motivate both deterministic and stochastic models for the problem
one is studying. In the case of Heads or Tails, for example, one might argue that if all input
parameters—initial orientation, velocity and spin for the coin; air density; material and
geometrical data for the coin and the ground a.s.f.—is known prior to the coin flip, the
outcome of the coin flip ought to be deterministically predictable. But if the input data is
uncertain and/or the deterministic model for the outcome is too complicated, a stochastic

1English translation (with additions) of De Ratiociniis in Ludo Aleae by Frans van Schooten and
Christiaan Huygens (foreword, at least) in 1656.

7
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model might be preferable in comparison to a deterministic one. Furthermore, the choice of
model should depend on the problem you are facing. For example, if you wish to estimate
how likely ten consecutive Heads throws are, the stochastic model straightforwardly gives
you the estimate p10, while if you wish to estimate a more specific property of the coin
throws, for example the precise path of each coin flip, a deterministic model of the coin flips
might be needed.

To present and analyze more complicated r.v. and stochastic models we introduce some
terminology for probability spaces and r.v.

Definition 2.1.1 (Probability space, σ-algebra, and Probability Measure) A prob-
ability space is a measure space triple (Ω,F, P ) with the sample space Ω, the event space
F, and the probability measure P : F → [0, 1]. The sample space is the set of outcomes,
with an outcome signifying the result of single execution of the model. An event denotes the
union of one or more outcomes, and the event space is the set of events. The event space F
is a σ-algebra, i.e., it is a collection of subsets of Ω fulfilling the following:

(i) F is non-empty.

(ii) Closed under complement: If A ∈ F, then AC ∈ F, with AC denoting the complement.

(iii) Closed under countable unions: If Ai ∈ F for A0, A1, . . ., then ∪iAi ∈ F.

The probability measure acts on the measurable space (Ω,F) fulfilling the following cri-
teria:

(i) Non-negative: P (A) ≥ 0.

(ii) Countable additivity: For all collections a collection {Ai}i contained in F and pairwise
disjoint,

P (∪iAi) =
∑

i

P (Ai).

(iii) Probability measure: P (Ω) = 1.

A r.v. is a mapping defined on a probability space.

Definition 2.1.2 (Random Variable) Given the probability space (Ω,F, P ) and an arbi-
trary measurable space (Γ,G), then X : Ω → Γ is said to be a random variable/vector if
the map from (Ω,F) to (Γ,G) is measurable, i.e.,

{ω : X(ω) ≤ G} ∈ F, ∀G ∈ G.

A frequently encountered type of r.v. is the real-valued r.v. mapping from (Ω,F) to (R,B)
where B denoting the Borel σ-algebra. A real-valued r.v. X has a non-decreasing, right
continuous Cumulative Distribution Function(CDF) F (x) := P (X ≤ x) defined for x ∈ R
and a Probability Density Function(PDF) f(x) = P (X = x) which is connected to CDF by

F (x) =

∫ x

−∞
dF (s) =

∫ x

−∞
f(s) dr.

Often, r.v. are indirectly defined by their PDF, and we further note that moments such as
the expected value

µ = E[X] :=

∫

R
xf(x) dx

and the variance
σ2 = Var(X) := E

[
|X − E[X] |2

]

are values often used both to describe and to analyze r.v.
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Random Variables—Examples

We now include examples of some of the r.v. which appear in the papers of this thesis.

Example 2.1.3 (Heads or Tails a.k.a. Bernoulli distribution) Based on the model (2.1.1)
let us define the real-valued r.v.

X(ω) =

{
1, if ω = {Heads}
0, if ω = {Tails } (2.1.2)

It has the probability space

Ω = {Heads, Tails}, F = {∅, {Heads}, {Tails},Ω},
and P (X = 1) = p = P (X = {Tails}),

the PDF

f(x) =
δx + δ1−x

2
,

with δx denoting the Dirac delta distribution, µ = p, and σ2 = p(1− p). (Strictly speaking,
the function f is called a probability mass function when it only attains non-zero values at
a countable number of x ∈ R, not a PDF.)

Example 2.1.4 (The Poisson distribution) The Poisson distribution models the like-
lihood for a given number of identical independent events occurring within a fixed time
interval. For example, the number of telephone calls in a call system or the number of wave
scatterers becoming active in a wireless multi path fading channel, cf. Paper I. The PDF is
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Figure 2.1: The Poisson PDF and CDF (both only defined at the dots for k ∈ N0—
interpolating lines are included to illustrate the transitions).

given by

f(k) =
λke−λ

k!
for k ∈ N0,

where λ > 0 is a positive parameter equaling the expected number of events on a given
interval. That is, E[X] = λ and (it turns out that) also Var(X) = λ.
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Example 2.1.5 (Normal distribution) The normal distribution is a very important dis-
tribution with a tremendous amount of applications. It is innately connected to the limit
distribution of the scaled mean of samples of independent, identically distributed (i.i.d.)
r.v. (see Section 2.2), and many real life uncertainty estimates depend on this distribution.
Considering a normal r.v. X with mean µ ∈ R and variance σ2 ∈ R+, the PDF is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

We write X ∼ N (µ, σ2). We further note that the CDF of a standard normal r.v. X ∼
N (0, 1), which often is used in estimates of sampling error, is in this thesis represented by
Φ(x).

10 5 0 5 10
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10 5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0 σ = 1
σ = 2
σ = 4

Figure 2.2: The PDFs and CDFs for normal distributions with µ = 0.

Generalizations of the normal r.v. to Rn and Cn exist. In Rn, the multivariate normal
with input parameters µ ∈ Rn and symmetric, positive definite covariance matrix K ∈ Rn×n
has the PDF

f(x) =
1

(2π)n/2 det(K)1/2
exp

(
1

2
(x− µ)TK−1(x− µ)

)
.

Example 2.1.6 (Pareto distribution) The Pareto-distribution has the PDF

f(x) =

{
αxαmx

−(α+1) if x ≥ xm
0 else,

(2.1.3)

where α, xm ∈ R+ are respectively the shape and the scale parameter. The moments of
E[Xn] for the Pareto r.v. only exists for n < α and, supposing α > 2, its mean and
variance are given by

µ =
αxm
α− 1

and σ2 =
x2
mα

(α− 1)2(α− 2)
.

The Pareto-distribution is a so called heavy-tailed distribution, meaning that its tail is not
exponentially bounded, i.e.

lim
x→∞

eλxP (X ≥ x) =∞, ∀λ ∈ R+.

The Italian economist Vilfredo Pareto introduced the Pareto distribution as model for income
distribution. The pareto index α models the breadth of income; the larger the pareto index,
the smaller the proportion of high-income people.
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Figure 2.3: The PDF of the 2D multivariate normal distribution with µ = (0, 0) and the
covariance matrix K = diag(1, 10).

2.2 Convergence of Random Variables and Limit Theorems for
Sampling

In this section we review relevant convergence definitions and results from probability theory.
For simplicity, the results are presented for sequences of scalar, real-valued r.v.

Definition 2.2.1 (Convergence in distribution) A sequence of real-valued r.v. X0, X1, . . .
converges in distribution to the r.v. X with the CDF F (x) if

lim
n→∞

P (Xn ≤ x) = F (x)

at all continuity points x ∈ R of F .

Definition 2.2.2 (Convergence in probability) A sequence of real-valued r.v. X0, X1, . . .
converges in probability to the r.v. X if for any ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

We write Xn → X in probability.

Definition 2.2.3 (Almost sure convergence) A sequence of real-valued r.v. X0, X1, . . .
converges almost surely to the r.v. X if

P ( lim
n→∞

Xn −X = 0) = 1.

We write limn→∞Xn = X a.s.

The strength relations between the convergence notions are

Almost sure conv. =⇒ Conv. in probability =⇒ Conv. in distribution.

Given a sequence of independent identically distributed (i.i.d.) r.v. {Xi}ni=1, a question

of interest is if and how fast the average Sn/n, where Sn :=
∑M
i=1Xi converges to µ = E[X1]

as the number of samples M increases. Before reviewing results regarding this question, we
first recall the definition of independent r.v.
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Definition 2.2.4 (Independent random variables) Two r.v. X1 and X2 mapping from
(Ω,F) to (R,B) are independent if for all A1, A2 ∈ B

P (X1 ∈ A1, X2 ∈ A2) = P (X1 ∈ A1)P (X2 ∈ A2).

In particular, independence implies that E[X1X2] = E[X1] E[X2]. The simplest asymptotic
convergence results for Sn/n is the weak law of large numbers.

Theorem 2.2.5 (Weak law of large numbers) Suppose X1, X2, . . . are i.i.d. r.v. with
E[|X1|] <∞. Then Sn/n→ µ in probability as M →∞.

The result in the general form stated above follows from the Dominated Convergence The-
orem, but let us prove it in the setting when Var(X1) < ∞ using Chebycheff’s inequality
and independence: For any ε > 0,

P (|Sn/n− µ| > ε) ≤︸︷︷︸
Chebycheff’s ineq.

E

[ |Sn/n− µ|2
ε2

]

≤
M∑

i=1

Var(Xi)

M2ε2
→ 0 as M →∞.

The Strong law of large numbers is a, not surprisingly, a slightly stronger result telling us
that in the limit n→∞, the sample average Sn/n equals µ on a measure 1 set (i.e., a.s.).

Theorem 2.2.6 (Strong law of large numbers) Suppose X1, X2, . . . are i.i.d. r.v. with
E[|X1|] <∞. Then Sn/n→ µ a.s. as n→∞.

The weak and strong laws of large numbers describes the asymptotic pointwise conver-
gence of the sample mean Sn/n. The Central Limit Theorem (CLT) gives you additional
information on the asymptotic distribution of Sn/

√
n.

Theorem 2.2.7 (The Central Limit Theorem) Suppose X1, X2, . . . are i.i.d. r.v. with
(as before) µ = E[X1] and σ2 = Var(X1) <∞. Then

lim
n→∞

P

(
Sn − µ
σ
√
n
≤ x

)
= Φ(x),

where Φ(x) is the CDF of a standard normal distributed r.v. cf. Example 2.1.5.

An explicit n−1/2 convergence rate for the distributional convergence in the CLT was de-
rived independently by Berry and Esseen in the 1940s through bounding multi-convoluted
characteristic functions, cf. [4, 14].

Theorem 2.2.8 (Berry-Esseen) Suppose X1, X2, . . . are i.i.d. r.v. with (as before) µ =
E[X1] and σ2 = Var(X1) and ρ = E

[
|X1 − µ|3

]
<∞. Then

sup
x∈R
|Fn(x)− Φ(x)| ≤ C ρ√

nσ3

where

Fn(x) := P

(
Sn
σ
√
n
≤ x

)
.

For multi-dimensional and other extensions of the above presented convergence results,
see [12, 3].



Chapter 3

Monte Carlo Methods

The infinite we shall do right away. The finite may take a little longer.

—Stan Ulam

Monte Carlo methods are a class of algorithms relying on repeated sampling of r.v. to
compute the quantities of interest. A simple example would be the sample average

gM :=

M∑

i=1

g(Xi)

M
, (3.0.1)

for some sequence of i.i.d. r.v. X1, X2, . . . in Rn, g : Rn → R and the number of samples
M predetermined or increased until the variance of gM is sufficiently small. MC methods
are generally easy to implement, even for seemingly complicated problems, and their con-
vergence rate is O

(
M−1/2

)
, independent of the dimension of the problem. MC methods

have become popular among statisticians and scientists in applied fields which apply the
methods in estimations such as medicine efficiency, election predictions, and finance.

The field of MC methods grows by the day, so a clear cut definition of the term and
summary of the subject becomes increasingly difficult. Here, we restrict ourselves to an
informal presentation of the three central themes for MC methods through examples: how
many samples M are needed to estimate the quantity of interest reliably, what variance
reduction is, and the dimension independent convergence rate of MC methods.

3.1 Examples and Properties

When approximating a quantity of interest by the MC estimate (3.0.1), a central perfor-
mance question is how many samples M are needed to make the approximation sufficiently
accurate. To construct a reliable MC algorithm, it is important to choose M sufficiently
large, but to make the algorithm efficient, it is important that it does not use more samples
than needed to meet the accuracy demand; M should also be low as possible. In this section
we will demonstrate that the MC convergence rate is σM−1/2, and use this fact to construct
a reasonable choice for M in the setting of sampling Bernoulli r.v.

The vote of a citizen participating in a two party election might be modeled as a Bernoulli
r.v. The American presidential election could be assigned the r.v.

X(ω) =

{
1, if ω = {Republican}
0, if ω = {Democrat}. (3.1.1)

13
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The quantity of interest is µ = P (X = 1); if µ < 0.5, the Democrats win, and if µ > 0.5,
the Republicans win. Suppose we seek to predict the outcome of the election µ through
sampling i.i.d. voters X1, X2, . . . by the sample average

XM :=

M∑

i=1

Xi

M
,

with the accuracy-confidence constraint

P (
∣∣XM − µ

∣∣ > TOL) ≤ δ, (3.1.2)

where we call TOL is the accuracy and δ the confidence. A reasonable question to raise is
how large does M have to be—how many voters must we sample—to achieve (3.1.2). For
large M , the CLT motivates the approximation

P (
∣∣XM − µ

∣∣ > TOL) = P




∣∣∣
∑M
i=1Xi − µ

∣∣∣
√
Mσ

>

√
MTOL

σ


 ≈ 2

(
1− Φ

(√
MTOL

σ

))
.

implies that to ensure that

2

(
1− Φ

(√
MTOL

σ

))
≤ δ,

we should use

M =
σ2
(
Φ−1(1− δ/2)

)2

TOL2 (3.1.3)

vote samples. In general, the variance σ2 is unknown, making the above expression for M
incomplete, but for Bernoulli r.v. σ2 = µ(1−µ) ≤ 1/4, so we may conservatively choose M
according to

M =

(
Φ−1(1− δ/2)

)2

4TOL2 .

So, if for example given the demands of accuracy TOL = 0.02 and confidence δ = 0.05, we
would, according to our derivations, have to sample at least M = 2401 i.i.d. voters.

The MC convergence rate σM−1/2 in the norm

√
E
[∣∣XM − µ

∣∣2
]

follows from noting

that for i.i.d. samples

E




∣∣∣
∑M
i=1Xi − µ

∣∣∣
2

M2


 =

E
[
|X − µ|2

]

M
=
σ2

M
. (3.1.4)

In euclidean norm, the convergence rate is often represented on the r.v. form

XM − µ√
M

∼ σχ,

where χ denotes a standard normal r.v. and one should keep in mind that this is an
asymptotic representation.
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Dimension Independent Convergence Rate

To illustrate the dimension independent convergence rate of MC methods we consider an
example of multivariate integration

I =

∫

A

g(x) dx (3.1.5)

where A is a compact subset of Rn and g : A → R. To approximate the value of I by the
MC method we generate i.i.d. r.v. X1, X2, . . . uniformly distributed in A and set

IM =

M∑

i=1

g(Xi)

M
. (3.1.6)

By construction we have that E
[
IM
]

= I and by the reasoning of (3.1.4),

√
E
[∣∣IM − I

∣∣2
]

=
√

Var(g(X))M−1/2,

equaling the expected convergence rate. In comparison, a cubature1 approximation of (3.1.5)
of order k will have the convergence rate O

(
M−k/d

)
if we assume it resolves each dimension

using M1/d grid points. So when k/d < 1/2, the MC method will asymptotically outperform
the cubature method.

To visualize the dimensional independent convergence we consider the problem of com-
puting the volume of the unit ball in R6. This problem is equivalent to computing the
integral (3.1.5) with

g(x) =

{
1, if |x| ≤ 1,

0, otherwise,

and A = [−1, 1]n. Figure 3.1 shows the performance of the MC algorithm compared to the
first order cubature method

ĨM :=

dM1/6e∑

i,j,k,l,m,n=1

g(xi, xj , xk, xl, xm, xn)h6, (3.1.7)

where dxe := min{n ∈ Z |n ≥ x}, h = 2/dM1/6e, and xi = −1 + (i − 1/2)h for i =
1, 2, . . . , dM1/6e.

3.2 Variance Reduction

In Section 3.1, we observed that the convergence rate for the MC method is σM−1/2 and
that the number of samples needed to meet the accuracy-confidence constraint (3.1.2) was
(approximately) given by

M =
σ2
(
Φ−1(1− δ/2)

)2

TOL2 .

Generally, the cost of computing an MC estimate is

O(M) = O
(
σ2
(
Φ−1(1− δ/2)

)2

TOL2

)
,

1Cubature is the name for numerical integration in dimensions higher than 1.
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Cubature error: |ĨM −I|
 MC error: |ĪM −I|
M−1/6
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Figure 3.1: Comparison of convergence rates for approximating the volume of the unit ball
in R6, I = π3/6, when using either the MC algorithm (3.1.6) or the cubature (3.1.7). Due
to the high dimensionality of the problem, the MC algorithm outperforms the first order
cubature method. The observed convergence rates for the experiment fit quite well with
theoretically predicted rates.

so if it somehow is possible to reduce the variance σ2 of the samples used in the estimate, the
computational cost of the MC estimate will also be reduced. Variance reduction is a vast
subject for MC methods motivated from the goal of reducing computational cost. Here, we
will restrict ourselves to describing the variance reduction technique named control variates
which we will return to in Chapter 4. For a nice overview of other interesting variance
techniques such as antithetic variables and importance sampling, we refer to [7].

Control Variates

Let X be a given r.v. which we seek to approximate the expected value E[X] by a Monte
Carlo method, say

XM =

M∑

i=1

Xi

M
.

Suppose that Y is another r.v. for which the expected value E[Y ] is known. The constructed
random variable Z = X + E[Y ]− Y will then have the same expected value as X, so E[X]
can also be approximated by applying the Monte Carlo method on the r.v. Z, say

ZM =

M∑

i=1

Zi
M
.
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If the variance is reduced, Var(Z) = Var(X − Y) < Var(X), we reason from the introduction
of this section that from a cost perspective, it is more efficient to approximate E[X] by
sampling Zi r.v. than by sampling Xi r.v.

3.3 Sequential Stopping Rules

Given no prior distributional information of samples used in an MC estimate, determining
the number of samples M required to meet an accuracy-confidence constraint is very dif-
ficult; some distributional properties of the samples, such as their variance, generally has
to be inferred to choose M sensibly. However daunting it might seem to perform reliable
MC estimates in settings with no prior distributional sample information, such settings are
frequently encountered and therefore they deserve some attention.

A sequential stopping rule MC algorithm progressively gathers distributional informa-
tion on the samples through sampling higher moments and iteratively increasing the number
of samples used in the estimate until a stop criterion is met. For example, Algorithm 1 rep-
resents a sample variance based stopping rule.

Algorithm 1 Sample Variance Based Stopping Rule

Input: Initial number of samples M0, accuracy TOL, confidence 1− δ, and the CDF of
the standard normal distributed r.v. Φ(x).
Output: XM .

Set k = 0, generate Mk samples {Xi}Mk
i=1 and compute the sample variance

σ2
Mk

:=
1

Mk − 1

Mk∑

i=1

(Xi −XMk
)2. (3.3.1)

while 2
(

1− Φ(
√
MkTOL/σMk

)
)
> δ do

Set k = k + 1 and Mk = 2Mk−1.
Generate a batch of Mk i.i.d. samples {Xi}Mk

i=1.
Compute the sample variance σ2

Mk
as given in (3.3.1).

end while
Set M = Mk, generate samples {Xi}Mi=1 and compute the output sample mean XM .

Chow and Robbins proved that for r.v. with bounded second moments, sample variance
based stopping rules are asymptotically reliable, cf. [9]. That is, supposing the generalized
sample average estimator σ2

M used is positive and asymptotically consistent in the sense
σM → σ almost surely as TOL → 0, then for any confidence δ ∈ (0, 1), the stopping
criterion

σ2
M

M
≤ TOL2

(Φ−1(1− δ/2))
2 (3.3.2)

implies the asymptotic fulfillment of the accuracy-confidence constraint

lim
TOL→0

P (
∣∣XM − µ

∣∣ > TOL) ≤ δ.

For practical purposes however, it is the reliability of sequential stopping rules for a fixed
accuracy-confidence combination TOL, δ ∈ (0, 1) which is of interest; the non-asymptotic
regime. To the best of our knowledge, this is largely an open problem. For a fixed number of
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samples M , an upper bound of the convergence rate in the non-asymptotic regime is given
by the Berry-Esseen Theorem 2.2.8 which presents the rate O

(
M−1/2

)
. But, the leading

order constant of the Berry-Esseen bound contains the factor

E
[
|X − µ|3

]

σ2
,

which in the settings we are confined to would have to be sampled/estimated, giving a
bound estimate instead of an explicit bound.

In Paper III of this thesis, we study stopping rules’ performance in the non-asymptotic
regime. There we show by examples that for certain heavy-tailed r.v. and fixed TOL, δ ∈
(0, 1), the sample variance based stopping rule presented in Algorithm 1 fails to meet the
accuracy-confidence constraint (3.1.2), and we construct a more reliable higher moments
based stopping rule.



Chapter 4

Adaptive Weak Approximations for
Stochastic Differential Equations

It is not the strongest of the species that survives, nor the most intelligent that
survives. It is the one that is the most adaptable to change.

—Charles Darwin

4.1 Stochastic Differential Equations (SDE)

SDE is an extension of ordinary differential equations that seeks to incorporate uncertainty
into a differential equation:

dX = a(t,X)dt+ “noise”,

X0 = x0,
(4.1.1)

In general, the noise in the differential equation will be motivated from physical consider-
ations for the model. If the “noise” is a Wiener process, the differential equation (4.1.1)
becomes an SDE which (on Itô form) may be represented as follows

dX = a(t,X)dt+ b(t,X)dWt,

X0 = x0.
(4.1.2)

Here, the dWt term is called the Wiener process increment.

The Wiener Process

The history of the Wiener process can be traced back to 1828 when the British botanist
Robert Brown observed through a microscope that pollen grains suspended in water per-
formed an irregular motion. The physical process for the irregular motion was, in honor of
its discoverer, given the name Brownian motion. The mathematician Norbert Wiener later
proposed a mathematical model for standardized Brownian motion which was to become
known as the Wiener process.

The Wiener process is a Gaussian process1 W : [0, T ] × Ω → R which is characterized
by the properties

1For more on Gaussian processes, see Chapter 5.

19
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1. W0 = 0,

2. The function t→Wt is almost surely continuous.

3. Wt has independent increments with Wt −Ws ∼ N (0, |t− s|).

As a consequence of property 3.

E[WtWs] = min(t, s),

and, supposing t1 ≤ t2 ≤ t3 ≤ t4,

E[(Wt2 −Wt1)(Wt4 −Wt3)] = E[Wt2 −Wt1 ] E[Wt4 −Wt3 ] = 0.

The Wiener process Wt(ω) is a function of two variables. For fixed ω ∈ Ω, we call
W·(ω) : [0, T ] → R a realization or sample path of the Wiener process, cf. Figure 4.1. For
each t ∈ R+ fixed, Wt = Wt(·) is a r.v. with the distribution (property 3) Wt ∈ N (0, t),
that is, for any Borel set B ⊂ R,

P (Wt ∈ B) =

∫

B

exp(−x
2

2t )√
2πt

dx.
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Figure 4.1: Four independent Wiener process realizations Wt(ωi).

Itô Integrals

According to the theory for ordinary differential equations, we expect solutions of the
SDE (4.1.2) to be representable on integral form

Xt = X0 +

∫ t

0

a(s,X) ds+

∫ t

0

b(s,X) dWs. (4.1.3)
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However, what that is meant by the rightmost integral integrating over Wiener increments
dWs = Ws+ds −Ws, is not clear. Let us investigate this issue by considering integrals on
the form

I(f) =

∫ T

0

f(t, ω) dWt.

The theory of Riemann integrals for deterministic functions leads us to expect that the
rightmost integral could be considered as the limit sum of infinitesimal contributions

∫ t

0

f(t, ω) dWs = lim
∆t→0

∑

i

f(t∗i , ω)∆Wi (4.1.4)

with ∆Wi := Wti+1
−Wti and t∗i any point in [ti, ti+1]. But, an example with f(t, ω) :=

Wt(ω) will illustrate that the theory for deterministic integrals is not directly extendable
to integrals involving stochastic processes: Choosing the leftmost point of each interval as
integration points t∗i = ti yields

I−(f) := lim
∆t→0

∑

i

Wti∆Wi,

and, if instead choosing the rightmost point of each interval as integration points, t∗i = ti+1,
we get

I+(f) := lim
∆t→0

∑

i

Wti+1
∆Wi.

From property 3. of the Wiener process, we may compute that while E[I−(f)] = 0,
E[I+(f)] = t on the other hand. This illustrates that for SDE it indeed does matter which
point t∗j ∈ [ti, ti+1] of each infinitesimal interval is used in the integral evaluation (4.1.4).

For SDE, different choices of t∗j have given rise to different stochastic integrals, but in
this thesis we will only consider Itô integrals. Itô integrals use the integrand points t∗j = tj ,
and is thus defined by

∫ t

0

f(s, ω) dWs := lim
∆t→0

∑

i

f(ti, ω)∆Wi. (4.1.5)

Itô integrals may be considered as the limiting form of the Forward Euler integrating
method for SDE. In correspondence with Itô integrals, we call the SDE when written on
the form (4.1.2) an Itô SDE. Note further that as an implication of having Wiener sample
paths, the representation

Xt(ω) = X0 +

∫ t

0

a(s,Xs(ω)) ds+

∫ t

0

b(s,Xs(ω)) dWs(ω),

implies that for each fixed ω, t → Xt(ω) is a sample path solution of the SDE, and for
each fixed t, ω → Xt(ω) is a r.v. See Figure 4.2 for an illustration of Itô SDE sample path
solutions.

There are two types of solutions for Itô SDE; weak and strong solutions. In essence, one
might say that weak solutions are sample path solutions which are “unique” in distributional
sense, while strong solutions are unique in sample path sense according to the norm

‖X‖L2(P ;[0,T ]) = E

[∫ T

0

|Xt|2dt
]1/2

.

See Section 4.2 for more on solution classification.
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Itô Calculus

Itô calculus is a handy tool for analyzing Itô SDE. Let Xt be a solution of (4.1.2) and
g(t,Xt) a sufficiently smooth function. Then the Itô “laws”

dW 2
s = dt, dt · dWs = 0, dt2 = 0, . . . (4.1.6)

yields following truncated Itô-Taylor expansion of dg

dg(t,Xt) = ∂tg(t,Xt)dt+ ∂Xg(t,Xt)dX +
1

2
∂XXg(t,Xt)dX

2

=

(
∂tg(t,Xt) + a(t,Xt)∂Xg(t,Xt) +

(b(t,Xt))
2

2
∂XXg(t,Xt)

)
dt

+ b(t,Xt)∂Xg(t,Xt)dWt.

(4.1.7)

Here we used (4.1.2) and the Itô “laws” (4.1.6) to derive that dX2 = b2dt+ o(dt).

Solving an SDE by Using Itô Calculus

For an application of Itô calculus, let us consider the following problem of geometric Brow-
nian motion

dXt = rXtdt+ vXtdWt, r, v ∈ R+. (4.1.8)

This problem might be interpreted as model for stock price evolution with r representing a
constant interest rate, and v the constant volatility rate, i.e., the stochastic evolution of the
stock price. To solve this SDE, we assume X > 0, and note that then (4.1.8) is equivalent
to

dXt

Xt
= rdt+ vdWt.

Considering the function g(Xt) = log(Xt), we see by (4.1.7) with a(Xt) = rXt and b(Xt) =
vXt that

d log(Xt) =

(
r − v2

2

)
dt+ vdWt =⇒ Xt = X0 exp

((
r − v2

2

)
t+ vWt

)
.

Figure 4.2 holds examples of sample path solutions of the SDE (4.1.8).

4.2 The Euler Method for Itô SDE

We recall that a solution of an Itô SDE

dX = a(t,X)dt+ b(t,X)dWt,

X0 = x0.

can be written on the Itô integral form

Xt = X0 +

∫ t

0

a(s,Xs) ds+

∫ t

0

b(s,Xs) dWs,

where the rightmost integral is the limit sum of a forward Euler integration

∫ t

0

b(s,Xs) dWs := lim
∆t→0

∑

i

b(ti, Xti)∆Wi.
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Figure 4.2: Left plot: Four independent sample path solutions of the SDE (4.1.8) when
X0 = 1, r = 0.1, and v = 0.05. Right plot: Four independent sample path solutions of
the the SDE (4.1.8) when X0 = 1, r = 0.1, and v = 0.25.

For numerical solutions, the (forward) Euler method generates realizations X · of the Itô
SDE by the scheme

Xtn+1 = Xtn + a(tn, Xtn)∆t+ b(tn, Xtn)∆Wn,

X0 = x0,
(4.2.1)

with uniform step size ∆t = T/N , tn = n∆t, and Wiener increments ∆Wn = W (tn+1) −
W (tn) ∼ N(0,∆t).

The rate of convergence of XT to the real solution XT depends on the measure. The
strong convergence is given by E

[
|XT −XT |

]
and is a measure for the pathwise convergence

of each numerical realization XT (ω) to its corresponding real solution realization XT (ω).
For many problems, however, pathwise convergence might be more than you seek. Instead,
you might be interested in some distributional quantity of interest expressible on the form
E[g(Xt)] for some smooth function g. If so, the convergence criterion of interest is the weak
convergence2

sup
g∈C∞C (R)

∣∣E[g(XT )]− E
[
g(XT )

]∣∣ ,

where C∞C (R) denotes the set of smooth compactly supported functions. For the Euler
method on uniform grids with step size ∆t, the strong convergence rate is O

(
∆t1/2

)
, cf. [22,

8], and the weak convergence was shown by Talay and Tubaro to be O(∆t), cf. [31], see
also cf. [8].

Remark 4.2.1 In this thesis we consider SDE solved numerically using the Euler method,
but we remark that through truncation of Itô-Taylor expansions, one may develop higher
order numerical schemes for SDE. One example is the Milstein scheme,

Xn+1 = Xn + an∆t+ bn∆Wn +
bn∂Xbn

2
(∆Wn

2 −∆t),

which has first order strong convergence. As for deterministic problems, however, higher
order methods require stronger regularity assumptions and are generally more difficult to

2Weak convergence is equivalent to convergence in distribution, as defined in Chapter 2.
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expand to adaptive methods in higher dimensions. For more on higher order methods, we
refer to [22].

An adaptive Euler Method for Weak Solutions

For problems where either the drift or diffusion in the SDE lacks regularity, numerical
solutions using adaptive time stepping may improve convergence rates, or even be your
only option for obtaining reliable numerical solutions. In this subsection, we will describe
the adaptive Euler method for weak solutions of SDE which was developed by Szepessy et
al. in [30] in the beginning of the 2000s.

Objective

Consider the problem of generating solutions of the initial value SDE

dX = a(t,X)dt+ b(t,X)dWt, 0 ≤ t ≤ T,
X0 = x0, x0 ∈ R.

(4.2.2)

with an adaptive Euler method which fulfills the weak accuracy constraint

∣∣E
[
g(XT )− g

(
XT

)]∣∣ ≤ TOLT, (4.2.3)

where Xt and Xt represents the explicit and numerical solution of (4.3.1), respectively,
and TOLT > 0 is a given tolerance constraint. In this setting, the goal of adaptivity is to
minimize N , the number of adaptive time steps needed in the grid 0 = t0 < t1 < . . . <
tN = T such that your adaptive Euler solution Xt fulfill (4.2.3). As expected, the adaptive
Euler method is given by

Xtn+1
= Xtn + a(tn, Xtn)∆tn + b(tn, Xtn)∆Wn, (4.2.4)

where ∆tn(ω) = (tn+1 − tn)(ω) denote the n-th time step of the sample path solution ω.

Grid Refinement

The adaptive method by Szepessy et al. expresses the weak discretization error by the error
expansion

E
[
g(XT )− g

(
XT

)]
'

N∑

n=0

E
[
ρ(tn, ·)∆tn2(·)

]
+ h.o.t. (4.2.5)

Here, ρ(tn, ω) represents the error density for a given sample path solution ω at the time
tn and the error indicators ρ(tn, ω)∆tn

2(ω) then represents, up to higher order terms, the
error contribution from the n−th time step of the sample path ω. The error indicators
ρ(tn, ω)∆tn

2(ω) provide information for further refinement of the time grid. Error control
at a low computational cost is obtained through the condition

ρ(tn, ω)∆tn
2(ω) ≤ CTOLT

E[N ]
, ∀n = 0, 1, 2, . . . , N(ω). (4.2.6)

Given an initial time grid, time increments, and a Wiener process numerical sample path
which we represent by t·(ω, 0), ∆t·(ω, 0), and Wt·(ω,0), respectively, the following adaptive
mesh refinement algorithm is used by Szepessy et al. to ensure that the condition (4.2.6) is
met.
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1. Set ` = 0.

2. Compute the error density ρ(t·, ω) for the numerical path represented by t·(ω, `),
∆t·(ω, `), and Wt·(ω,`), cf. (4.2.9).

3. If condition (4.2.6) is fulfilled, then stop; otherwise

4. Refine the grid t·(ω, `) at all points where (4.2.6) is not fulfilled by halving the steps:

∆tn̄(ω, `+ 1) =
∆tn(ω, `)

2
and ∆tn̄+1(ω, `+ 1) =

∆tn(ω, `)

2
, (4.2.7)

where n̄ ≥ n is defined as the natural number such that tn̄(ω, `+ 1) = tn(ω, `). When
adding a point tn̄(ω, `+1) to your grid by the refinement (4.2.7), add a corresponding
Wiener process sample path point by Brownian bridges:

Wtn̄+1(ω,`+1) =
Wtn(ω,`) +Wtn+1(ω,`)

2
+

√
∆tn(ω, `)

2
ξ, where ξ ∼ N (0, 1).

5. Set ` = `+ 1 and return to 2.

The Error Density

For notational convenience, let us write the Euler method scheme (4.2.4) as follows

Xtn+1 = c(tn, Xtn), where c(tn, x) := x+ a(tn, x)∆tn + b(tn, Xtn)∆Wn. (4.2.8)

The error density derived in Theorem 2.2 of [30] can then be represented by

ρ(tn, ·) =
1

2∆tn

(
(
a(tn+1, Xtn+1

)− a(tn, Xtn)
)
φ(tn+1)

+
(
b2(tn+1, Xtn+1)− b2(tn, Xtn)

)
∂Xtn+1

φ(tn+1)

)
,

(4.2.9)

where φ is the solution of the discrete dual backward problem

φ(tn) = ∂xc(tn+1, Xtn+1)φ(tn+1), t < T

φ(T ) = g′(XT ),
(4.2.10)

and ∂Xtn
φ(tn) is obtained by a longer scheme by linearising the forward problem (4.1.2),

cf. [30, Theorem 2.2].
To derive the error density (4.2.9), we extend the numerical solutions of the Euler

method (4.2.4) to t ∈ [tn, tn+1) by

Xt = Xtn +

∫ t

tn

ā(s;X) ds+

∫ t

tn

b̄(s;X)dWs,

where ā and b̄ are piecewise constant approximations

ā(s;X) = a(tn, Xtn) and b̄(s;X) = b(tn, Xtn) for s ∈ [tn, tn+1), n = 0, 1, 2, . . .
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The expected value E[g(XT )] with XT solving the SDE (4.1.2) is related to a Partial Dif-
ferential Equation (PDE): the utility function u(t, x) := E[g(XT )|Xt = x] solves the Kol-
mogorov backward equation

∂tu = −
(
a∂x +

b2

2
∂xx

)
u, (t, x) ∈ [0, T )× R

u(T, x) = g(x),

(4.2.11)

cf. [22]. By Itô calculus and the relation (4.2.11), it follows that

du(t,Xt) =

(
∂tu(t,Xt) + ā(t;X)∂xu(t,Xt) +

b̄2(t;X)

2
∂xxu(t,Xt)

)
dt

+ b̄(t;X)∂xu(t,Xt) dWt

=

(
(ā(t;X)− a(t,Xt))∂xu(t,Xt) +

b̄2(t;X)− b2(t,Xt)

2
∂xxu(t,Xt)

)
dt

+ b̄(t;X)∂xu(t,Xt) dWt.

Recalling that X0 = X0, we see that u(0, X0) = E[g(XT )]. Hence,

E[g(XT )]− g(XT ) = −
∫ T

0

du(t,Xt)

=
∑

n

∫ tn+1

tn

(a(t,Xt)− a(tn, Xtn))∂xu(t,Xt) +
b2(t,Xt)− b2(tn, Xtn)

2
∂xxu(t,Xt) dt

−
∑

n

∫ tn+1

tn

b(tn, Xtn)∂xu(t,Xt)dWt.

(4.2.12)

Taking the expected value of equation (4.2.12) yields

E
[
g(XT )− g

(
XT

)]
=
∑

n

∫ tn+1

tn

E
[
(a(t,Xt)− a(tn, Xtn))∂xu(t,Xt)

]
dt

+
∑

n

∫ tn+1

tn

E

[
b2(t,Xt)− b2(tn, Xtn)

2
∂xxu(t,Xt)

]
dt,

(4.2.13)

where we used that the expected value of the integral with dWt increments in (4.2.12)
is zero, cf. [28]. Introducing the utility function for the numerical solution ū(t, x) :=
E
[
g
(
XT

)
|Xt = x

]
, the following approximations of the terms in (4.2.13) are valid:

∫ tn+1

tn

E
[
a(t,Xt)− (a(tn, Xtn))∂xu(t,Xt)

]
dt

= E
[
(a(tn+1, Xtn+1

)− a(tn, Xtn))∂xū(tn+1, Xtn+1
)
] ∆tn

2
+ h.o.t.

and
∫ tn+1

tn

E

[
b2(t,Xt)− b2(tn, Xtn)

2
∂xxu(t,Xt)

]
dt

= E

[
b2(tn+1, Xtn+1

)− b2(tn, Xtn)

2
∂xxū(tn+1, Xtn+1

)

]
∆tn

2
+ h.o.t.
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Further, since

∂xū(t, x) =
∂

∂x
E
[
g
(
XT

)
|Xt = x

]
= E

[
g′(XT )∂XtXT

∣∣∣Xt = x
]
,

we see that
∂xū(tn+1, Xtn+1

) = E
[
g′(XT )∂Xtn+1

XT

∣∣∣Ftn+1

]
, (4.2.14)

where Ft denotes the σ-algebra generated by {Ws}s∈[0,t]. By definition (4.2.10),

0 =

N−1∑

`=n

(
φ(t`)− ∂xc(Xt` , t)φ(t`+1)

)
∂Xtn

Xt`

=

N−1∑

`=n

φ(t`+1)
(
∂Xtn

Xt`+1
− ∂xc(Xt` , t)∂Xtn

Xt`

)

︸ ︷︷ ︸
=0 cf. (4.2.8)

−φ(T )
∂XT

∂Xtn

+ φ(tn)
∂Xtn

∂Xtn

= −φ(T )
∂XT

∂Xtn

+ φ(tn).

(4.2.15)

Recalling that φ(T ) = g′(XT ), we see that φ(tn) = g′(XT )∂Xtn
XT . Since a(tn+1, Xtn+1)−

a(tn, Xtn) is Ftn+1
measurable and by (4.2.14), we derive that

E
[
(a(tn+1, Xtn+1)− a(tn, Xtn))∂xū(tn+1, Xtn+1)

]

= E
[
(a(tn+1, Xtn+1)− a(tn, Xtn))E

[
φ(tn+1) | Ftn+1

]]

= E
[
(a(tn+1, Xtn+1

)− a(tn, Xtn))φ(tn+1)
]
,

(4.2.16)

and by a similar argument it follows that

E

[
b2(tn+1, Xtn+1

)− b2(tn, Xtn)

2
∂xxū(tn+1, Xtn+1

)

]

= E

[
b2(tn+1, Xtn+1

)− b2(tn, Xtn)

2
∂Xtn+1

φ(tn+1)

]
.

(4.2.17)

We conclude the derivation of the density representation (4.2.9) by inserting (4.2.16) and (4.2.17)
into equality (4.2.13).

Remark 4.2.2 By a longer analysis, Szepessy et al. refines the error density to the follow-
ing representation

ρ(tn, ω) =
1

2

(
∂ta+ a∂xa+

b2∂xxa

2

)
φ(tn+1)

+

(
∂t
b2

2
+ a∂x

b2

2
+
b2

2
∂xx

b2

2
+ b2∂xa

)
∂Xtn+1

φ(tn+1)

+
b2

2
∂xxb

2 ∂
2φ(tn+1)

∂X
2

tn+1

,

cf. Theorem 3.3 of [30].

Remark 4.2.3 The use of dual functions is standard in both in optimal control theory and
in adaptive grid algorithms for ordinary and partial differential equations, cf. [1, 13].
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4.3 Adaptive Weak Solution Approximation

For the Itô SDE

dX = a(t,X)dt+ b(t,X)dWt, 0 ≤ t ≤ T,
X0 = x,

(4.3.1)

we consider the problem of minimizing the computational cost of approximating E[g(X(T )]
within a given tolerance TOL > 0. Problems of this kind arise, for example, in computing
option prices in mathematical finance, cf. [21] and [17].

Approximations of weak solutions are typically obtained using Monte Carlo (MC) meth-
ods. For SDE problems, it is possible to reduce the variance of the MC estimate, and thus
reduce the complexity, by generating solution realizations on grids of different step size.
This variance reduction technique is called Multilevel Monte Carlo (MLMC) methods and
is in some ways in some ways similar to multigrid methods for PDE problems [6]. Paper II
of this thesis develops an adaptive time step MLMC algorithm. As a preparation for that
paper, we will here give an outline of the uniform time step MLMC algorithm. But let us
first consider the single level MC method.

Single Level Weak Approximation

The single level MC method generates M numerical realizations XT (ωi) by the uniform
time step Euler method and approximates E[g(XT )] by the MC sample average

A
(
g
(
XT

)
;M
)

=

M∑

i=1

g(XT (ωi))

M
. (4.3.2)

According to the problem formulation, we seek to fulfill the weak error bound
∣∣E[g(XT )]−A

(
g
(
XT

)
;M
)∣∣ ≤

TOL at minimal computational cost. For error control, the approximation error is split into
two parts

∣∣E[g(XT )]−A
(
g
(
XT

)
;M
)∣∣ ≤

∣∣E[g(XT )]− E
[
g
(
XT

)]∣∣
+ |E[g(X(T ))]−A

(
g
(
XT

)
;M
)
| =: ET + ES ,

where ET is the time discretization error and ES the statistical error. Under appropriate
smoothness assumptions on the drift a and diffusion b, we mentioned in Section 4.2 that
weak convergence rate, i.e., the time discretization error, for the Euler method fulfills ET =
O(∆t). Further, by the CLT, the asymptotic convergence rate for the statistical error
is ES = O

(
M−1/2

)
. So to ensure that |E[g(X(T ))] − A

(
g
(
XT

)
;M
)
| = O(TOL), one

should choose ∆t = O(TOL) and M = O
(
TOL−2

)
. The computational cost thus becomes

O
(
TOL−3

)
for the single level MC method.

The Multilevel Monte Carlo Method

The MLMC method developed by Giles in [16] expanded the single level MC method by
constructing Euler method realizations of the SDE (4.3.1) on hierarchies of uniform time
grids, typically with the size relations

∆t(`) = 2−`∆t(0), ` = 0, 1, 2, . . . , L.
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Let X
(`)

t denote an Euler method realization on a grid with uniform step size ∆t(`). Then
the MLMC method approximates E[g(X(T ))] by the telescoping sum

AML
(
g
(
XT

)
;M0

)
=

M0∑

i=1

g
(
X

(0)

T (ωi,0)
)

M0
+

L∑

`=1

M∑̀

i=1

g
(
X

(`)

T (ωi,`)
)
− g
(
X

(`−1)

T (ωi,`)
)

M`
, (4.3.3)

where M0 and M` := 2−`M0, ` = 1, . . . , L, represents the number of samples generated at

respective grid levels. On each level ` in the above estimator, the realization pairs X
(`)

T (ωi,`)

and X
(`−1)

T (ωi,`) are generated by the same Wiener process sample path Wt(ωi,`), but on
different temporal grids with step size ∆t(`) and ∆t(`−1), respectively. The values of a

Wiener process sample path is first computed on the coarse grid t
(`−1)
n = n∆t(`−1), let us

write W
t
(`−1)
n

(ω), and thereafter, the values of the sample path on the finer grid t
(`)
n = n∆t(`)

is computed by Brownian bridges

W
t
(`)
2n−1

(ω) = W
t
(`−1)
n

(ω)

W
t
(`)
2n

(ω) =
W
t
(`−1)
n

(ω) +W
t
(`−1)
n+1

(ω)

2
+

√
∆t(`−1)

2
ξ, where ξ ∼ N (0, 1),

cf. Figure 4.3.
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Figure 4.3: Left plot: A sample path Wt(ω) plotted on the coarse grid W
t
(0)
n

(ω) (blue

line ) with ∆t(0) = 1/10, and its finer level pair generated by Brownian bridges, W
t
(1)
n

(ω)

(green line) with ∆t(1) = ∆t(0)/2. Right plot: Euler method numerical solutions of the
Ornstein-Uhlenbeck SDE problem dXt = 2(1−Xt)dt+ 0.2dWt, X0 = 3/2. for the Wiener

process sample path plotted in the left plot. X
(0)

tn (ω) (blue line) generated from using the

Wiener increments from the path W
t
(0)
n

(ω) and X
(1)

tn (ω) (green line) generated using Wiener

increments from the path W
t
(1)
n

(ω)

The MLMC method has the consistent estimator

E
[
AML

(
g
(
XT

)
;M0

)]
= E

[
g
(
X

(L)

T

)]
,

and since sample paths are i.i.d.

E
[(
g
(
X

(`)

T

)
− g
(
X

(`−1)

T

))(
g
(
X

(m)

T

)
− g
(
X

(m−1)

T

))]
= 0, when ` 6= m.
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The strong convergence E

[(
g(X

(`)

T )− g(XT )
)2
]

= O
(
∆t(`)

)
, cf. Section 4.2, then further

implies that

Var
(
AML

(
g
(
XT

)
;M0

))
=

Var
(
g
(
X

(0)

T

))

M0
+

L∑

`=1

Var
(
g
(
X

(`)

T

)
− g
(
X

(`−1)

T

))

M`

= O
(
M−1

0 +

L∑

`=1

2−`M−1
`

)
= O

(
LM−1

0

)
.

(4.3.4)

Giles showed that by choosing L = O
(
log(TOL−1)

)
and M0 = O

(
LTOL−2

)
, one obtains

∣∣E[g(XT )]−AML
(
g
(
XT

)
;M0

)∣∣ ≤ O(TOL)

at the computational cost

O
(

L∑

`=0

M`

∆t(`)

)
= O

((
log(TOL−1)

)2
TOL−2

)
.

This might be shown by splitting MLMC error into two contributions

∣∣E[g(XT )]−AML
(
g
(
XT

)
;M0

)∣∣ ≤
∣∣∣E
[
g(XT )− g

(
X

(L)

T

)]∣∣∣

+
∣∣∣E
[
g
(
X

(L)

T

)]
−AML

(
g
(
XT

)
;M0

)∣∣∣ =: ET + ES .

When L = O
(
log(TOL−1)

)
and M0 = O

(
LTOL−2

)
, the weak rate of convergence for the

Euler method implies that ET = O(TOL), and by the CLT and (4.3.4), one may derive that
ES = O(TOL).

With Giles’ MLMC method, the computational cost is thus improved from O
(
TOL−3

)

for the single level MC method to O
(
(log(TOL−1))2TOL−2

)
. The cost improvement is due

to the multilevel variance reduction which is similar to control variates, cf. Section 3.2.
That is, the multilevel average operator AML

(
g
(
XT

)
;M0

)
has lower variance than the single

level average operator A
(
g
(
XT

)
;M
)
, and this implies that fewer samples have to be used

to control the statistical error for the MLMC method than for the single level MC method.

Remark 4.3.1 The theory presented for 1-dimensional SDE problems in this chapter gen-
eralizes to the n-dimensional setting, cf. [8, 22, 16]. MC methods for weak approximations
of SDE do in fact become more interesting in higher dimensions due to the dimension
independent convergence rate of MC methods, cf. Section 3.1. Lower dimensional weak
approximation problems are often more efficiently solved by solving the Kolmogorov back-
ward partial differential equation relating to the utility function u(t, x) = E[XT |Xt = x],
cf. (4.2.11).



Chapter 5

Wireless Channel Modeling

Wireless signal transmission is realized through electromagnetic radiation from transmitter
to receiver, and the signal received is described by electromagnetic field at the receiver as a
function of time. In principle, a numerical solution of Maxwell’s equations with well resolved
scattering boundary would yield the electrical field at the receiver and everywhere around
it. But, for standard Modeling scenarios where the communication carrier frequency is
of order 109Hz and the wavelength consequently is of order centimeters, localization of the
scattering boundary would have to be made to the order of centimeter accuracy to obtain an
acceptable electrical field solution. Since this typically implies the need for resolving billions
of boundary points, determining the electrical field through solving Maxwell’s equations is
considered too costly both from a boundary measurement and computational perspective.

Multipath Fading Channel (MFC) models give a more cost efficient, but less accurate
model of the received signal than Maxwell’s equations by superpositioning a large number
of incoming signal wave paths. In Paper I of this thesis, we study an MFC model with noise
introduced by scatterers flipping on and off. To prepare the reader for the contents that
paper, we will here give a short introduction to MFC models and some more general signal
theory concepts.

5.1 The Multipath Fading Channel

An MFC model approximates the output signal of a wireless channel by a superposition
of a large number M of incoming signal wave paths, cf. Figure 5.1. With Xt denoting the
baseband input signal, the time invariant MFC model has the baseband output representa-
tion

Zt,M =

M∑

j=1

a(αj)e
−i2πfcτ(αj ,t)Xt−τ(αj ,t), (5.1.1)

where fc denotes the carrier frequency, αj the horizontal angle of arrival for the jth wave
path, and a(αj) and τ(αj , t) its amplitude and time delay function, respectively.

The terminology baseband and passband refers to the frequency modulation of the
signal in question. Let F(·) denote the Fourier transform. Then the baseband input signal
Xt has the spectral representation F(X·)(f) ∈ C([−W,W ]). The spectral representation is
centered at origo, band-limited to [−W,W ], and it does not have to be symmetric w.r.t. f ;
the baseband signal Xt may be complex-valued. Before transmission the baseband signal

31
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Moving receiver

Transmitter

Scattering objects

Figure 5.1: Illustration of typical scattering scenario considered for the MFC model. Lines
between the transmitter, scatterers and the receiver represent different radio wave paths.

Xt is modulated to the carrier frequency fc by the procedure

X̃t = F−1

(F(X·)(f − fc) + F(X·)(−f − fc)√
2

)
(t),

or, in time domain, X̃t =
√

2Re
[
Xt exp(i2πfct)

]
. The transmitter transmits the real-valued

passband input signal X̃t, and the receiver receives the passband output signal

Z̃t =

∫

R
H̃(s, t)X̃t−s ds (5.1.2)

where the passband channel response for MFC channels is given by

H̃(s, t) :=

M∑

j=1

a(αj)δ(s− τ(αj , t)), (5.1.3)

and δ(·) denotes the Dirac delta function. To extract the information of the received signal,
the passband output signal is demodulated to the baseband output signal

Zt = F−1
(√

2F(Z̃·)(f − fc)1|f |<W
)

(t).

Frequency modulation makes it possible to operate many channels simultaneously in the
same physical area by transmitting at different carrier frequencies (for example, FM radio
broadcasting with many active channels), but the information each channel transmits is
contained and most simply analyzed as a baseband signal. In fact, by introducing the
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Figure 5.2: The modulation and demodulation taking place when transmitting data in
a frequency modulated wireless channel. The baseband input is not drawn equal to the
baseband output in the figure, i.e., F(Z·) 6= F(X·); this is to visualize that some signal
information is lost during transmission.

baseband channel response

H(s, t) :=

M∑

j=1

a(αj)e
−i2πfcτ(αj ,t)δ(s− τ(αj , t)), (5.1.4)

it is possible to represent the output baseband as a function of the input baseband

Zt =

∫

R
H(s, t)Xt−s ds, (5.1.5)

cf. [32]. This representation equals (5.1.1), avoids dealing with the passband, and it shows
that given the baseband input signal, the the output signal is described by the baseband
channel response.

In Paper I, we study the setting with baseband input signal Xt := 1. This setting gives
the baseband output signal

Ztm =

M∑

j=1

a(αj)e
−i2πfcτ(αj ,tm),

which is closely related to the discrete channel response.
Although the wireless channel (5.1.1) is presented in a continuum setting, real life chan-

nels signal processing is performed on discrete time steps with all wave paths arriving at the
receiver within a sample period ∆t are averaged to become the received value for that time
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sample, cf. [32]. In the transition from continuum to discrete, the Nyquist-Shannon Sam-
pling Theorem describes how small the sample period ∆t have to be to resolve a continuous
signal Xt.

Theorem 5.1.1 (Nyquist-Shannon Sampling Theorem [33]) Suppose a function Xt

contains no frequencies higher than B Hertz. Then it is completely determined by giving its
ordinates at a series of points spaced 1/(2B) seconds apart.

Remark 5.1.2 For more on the ideas presented in this wireless channels, see [32] and [11].

Clarke’s Model

Clarke’s model is a famous MFC model which was motivational for our work, cf. [10]. It
considers the superposition of M wave paths with amplitudes a = 1/

√
M ;

Zt,M =
1√
M

M∑

m=1

e−i(2πfcv(cos(αm)t/c+θm)). (5.1.6)

Here, apart from the variables already introduced in Section 5.1, c is the speed of light,
{θm}Mm=1 are i.i.d. initial phase shifts uniformly distributed in [0, 2π) and the scatterer
angle of arrivals {αm}Mm=1 are distributed according to the scatterer angle density p(α)
which is independent from the initial phase shift distribution. The delay function is on
the form τ(α, t) = −fc v cos(α)t/c and the factor ∂tτ(α, t) = −fc v cos(α)/c is the Doppler
shift under the assumption that the receiver moves in the direction (1, 0). The Doppler
shift describes the change of frequency of a wave for a receiver moving relative to the wave
transmitter (the tone of the siren of a passing ambulance is a classical illustration of this
phenomenon).

Among the functions used to analyze channel properties is the autocorrelation func-
tion and the Power Spectral Density (PSD). The autocorrelation AM (t) := E

[
Zt,MZ

∗
0,M

]

describes the correlation between Zt,M and Z0,M , and for Wide Sense Stationary (WSS)
signals, the PSD is the Fourier transform pair of the autocorrelation function. Let us state
this formally.

Definition 5.1.3 (Wide Sense Stationary Random Process) A random process Zt is
WSS if there is a function g such that

E[Zt̄,MZ
∗
t,M ] = g(|t̄− t|) for any t̄, t ∈ R.

Theorem 5.1.4 (Wiener-Khintchine Theorem [11, p. 49] ) The power spectral den-
sity and autocorrelation of a wide sense stationary process are Fourier transform pairs.

Considering the scenario with scatterer angle density p(α) = (2π)−1, Clarke noted that
for his model the autocorrelation function AM (t) converges to the zeroth-order Bessel func-
tion of the first kind, J0(2πfcvt/c), as M →∞, and that its PSD then is on the form

S(f) =

{
c

π
√

(vfc)2−(cf)2
|f | < vfc/c

0 |f | ≥ vfc/c,
(5.1.7)

cf. Figure 5.3.
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Figure 5.3: Left plot: The autocorrelation function for Clarke’s model with azimuth den-
sity p(α) = (2π)−1, v = 5m/s and fc = 1.8775GHz. Right plot: The power spectral
density of Clarke’s model, often called Jakes’ spectrum with the same model conditions as
for the left plot.

MFC Model with Flipping Scatterers

Due to local shadowing by moving cars, pedestrians, leaves blowing in the wind, weather
conditions etc. scatterers can flip from being atcive to passive and vice versa. Seeking to
include scattering objects in our MFC model, we introduce the amplitude function as a
stochastic process a(α, t) which flips on when it changes value from 0 to a+(α) ≥ 0 and
off when it changes values oppositely, cf. Figure 5.4. It is here assumed that the mapping

− Scatterer on

− Scatterer off

V

t = 0

a(  ,t)α

− Scatterer on

− Scatterer off

V

t = 0.1s

a(  ,t)α

Figure 5.4: Moving receiver in the center of a circular scattering environment with scatterers
flipping on and off as time goes.

a+ : Ω → R+ is smooth; it might for example be constant or depend on the distance from
scatterer to the receiver. The flip process is taken to be Poisson distributed with flip rate
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constant C:

P (a(α) flips k times on time step ∆t) =
(C∆t)k exp(−C∆t)

k!
,

where flips are independent from the scatterers’ random initial phase shifts.
With the above defined amplitude function and the set of arrival angles {αj}Mj=1 dis-

tributed according to a scatterer density p(α), we propose the following flip process extension
of Clarke’s model

Zt,M =
1√
M

M∑

m=1

a(αm, t)e
−i2πfcv cos(αm)t/c+θm(t). (5.1.8)

Realizations of (5.1.8) is then generated by generating scatterer angles {αj}Mj=1 and i.i.d.

initial phase shifts {θm}Mm=1, generating sample paths of the stochastic process amplitudes
a(αm, t), and summing contributions according to (5.1.8). The left plot of Figure 5.5 illus-
trates the difference between an MFC signal realization envelope generated with C = 0 and
one with positive flip rate. The positive flip rate gives the signal envelope more small scale
temporal noise and less smoothness than what is found in the non-flipping signal envelope.
The right plot of Figure 5.5 is a measured signal envelope from Ericsson Labs which shows
that the measured signal has a small scale noise contribution similar to the MFC signal
realization with positive flip rate.
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Figure 5.5: Left plot: Two computer generated signal realizations of the MFC model
generated with same random seed initialization. Both realizations are generated with the
modeling parameters fc = 1.8775GHz, v = 6.944m/s, a+(α) = 2/

√
M , but the flip rate

separates the realizations with the red dashed line corresponding to a realization having
C = 0, and the whole line to a realization with C = 5. Right plot: Measured urban
environment signal envelope from Ericsson Labs. The carrier frequency and receiver speed
is identical to the corresponding values for the left plot.

5.2 From MFC Models to Gaussian Processes

In Paper I, we show that under some assumptions, the stochastic process Zt,M of the
MFC model (5.1.8) converges to a Gaussian process as the number of included wave paths
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M → ∞. Here we will give a short description of Gaussian processes, starting with the
definition.

Definition 5.2.1 (Gaussian Process) A Gaussian process is a stochastic process {Zt}t∈[0,T ),
Zt ∈ Rn, for which any finite length sample vector Z = (Zt1 , Zt2 , . . . , Ztn) with 0 ≤ t1 ≤
t2 ≤ . . . ≤ tn is multivariate normal distributed.

A numerical realization of a Gaussian process on a set of times {tj}Nj=1 can be created by
first computing the process’ covariance matrix,

Ki,j = E[ZtiZ
∗
tj ], i, j ∈ {1, 2, . . . , N}

and setting

Zti =

N∑

j=1

√
Ki,jχj , (5.2.1)

where
√
K is the square root of K in the sense that it fulfills K =

√
K
√
K
H

(for example
the lower diagonal Cholesky factorization), and χ1, χ2, . . . , χN is a set of i.i.d. standard
normal distributed r.v.

Example 5.2.2 (The Wiener Process) The Wiener process Wt is a Gaussian process
which has the increment property Wt2 −Wt1 ∼ N(0, |t2 − t1|) and thereby the covariance
matrix

Ki,j = E[WtiWtj ] = E[W 2
min(ti,tj)

] = min(ti, tj), (5.2.2)

cf. Section 4.1. For the Wiener process, the structure of the Cholesky factorized
√
K is

particularly simple:

√
K =




√
t1 0 . . . 0
√
t1
√
t2 − t1

. . . 0
...

...
. . . 0√

t1
√
t2 − t1 . . .

√
tN − tN−1



. (5.2.3)

This is fortunate because it makes the computational cost of generating a Wiener process
realization {Wtj}Nj=1 to O(N) which compares favorably to O

(
N2
)

for general Gaussian
process realizations. The Wiener process realization cost O(N) may be concluded from the
scheme (5.2.1) which when

√
K is given by (5.2.3) becomes

Wtj+1 = Wtj +
√
tj+1 − tjχj , χj ∼ N (0, 1).

Generating signal realizations from an MFC model is generally computationally costly,
in particular in more realistic settings when a high number of wave paths M are included in
your model. Comparatively, the analysis and computational experiments of Paper I indicate
that generation of Gaussian process signal realizations are substantially less costly.





Chapter 6

Classical and Quantum Mechanics

For particles at human scale, motion is accurately described by classical mechanics, while
for particles at atomic scale, motion is described by a quantum mechanics. In settings with
many particles, quantum mechanical computations are very difficult, and, often, the best
approximations one can make are by means of classical mechanics. Molecular dynamics is
a classical mechanics approximation of the quantum scale motion of electrons and nuclei
in molecular bindings, and in Paper IV of this thesis we study how well the motion of
electrons and nuclei are approximated by molecular dynamics when the nucleus-to-electron
mass ratio becomes large. In this chapter we give an outline of some classical and quantum
mechanical concepts that will be useful when reading Paper IV.

6.1 Classical Mechanics

The motion of a single particle in a d-dimensional potential V : Rd → R and with mass M
is described by the force acting on the particle; F = −∇V . This yields the equations of
motion

q̇ = v and M v̇ = −∇V, (6.1.1)

where q(t) and v(t) represents the position and velocity of the particle, respectively. A
preserved quantity during this motion is the energy E = M |v|2/2 + V (q) which is easily
verified through differentiating:

Ė = M v̇ · v +∇V · q̇
(6.1.1)︷︸︸︷

= 0. (6.1.2)

Introducing the Hamiltonian H(q,p) = |p|2/2M + V (q) with the momentum p = Mv,
it is often more convenient to represent the equations of motion on the Hamiltonian form

q̇ = ∇pH and ṗ = −∇qH. (6.1.3)

We also note that the Hamiltonian is preserved since by construction H = E.
For a system of N particles with the ith particle position denoted qi ∈ Rd and with

mass Mi, the force fields acting on each particle can often be divided into the external
potential Vi : Rd → R, and the potentials for the interaction between ith and jth particle
Vij(qi − qj). Introducing the Hamiltonian

H(q,p) =

N∑

i=1

|pi|2
2Mi

+ Vi(qi) +
∑

i<j

Vij(qi − qj),

39
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where q = (q1,q2, . . . ,qN ) ∈ RdN and, similarly, p ∈ RdN , the equations of motion for N
particles take the familiar form

q̇i = ∇piH and ṗi = −∇qiH, for i = 1, 2, . . . , N. (6.1.4)

The term particle is used in a relative sense in our above outline: we might be dealing with
stars and planets or grains of sand, conditioned that the reduction to mass points makes
sense. Let us present two examples of Hamiltonian dynamics.

Example 6.1.1 (The harmonic oscillator) The simple harmonic oscillator is 1-dimensional
mass-spring system which when displaced from its equilibrium position experiences a restor-
ing force F = −Mkq, with k ∈ R+ being a spring constant and q ∈ R the displacement from
equilibrium. The Hamiltonian for this dynamics becomes

H(q, p) =
p2

2M
+Mkq2/2.

Example 6.1.2 (N-body problem) Newton explained the observed planetary motion by
a negligible external field and interplanetary forces Fij = −GMiMj(qi − qj)/|qi − qj |3,
where G is a gravitational constant. Considering the setting with N planets, Newton’s
interplanetary forces translate to the interaction potentials

Vij(qi − qj) = − GMiMj

|qi − qj |
, i, j ∈ {1, 2, . . . , N} and i 6= j,

and the negligible external potentials to Vi = 0, for i = 1, 2, . . . , N . Consequently, the
N -body equations of motion are implicitly given by (6.1.4) with the Hamiltonian

H(q,p) =

N∑

i=1

|pi|2
2Mi

−
∑

i<j

GMiMj

|qi − qj |
.

Evolution of States

For a given N -particle system, the set of possible (q,p) restricted to some subset of RdN ×
RdN is referred to as the phase space, and the vector (q(t),p(t)) at a given time t is
referred to as the particle system’s state at time t. Considering experiments which involve
measurements, we will extend the notion of states to densities over the phase space ρ(q,p)
with the restriction that ρ is non-negative. A pure state (q̃, p̃) may then be represented on
density form by dirac functions ρ(q,p) = δ(q− q̃,p− p̃). For a given state ρ, the expected
value of an observable, like the total energy H, is given by

Eρ[H] =

∫
H(q,p)ρ(q,p) dq dp∫

ρ(q,p) dq dq
.

A convex combination of states also becomes a state. E.g., given two states ρ1 and ρ2, the
convex combination ρ3 = αρ1 + (1− α)ρ2 is also a state.

The motion of (q,p) satisfies the Hamiltonian dynamics (6.1.4), and this implies that
the density ρ(q,p) is convected by the flow (q̇, ṗ). The convection makes it practical to
consider the density time dependent in the following sense

ρ(q(t),p(t); t) = ρ(q(0),p(0)). (6.1.5)
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This is often referred to as the Liouville picture, cf. [15]. For any material region R(t)
of phase space convected by the flow (q̇, ṗ), the Liouville picture (6.1.5) straightforwardly
implies that

d

dt

∫

R(t)

ρ(q,p; t) dq dq = 0,

and by analysis involving time differentiation of the Jacobian determinant of ∂(q,p)/∂(q(0),p(0)),
one may further derive the transport theorem

d

dt

∫

R(t)

ρ(q,p; t) dpdq =

∫

R(t)

∂tρ+∇q,p · ((q̇, ṗ)ρ) dq dp, (6.1.6)

cf. [27]. For any fixed region D, there is at any moment in time a coinciding material volume
R(t), and combining this property with (6.1.5) and (6.1.6), yields the following density PDE

∂tρ+∇q,p · ((q̇, ṗ)ρ) = 0.

Furthermore, the Hamiltonian dynamics (6.1.4) implies that

∇q,p · (q̇, ṗ) =

N∑

i=1

(∇qi · ∇pi −∇pi · ∇qi)H = 0, (6.1.7)

so that we end up with the following PDE for ρ(q,p; t)

∂tρ+

N∑

i=1

∇piH · ∇qiρ−∇qiH · ∇piρ = 0 (6.1.8)

with initial condition ρ(q,p; 0) = ρ(q,p). This is often referred to as Liouville’s theorem.

Preservation of Volume

For Hamiltonian dynamics, the phase space volume is preserved. This might be verified
by considering the material region R(t) convected by the Hamiltonian flow (q̇, ṗ) with the
evolving phase space volume

V (t) =

∫

R(t)

1 dq dp.

Equation (6.1.6), in this case with ρ = 1, and (6.1.7) implies that

V̇ (t) =

∫

R(t)

∇q,p · (q̇, ṗ) dq dp = 0.

The preservation of phase space implies that if a fluid convected by Hamiltonian dynamics
is expanding in q-space, then it is contracting in p-space, and vice versa.

Symplectic Numerical Methods

The word symplectic derives from the Ancient Greek συµπλεκτικóσ which is a composite
of “braided” and “together”. In mathematics, it was introduced by Herman Weyl in 1939
to describe the group of unitary transformations of C2n that for vectors ξ = (ξq, ξp), η =
(ηq, ηp) preserves the operation

n∑

i=1

(ξpi )∗ηqi − (ξqi )∗ηpi , (6.1.9)
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where ξp, ξq, ηp, ηq ∈ Cn are the p and q components of the vector. Introducing the matrix

J =

[
0 I
−I 0

]
,

with I the n-dimensional identity matrix, the preservation of the operation (6.1.9) is equiv-
alent to the preservation of ξHJη, and restricting ourselves to R2n, we may with the aid of
J define linear and differentiable symplectic maps as follows.

Definition 6.1.3 (Symplectic linear map, cf. [19]) A linear map A : R2n → R2n is
called symplectic if

ATJA = J

Definition 6.1.4 (Symplectic differentiable map, cf. [19]) A differentiable map g :
U → R2n, (where U ⊂ R2n is an open set) is called symplectic if the Jacobian matrix
g′(q,p) is everywhere symplectic, i.e., if

g′(q,p)TJg′(q,p) = J.

For any Hamiltonian and fixed t, the flow mapping φt(p(0), q(0)) = (p(t), q(t)) is sym-
plectic, cf. [19]. This property opens an alternative proof of the flow φt: Symplecticity
means that

φ′t(q,p)TJφ′t(q,p) = J.

By observing that det(J) = (−1)2n = 1, det(φ′0(q,p)) = 1 and assuming the Hamiltonian
is sufficiently smooth to make φt a continuous function with respect to t, we conclude that
det(φ′t(q,p)) = 1 for all valid times. This implies conservation of volume.

Symplecticity is also sought property for numerical integrators of the Hamiltonian dy-
namics.

Definition 6.1.5 (Symplectic one step-method, cf. [19]) A numerical one step method
(pn+1, qn+1) = φh((pn, qn)), is called symplectic if whenever applied to a smooth Hamilto-
nian system, (

∂(pn+1, qn+1)

∂(pn, qn)

)T
J

(
∂(pn+1, qn+1)

∂(pn, qn)

)
= J.

For Hamiltonian systems, symplectic numerical integrators preserve the phase space
volume perfectly and generally preserve energy approximately even when integrating over
long time intervals. These properties are often highly important to preserve; in the case
of planetary motion, for example, the preservation of the energy ensures that planets stay
on orbit. Let us illustrate by an example comparing the performance simplest one step
method, the forward Euler method

(qn+1, pn+1) = (qn + ∆t∂pH(pn, qn), pn −∆t∂qH(pn, qn)) ,

with the simplest symplectic one step method, the symplectic Euler method

(pn+1, qn+1) = (qn + ∆t∂pH(pn+1, qn), pn −∆t∂qH(pn+1, qn)) .

Example 6.1.6 (Numerical solutions for the Harmonic oscillator) We consider the
Harmonic oscillator of Example 6.1.1 with M = 1, k = 1 and the Hamiltonian H =
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p2/2 + q2/2. For this problem, the forward Euler and symplectic Euler scheme take the
following respective forms

(qn+1, pn+1) = (qn + ∆tpn, pn −∆tqn) , (forward Euler),

(qn+1, pn+1) = (qn + ∆t(pn −∆tqn), pn −∆tqn) , (sympltectic Euler).

With the initial condition (q(0), p(0)) = (1, 0), the preservation of the Hamiltonian implies
that the dynamics should fulfill H(q, p) = 1/2 for any t, and one may further derive that
q(t) = cos(t) is the solution of this problem. The comparison of the methods given in Fig-
ure 6.1 shows that while the volume is preserved and the energy is approximately preserved by
the symplectic Euler method, even for large time steps, the forward Euler method solutions
have increasing material regions and energy.

6.2 Quantum Mechanics

Quantum mechanics is a description of the mechanics of particles on atomic scale. Quantum
mechanics differ from classical mechanics in the following sense:

• The state of a particle in classical mechanics is described by position and momentum
(or, if extending notions, by a density) and the state evolves deterministically.

• The state of a particle in quantum mechanics is described by the amplitude of the
complex-valued wave function Φ(x, t) solving the time-dependent Schrödinger equa-
tion

i∂tΦ =

(
− 1

2M
∆ + V (x, t)

)
Φ.

Furthermore, since it is impossible to obtain perfect information on the state of
a particle (an implication of Heisenberg’s uncertainty principle, cf. [18]), whether
or not a quantum state evolves deterministically is a question never to be verified
experimentally—probably. . .

Derivation of Schrödinger’s Equations

Around the beginning of the 1900s, various experiments, such as the the slit experiment(s),
cf. [15], showed that elementary particles like photons and electrons in addition to having
particle properties have wave-like diffraction properties. This wave-particle duality led
to the conjecture that elementary particles both have particle attributes such as mass,
charge, and spin, and wave attributes such as frequency and, consequently, that there are
two equivalent expressions for the total energy. Classical mechanics states that the total
energy for a single particle is given by E = |p|2/2m + V (x, t) with p,x ∈ R3. For waves,
work by Planck, Einstein, and de Broglie led to the conjecture an elementary particle with
momentum p and energy E in some sense corresponds to a wave

Φ(x, t) = φ(x, t)ei(k·x−2πft) (6.2.1)

with wave vector k ∈ R3 and frequency f for which the following relations hold

p = hk, |k| = 2πf/c, and E = |p|c = h|k|c = ~f. (6.2.2)

Here c denotes the speed of light, h ≈ 1.05 × 10−27erg-sec denotes Planck’s constant, and
~ := h/(2π). By the relations (6.2.2), the wave function (6.2.1) may be represented as
follows

Φ(x, t) = φ(x, t)ei(p·x−Et)/~. (6.2.3)
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Figure 6.1: Numerical solutions of the Harmonic oscillator problem of Example 6.1.6. The
top four plots are numerical solutions with ∆t = 2π/32 ≈ 0.2 integrated on the interval
t ∈ [0, 2π) and consist of: phase space solution (p(t), q(t)) (upper left), (t, q(t))(upper right),
the energy (t,H(p(t), q(t)) (lower left), anti-clockwise flow simulation of phase space ball
material regions (lower right). The bottom four plots are analogous numerical solutions
with ∆t = 2π/64 ≈ 0.1.

Supposing the amplitude φ is smooth and slowly varying compared to the scales O(f/(hc))
and O(E/h) the wave function (6.2.3) approximately fulfills the relation

(i~∂t + ~2 ∆x

2m
)Φ = (E − |p|

2

2m
)Φ. (6.2.4)
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By coordinate transformations t→ t/~, x→ x/~ and replacing E with the classical mechan-
ics total energy |p|2/2m+V (x, t), equation (6.2.4) becomes the time-dependent Schrödinger
equation

i∂tΦ =

(
− 1

2m
∆ + V (x, t)

)
Φ.

Time-Independent Schrödinger Equation

Assuming the potential is time-independent, we may argue as above using the wave ansatz (6.2.3)
to observe that i~∂tΦ = EΦ and to further derive the time-independent Schrödinger equa-
tion (

− 1

2m
∆ + V (x)

)
Φ = EΦ.

Solutions of the time-independent Schrödinger equation describe particle motions with pre-
served total energy—steady state solutions. The time-independent Schrödinger equation
requires no initial data Φ(·, 0), and in this sense it is a more fundamental PDE than the
time-dependent Schrödinger equation. In what follows, we will restrict ourselves to the
time-independent Schrödinger equation.

Many Particle Schrödinger Equation

Considering a molecule with N nuclei and n electrons, the time-independent Schrödinger
equation takes the form

(
−

N∑

i=1

1

2Mi
∆Xi −

n∑

i=1

1

2m
∆xi + V (X,x)

)
Φ(X,x) = EΦ(X,x),

where X = (X1,X2, . . . ,XN ) ∈ R3N and x = (x1,x2, . . . ,xn) ∈ R3n denote the nuclear
and electron positions, respectively, Mi denotes the mass of the i-th nucleus, and m ≈
9.11× 10−31kg the electron mass. Supposing all nuclei have the same mass, i.e., Mi = M1

∀i, and introducing the coordinate transformations (X,x)→ √m(X,x) and the short hand

notation ∆X :=
∑N
i=1 ∆Xi

, we obtain the time-independent Schrödinger equation on the
form studied in paper IV:



− 1

2M
∆X−

n∑

i=1

1

2
∆xi + V (X,x)

︸ ︷︷ ︸
=:V(X,x)




Φ(X,x) = EΦ(X,x), (6.2.5)

with solutions sought in a Hilbert subspace of L2(R3N × R3n) with symmetry condi-
tions based on the Pauli exclusion principle for bosons and fermions, cf. [23]. In (6.2.5),
M = M1/m represents the nucleus-to-electron mass ratio which ranges from approximately
1836 for the 1H Hydrogen isotope1 (corresponding to the proton-to-electron mass ratio) to
approximately 244 × 1836 for the Uranium isotope 244U, 244U being the heaviest known
isotope to exist on earth in its natural form.

1Isotope refers to the number of protons and neutrons in the nucleus of a chemical element.



46 CHAPTER 6. CLASSICAL AND QUANTUM MECHANICS

Quantum States

Each solution of the time-independent Schrödinger equation with energy E ∈ R corresponds
to a quantum state for the particle at the given energy level. That is, for any given solution
with an energy E, we assume the scaling

∫∫
|Φ(X,x)|2 dX dx = 1,

and that |Φ|2 is the probability distribution of the particle positions (X,x) in the state Φ.
For any observable, i.e., self-adjoint operators A on L(R3N × R3n), the expected value is
then given by

EΦ[A] =

∫∫
Φ(X,x)∗A(X)Φ(X,x) dX dx.

In paper IV, we consider the subset of observables consisting of self-adjoint operators on
the nuclei coordinates L2(dX). An example of an observable is the x-position of nucleus
coordinate i: A(X) = Xi,1.

For solutions of the time-independent Schrödinger equation a particular kind of linearity
is observed: if Φ1 and Φ2 are solutions of (6.2.5) for a given energy E (so called degenerate
solutions), then any linear combination of these solutions also solves (6.2.5) with the energy
E. That is,

(
−

N∑

i=1

1

2M
∆Xi − V

)
(a1Φ1 + a2Φ2) = E(a1Φ1 + a2Φ2), ∀a1, a2 ∈ C

The WKB Ansatz

In Paper IV, we compare the density generated by a state of the Schrödinger equation to
a density generated by so called Born-Oppenheimer molecular dynamics. In what follows,
we will give a short description of the mentioned densities, and some of the tools used to
derive them, starting with the WKB ansatz.

The WKB ansatz assumes that solutions of the time-independent Schrödinger equa-
tion (6.2.5) are on the form

Φ(X,x) = φ(X,x)ei
√
Mθ(X), (6.2.6)

where the amplitude φ : R3N × R3n → C and the phase θ : R3N → R are smooth functions
varying on a much slower scale than the mass ratio M . The WKB function is a solution
of (6.2.5) provided that

0 =

(
−1

2
∆X + V(X,x)− E

)
φ(X,x)ei

√
Mθ(X)

=


(

1

2
|∇θ|2 + V0 − E
︸ ︷︷ ︸

=:I

)φ

− 1

2M
∆Xφ+ (V − V0)φ− i

M1/2
(∇Xφ · ∇Xθ +

1

2
φ∆Xθ)

︸ ︷︷ ︸
=:II


 ei

√
Mθ(X).

(6.2.7)
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Here the term

V0(X) :=
〈φ(X, ·),V(X, ·)φ(X, ·)〉
〈φ(X, ·), φ(X, ·)〉 ,

with 〈·, ·〉 representing the electron coordinates inner product of complex-valued functions
in L2(R3n), is introduced so that setting I = 0 gives a well defined limit as M → ∞ (see
Paper IV, p. 9 for details). Setting I = 0 in (6.2.7) gives a (Eikonal) Hamilton-Jacobi PDE
for the phase with characteristics given by the Hamiltonian system

Ẋ = ∂PHS , Ṗ = −∂XHS , and HS(X,P) =
1

2
|P |2 + V0(X)− E,

with P(t) = ∇Xθ(X(t)). Thereafter, setting II = 0 in (6.2.7), we derive in Theorem 3.1 of
Paper IV that under some conditions, the phase fulfills the equation

φ(X(t),x) =
ψ(X(t),x)

G(X(t))
,

where ψ(X,x) is the solution of the time-dependent Schrödinger equation

iM−1/2 d

dt
ψ(X(t),x) =

(
V(X(t),x)− V0(X(t))

)
ψ(X(t),x)− G(X(t))

2M
∆X

ψ(X(t),x)

G(X(t))
,

and G : R3N → R is implicitly defined by the integrating factor

d

dt
logG(X(t)) =

1

2
∆θ(X(t)).

Supposing the quantum state generated from the above equations for the phase and ampli-
tude is well defined, the WKB ansatz (6.2.6) takes the form

Φ(X,x) = φ(X,x)ei
√
Mθ(X) =

ψ(X,x)

G(X)
ei
√
Mθ(X)

and the nuclear coordinate density becomes

ρS(X) =
G−2(X)〈ψ(X, ·), ψ(X, ·)〉
‖G−1ψ‖L2(R3N×R3n)

.

We next present an approximation of the density ρS generated by Born-Oppenheimer
molecular dynamics.

The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation of solutions of the time-independent Schrödinger
equation (6.2.5) consists of the following two steps:

1. Clamp the nuclear coordinate and neglect the nuclear kinetic energy in the equa-
tion (6.2.5) and solve the remaining electron coordinate equation

V(X, ·)ψ0(X, ·) = λ0(X)ψ0(X, ·). (6.2.8)

Here λ0(X) represents fixed eigenvalue function2 of the operator V(X, ·) which we
assume is spectrally separated from other eigenvalues. This equation is generally
solved approximately.

2Often referred to as a potential energy surface.
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2. Reintroduce the kinetic energy into the equation and approximately solve the nuclear
coordinate equation

(
1

2M
∆X + λ0(X)

)
Φ(X) = EΦ(X). (6.2.9)

The separation of nuclear and electron coordinates in the Born-Oppenheimer approximation
is motivated from the assumption that the relatively speaking heavy nuclei move at a much
slower speed than the light electrons (a valid assumption if nuclear and electron momenta
are of comparable magnitude).

To motivate the Born-Oppenheimer molecular dynamics we first state the ansatz

ΦBO(X,x) = φBO(X,x)ei
√
MθBO(X),

where, as before, we assume that the amplitude φBO : R3N × R3n → C and phase θBO :
R3N → R are smooth functions which vary on a much slower scale than M . To conform
with step 1. of the Born-Oppenheimer approximation, we assume that the electrons are
in an eigenstate ψ0(X, ·) of (6.2.8) with eigenfunction λ0(X) so that the amplitude takes
the form φBO(X,x) =

√
ρBO(X)ψ0(X,x) with unknown density function ρBO : R3N → R.

Inserting ΦBO into equation (6.2.7), yields

0 =

(
1

2M
∆X + λ0(X)− E

)
ΦBO

=


(

1

2
|∇θBO|2 + λ0 − E
︸ ︷︷ ︸

=:I

)φBO

− 1

2M
∆XφBO −

i

M1/2
(∇XφBO · ∇θBO +

1

2
φBO ∆θBO)

)
ei
√
MθBO(X).

(6.2.10)

We approximately solve this equation by truncating the O
(
M−1/2

)
terms and considering

the remaining the Eikonal equation of term I:

1

2
|∇θBO(X)|2 + λ0(X)− E = 0,

whose characteristics are given by the Hamiltonian system

Ẋi = ∂PiHBO(X,P), Ṗ = −∂XiHBO(X,P),

where HBO(X,P) :=

N∑

i=1

|Pi|2
2M

+ λ0(X), and P(t) = ∇XθBO(X(t)).
(6.2.11)

To determine the density ρBO for the nuclear coordinates described by the dynamics (6.2.11),
we first observe that conservation of mass implies that

∇ · (ρBO(X)∇θBO(X)) = 0.

By the conservation of mass and the dynamics (6.2.11) we derive the ordinary differential
equation

d

dt
ρBO(X(t)) = ∇ρBO(X(t)) · ∇θBO(X(t)) = −ρBO(X(t))∆θBO(X(t)).
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Introducing the integrating factor

d

dt
logGBO(X(t)) =

1

2
∆θBO(X(t)),

we obtain the following relation for the Born-Oppenheimer molecular dynamics density

ρBO(X) =
C

G2
BO(X)

.

The main study of Paper IV is the comparison of the densities

ρS(X) =
G−2(X)〈ψ(X, ·), ψ(X, ·)〉
‖G−1ψ‖L2(R3N×R3n)

and ρBO(X) =
C

G2
BO(X)

,

and we end this chapter by noting that Theorem 7.1 of Paper IV we prove that under some
assumptions

∫

R3N

g(X)ρBO(X) dX =

∫

R3N

g(X)ρS(X) dX +O
(
M−1+δ

)
, (6.2.12)

for any δ > 0 and g ∈ C3(R3N ). The proof of (6.2.12) relies strongly on the stability
of symplectic numerical methods for Hamiltonian-Jacobi equations derived by Szepessy et
al. in [29].
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GAUSSIAN COARSE GRAINING OF A MASTER EQUATION

EXTENSION OF CLARKE’S MODEL

HÅKON HOEL AND HENRIK NYBERG

Abstract. We study the error and computational cost of generating output
signal realizations for the channel model of a moving receiver in a scattering

environment, as in Clarke’s model, with the extension that scatterers randomly

flip on and off. At micro scale, the channel is modeled by a Multipath Fading
Channel (MFC) model, and by coarse graining the micro scale model we derive

a macro scale Gaussian process model. Four algorithms are presented for gen-
erating stochastic signal realizations, one for the MFC model and three for the

Gaussian process model. A computational cost comparison of the presented

algorithms indicates that Gaussian process algorithms generate signal realiza-
tions more efficiently than the MFC algorithm does. Numerical examples of

generating signal realizations in time independent and time dependent scatter-

ing environments are given, and the problem of estimating model parameters
from real life signal measurements is also studied.

1. Introduction

We consider the Multipath Fading Channel (MFC) model with a transmitter
fixed and the receiver moving with a constant speed in an urban environment with
buildings obstructing the line of sight between scatterer and receiver. Incoming
rays at the receiver are thus modeled as scattered off the receiver’s surroundings.
Looking at scenarios where the distance between transmitter and receiver is large
and the majority of scattering surfaces are flat walls, the vertical angle of arrival of
incoming rays at the receiver is assumed to be 0 degrees, cf. Figure 1, i.e. scatterers
are assumed to lie in the horizontal plane. The receiver receives M incoming signal
rays whose horizontal angle of arrival {αm}Mm=1 are distributed according to a
prescribed scatterer density p : [0, 2π) → R+, and the resulting baseband output
signal is modeled by

(1) Zt,M =
1√
M

M∑

m=1

a(αm, t)e
−i(2π fc τ(αm,t)+θm(t)).

Here fc denotes the carrier frequency, τ the delay function, and a(αm, t) and θm(t)
are respectively amplitude and phase shift random processes further described in
Subsection 1.1. Two different delay functions are used in this paper; the full de-
lay function depending on an explicit description of the scattering boundary, and
τ(α, t) = −vt cos(α)/c, with v and c denoting the speed of the moving receiver and
the speed light, respectively. The latter delay function is a first order approximation
of the full delay function, cf. Appendix B.

2000 Mathematics Subject Classification. Primary 94A12; Secondary 60G15.
Key words and phrases. Wireless channel modeling; signal theory; master equations; Gaussian

processes.
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Transmitter

Scattering objects

Long distance Moving receiver

All angles of arrival~0 degrees

Figure 1. Illustration of the typical scattering environment which
we wish to model the wireless channel in.

The choice τ(α, t) = −vt cos(α)/c, is common in channel modeling since it re-
sults in a Wide Sense Stationary (WSS) channel model, i.e. a model whose signal
realizations Zt,M have constant expected value as a function of time and the au-
tocorrelation function E[Zt+∆t,MZ

∗
t,M ] is a function of only ∆t, and therefore are,

relatively speaking, easier to analyze.
To put the output of (1) in context, a more general input/output baseband signal

representation is given by

Zt =

∫

R
X(t− τ)h(t, τ)dτ,

where X(t) denotes the baseband input signal and h(t, τ) the impulse response
function. For the output in (1), the baseband input is X := 1, which corresponds
to the zero bandwidth passband input signal X(t) = exp(−i2π fc t) demodulated to
a 0 frequency signal, and the impulse response function is given by

h(t, τ) =
1√
M

M∑

m=1

a(αm, t)e
−i(2π fc τ(αm,t)+θm)δ(t− τ(αm, t))

with δ denoting the Dirac delta function. Note that although we model channels
with single frequency input signal, Doppler effects deriving from the receiver moving
relative to its surroundings will result in output signals having non-zero frequency
bandwidth.

1.1. The amplitude random process. Local shadowing by reflecting objects in
motion, for example cars, pedestrians and shaking leaves, causes scatterers to flip
from being active to passive and vice versa. Attempting to include local shadowing
in our MFC model, we define the amplitude random flip process a(α, t) which
flips on when it changes value from 0 to a+(α, t) ≥ 0 and off when the opposite
change occurs. It is here assumed that the mapping a+ : [0, 2π)× R→ R+, which
represents the active state of a reflector, is piecewise continuous (it may for example
be piecewise constant or depend on the distance from scatterer to receiver). The
flip process (of a scatterer) is modeled as Poisson process with constant flip rate C:

P (a(αm, t) flips k times on time step ∆t) =
(C∆t)k exp(−C∆t)

k!
,
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where flips are independent from the phase shift processes {θm(t)}Mm=1 and from the

scatterers’ state
⊗M

m=1{0, a+(αm, t)}. The scatterers’ initial state {a(αm, 0)}Mm=1 is
sampled according to the i.i.d. Bernoulli distribution P (a(αm, 0) = a+(α, 0)) = 1/2
and P (a(αm, 0) = 0) = 1/2 which is consistent with the steady state distribution
as t→∞. For an illustration of the effect of a positive flip rate on an output signal
realization and a comparison to a real life signal measurement, see Figure 2.

The phase shift processes {θm(t)}Mm=1 are at all times i.i.d. uniformly distributed
in [0, 2π). This is motivated from the assumption that wave lengths are very small
compared to the wave paths’ travel distance from transmitter to receiver. The
phase of θm(t) is updated by sampling θm(t) ∼ U(0, 2π) every time scatterer m
flips, since we assume that a scatterer flipping at a given angle αm is equivalent to
a new scatterer appearing at the given angle; a new scatterer requiring a new i.i.d.
phase shift uniformly distributed in [0, 2π).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5
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2.5

3

3.5
MFC model signal envelopes, receiver moving at 6.9444 m/s

time s

 

 
C= 0
C= 5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
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0.5
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1.5

2

2.5

3
Signal envelope measurement, receiver moving at 6.9444 m/s

time s

Figure 2. Left plot: Signal envelopes of two computer gen-
erated signal realizations using Algorithm 1 with the same ran-
dom seed initialization. Both realizations are generated with
fc = 1.8775GHz, v = 6.944m/s, a+ = 2, p = (2π)−1 and
τ(α, t) = −vt cos(α)/c. The only varying model parameter is the
flip rate with C = 0 (dashed line) and C = 5 (full line). Right
plot: Measured urban environment signal envelope whose carrier
frequency and receiver speed are identical to the corresponding
values for the realizations in the left plot.

Remark 1.1. The presence of measurement noise in the data might be difficult
to distinguish from flipping scatterer noise and can effect modeling parameter esti-
mates, such as the flip rate. In our model, we assume that measurement noise is
negligible relative to the noise generated by flipping scatterers.

1.2. Motivation for Gaussian processes model. The MFC model with flips
introduced here can be linked to the Master Equation, which is an equation often
used in chemistry to describe the evolution of state space probabilities, cf. [13].
In a Master Equation setting, one typically assigns finite state spin variables on a
lattice with probabilistic spin interaction dynamics and describe the time evolution
of the probability to occupy each one of a discrete set of states through a differential
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equation called the Master Equation. In our setting, we have the lattice {αm}Mm=1

and the possibly time dependent state space
⊗M

m=1{0, a+(αm, t)}.
Creating discrete signal realizations of (1) straightforwardly by the MFC algo-

rithm described in Section 2 is computationally very costly. This motivated us
to try to construct an algorithm which reduced the computational cost while at
the same time preserved the desired signal properties by using a new result in the
Master Equation setting: In [11], Katsoulakis and Szepessy developed theory for
coarse graining two state spin variables on a micro scale lattice into a macro scale
Stochastic Differential Equation (SDE) representation which reduces the compu-
tational cost for such problems considerably. Using their theory, we developed a
similar transition from the MFC model with flip state space on a micro scale lattice
to a coarse grained SDE supposed to represent the output signal. However, com-
paring signal realizations of the Master Equation developed SDE to fine realizations
of the MFC algorithm it was clear that the phase shift processes {θm(t)}Mm=1 were
not resolved in the SDE model. This observation made us believe that a Master
Equation SDE is not suitable coarse graining of (1) and lead us to instead try coarse
graining with Gaussian processes, which are more general stochastic processes than
SDEs.

The first outcome of coarse graining with Gaussian processes is Theorem 3.4
which shows that as M →∞, the signal Zt,M converges in distribution to a Gauss-
ian process Zt. Based on this theorem, we develop three algorithms, Algorithm 2, 3
and 4, using covariance and spectral properties to generate realizations of the limit
Gaussian process. The developed algorithms are studied in terms of accuracy and
computational cost, and a summary of this study, presented in Section 5, indi-
cate that that the Gaussian process algorithms generate signal realizations more
efficiently than the MFC algorithm, Algorithm 1, does.

1.3. Related works and historical remarks. In 1968, Clarke introduced the
MFC model now known as Clarke’s model in his seminal paper [7]. He considered
the superposition of M incoming waves

(2) ξt,M =
1√
M

M∑

m=1

e−i(2π fc v cos(αm)t/c+θm),

where, as before, fc is the carrier frequency, {θm}Mm=1 are i.i.d. initial phase shifts
and αm is the arrival angle of the mth component wave distributed according to
a given azimuth density p(α). Note in particular that this is a WSS model with
delay function τ(αm, t) = −v cos(αm)t/c which is identical to the delay function we
mainly use in our MFC model. Considering the scenario with angle density p(α) =
(2π)−1, Clarke noted that the auto correlation function, E[ξt,Mξ

∗
0,M ], converges

to the zeroth-order Bessel function of the first kind, J0(2π fc vt/c), as M → ∞.
And, further, he showed that its Power Spectral Density (PSD), which describes
the frequency spread around the carrier frequency and is defined by the Fourier
transform of the autocorrelation function, is on the form

(3) S(f) =

{
c

π
√

(v fc)2−(cf)2
|f | < v fc /c

0 |f | ≥ v fc /c.

This particular PSD is often referred to as Jakes’ spectrum. For plots of these
results, see Figure 3.
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Figure 3. Left plot: The autocorrelation function for Clarke’s
model with azimuth density p(α) = (2π)−1, v = 5m/s and
fc = 1.8775GHz. Right plot: The power spectral density of
Clarke’s model, often called Jakes’ spectrum, with the same model
parameters as for the left plot.

Among the papers linking the MFC model to SDE which motivated this work,
Feng, Field and Haykin [10] studied the output signal

(4) ξt,M =
M∑

m=1

ame
iφm(t).

Here am = O(M−1/2) are constant amplitudes and φm are phases with uniform
random initialization on the interval [0, 2π), and, with dWt,m denoting the Wiener
increment and B a positive constant, they assumed the phases also satisfied the
increment relation

(5) dφm(t) =
√
BdWt,m.

Since this is a model for stationary wireless channels, the phases do not include
Doppler shift terms. As M → ∞, they derived that ξt,M converges to a complex
valued Ornstein-Uhlenbeck process.

In [9], Feng and Field consider the MFC model with output

ξt,M =
M∑

m=1

am exp
(
i(2πfmt+ φ

(m)
t )

)
.

where the amplitudes am are i.i.d. random variables and fm = fD cos(αm) are
Doppler shifts with fD denoting the maximum Doppler shift and αm the angle. The

phases φ
(m)
t are independent Wiener processes with uniform initial distribution in

[0, 2π):

dφ
(m)
t =

√
BdW

(m)
t , φ

(m)
0 ∼ U [0, 2π),

where B is a constant with the dimension of frequency. With this model they obtain
the auto-correlation function

E[εt,Mε
∗
0,M ] =

M∑

m=1

E[a2
m]e−B|t|/2J0(2π fD t),
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and a corresponding PSD which they claim resemble measurements more than
Clarke’s model PSD. Although our modeling assumptions are quite different than
Feng and Field’s, we obtain similar autocorrelation and PSD results with our Gauss-
ian Process model, cf. Section 4.

The development of flipping scatterers in our model is linked to the application of
Poisson counting process as birth-death modeling of wave paths. Among the papers
considering such models is Charalambous et al. [5] which study MFC models with
output

ξ(t) =

M(Ts)∑

m=1

am(τm)eiφm(τm,t)x(t− τm),

where x(t) is the input signal, and τm, am(τm) and φm(τm, t) denote the propagation
time delay, amplitude, and phase, respectively. The number of received paths,
M(Ts), is a Poisson counting process with Ts > 0 being a fixed stopping time.
Under certain conditions, they obtain explicit expressions for the autocorrelation,
PSD and moment-generating functions. In [16], Zwick et al. develop a temporally
dynamic indoor channel model where birth and deaths of active wave paths are used
to model the varying scattering environment, and in [6], Chong et al. introduce an
indoor channel model where births and deaths of wave paths are generated by a
Markov transition matrix.

All papers mentioned above present channel models with relatively few param-
eters, but there are also reports which have a highly physical approach thereby
needing many parameters. The industry standard modeling report by 3GPP [1],
considers reflectors gathered in clusters and models the received signal as a superpo-
sition of wave paths hitting the reflectors. Among its input parameters are: trans-
mitter antenna and receiver antenna orientation, line of sight angle of departure
from transmitter to receiver, angle of departure for every path from transmitter,
angle of arrival for every path at receiver, transmitter velocity, angle of transmitter
velocity, etc.

The rest of this paper is organized as follows. In Section 2, we present a nu-
merical algorithm for generating signal realizations of our proposed MFC model.
Section 3 motivates theoretically approximating the output signal by a Gaussian
process model and two algorithms for generating Gaussian process signal realiza-
tions based on the covariance matrix is developed. An error and complexity analysis
of Algorithm 1, 2 and 3 is also included. In Section 4, we investigate the relation
between the signal’s autocorrelation and PSD for WSS signals. A method for es-
timating the flip rate and scatterer density from PSD measurements is described,
and a PSD based algorithm for generating Gaussian process signal realizations is
presented. Section 5 summarizes the complexity analysis results obtained for the
five algorithms considered in this paper. Section 6 concludes the paper with a nu-
merical examples of signal realizations for time independent and time dependent
scattering environments.

2. The MFC algorithm

We first present a numerical algorithm for generating signal realizations by the
MFC model equation (1) on a set of sampling times t = (t1, t2, . . . , tN ).

Remark 2.1. It is possible to extend the MFC model and algorithm to scenarios
including line of sight wave components, often called specular rays. Suppose you
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Algorithm 1 The MFC algorithm

Input: Amplitude function a+, flip rate C, carrier frequency fc, scatterer
density p, receiver speed v, sampling times t = (t1, t2, . . . , tN ).
Output: Signal realization Zt,M = (Zt1,M , Zt2,M , . . . , ZtN ,M ).
Generate a set of i.i.d angles of arrival {αk}Mk=1 distributed according to the
density p(α).
Generate a set of i.i.d. phase shifts {θk(0)}Mk=1 with θk(0) ∼ U(0, 2π).
Generate the initial state of the amplitudes {a(αk, t1)}Mk=1 which are i.i.d. re-
stricted to the steady state initial condition P (a(α, t1) = 0) = P (a(α, t1) =
a+(α, t1)) = 1/2.
Compute Zt1,M according to (1).
for j = 2 to N do

for k = 1 to M do
Generate nk ∼ Poisson(C(tj − tj−1)).
Flip the value of a(αk, tj) nk times.
If nk > 0, update the phase shift process by generating a new random phase
shift θk(tj) ∼ U(0, 2π).

end for
Compute Ztj ,M according to (1).

end for

have the input/output relation consisting of many diffuse ray contributions in Zt,M
and one specular ray incoming from the angle 0 with amplitude V . Then an output
signal can be generated by

Zt,M + V e−i(2π fc τ(0,t)),

where V e−i(2π fc τ(α,t)) is a deterministic term modeling the specular ray contribu-
tion.

3. Stochastic model for the signal with static scatterers

In this section we will show that the normalized signal Zt,M of equation 1 con-
verges in distribution to a complex Gaussian process as M → ∞. Thereafter, the
covariance of the limit Gaussian process is derived and used to construct an algo-
rithm for generating signal realizations in Algorithm 2. But first, let us recall the
definitions of multivariate complex normal distributions and Gaussian processes.

Definition 3.1 (Multivariate complex normal distribution I). Suppose X and Y are
random vectors in Rn such that (X,Y ) is a 2n−dimensional normal random vector.
Then we say that Z = X + iY is complex normal distributed and its distribution is
described by the mean µ = E[Z], the covariance matrix K = E[(Z − µ)(Z − µ)H ]
and the pseudo-covariance matrix J = E[(Z − µ)(Z − µ)T ], where T denotes the
transpose operator and H the Hermitian operator. We write Z ∼ NC(µ,K, J).

An alternative definition for multivariate complex normal distributions, which
often is easier to work with, derives from the one-to-one relation between the char-
acteristic function and the distribution:

Definition 3.2 (Multivariate complex normal distribution II). A random vector
Z = (Z1, Z2, . . . , Zn) ∈ Cn is said to be complex multivariate normal distributed if
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the linear combination of its components, cHZ ∈ C1 is complex normal distributed
for all c ∈ Cn.

Definition 3.3 (Complex Gaussian process). A complex Gaussian process is a
stochastic process {Zt}t∈[0,T ), Zt ∈ C1, for which any finite length sample vector
(Zt1 , Zt2 , . . . , Ztn) with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn < T is complex normal distributed.

With the aid of the Central Limit Theorem (CLT), we now show that Zt,M
converges in distribution to a Gaussian process as M →∞.

Theorem 3.4 (Model (1)’s distributional convergence to a Gaussian process). As-
sume the amplitude function a+(·, t) and the delay function τ(·, t) is bounded and
piecewise continuous on [0, 2π) for all times t ∈ [0, T ). Then the signal

Zt,M :=
1√
M

M∑

m=1

a(αm, t)e
−i(2π fc τ(αm,t)+θm(t))

converges in distribution to a complex Gaussian process Zt as M →∞.

Proof. Letting ∗ denote the complex conjugate, definitions 3.2 and 3.3 imply that
if sums of the kind

(6) Υt,c,M :=
n∑

i=1

c∗iZti,M ,

converge in distribution to a complex normal for all finite length sampling times
t = (t1, t2, . . . , tn) ⊂ [0, T ) and complex valued vectors c = (c1, c2, . . . , cn), then
Zt,M converges in distribution to a complex Gaussian process on [0, T ).

Writing out equation (6), we have

Υt,c,M =
1√
M

M∑

m=1

n∑

j=1

c∗ja(αm, tj)e
−i(2π fc τ(αm,tj)+θm(tj))

︸ ︷︷ ︸
=:ξm

.

Since both {θm(·)}m, {a(αm, ·)}m are i.i.d. and mutually independent, the r.v.
{ξm}m are also i.i.d. with mean

(7) µ = E[ξm] =

n∑

j=1

c∗jE

[
E[a(αm, tj)|αm]E

[
e−i(2π fc τ(αm,tj)+θm(tj))

∣∣∣αm
]

︸ ︷︷ ︸
=0

]
= 0.

Before computing the covariance and pseudo-covariance of ξm, let us derive som
useful properties. By the definition of the phase shift processes and amplitude
process given in Subsection 1.1, we see that

P (θm(tj) = θm(tk)) = e−C|tj−tk|,

and

E[a(αm, tj)a(αm, tk)|αm, θm(tj) = θm(tk)]

= a+(αm, tj)a
+(αm, tk)P

(
a(αm, tj) = a+(αm, tk)

)

=
a+(αm, tj)a

+(αm, tk)

2
.
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Consequently,

E
[
a(αm, tj)a(αm, tk)ei(2π fc(τ(αm,tk)−τ(αm,tj))+θm(tk)−θm(tj))

∣∣∣αm
]

= P (θm(tj) = θm(tk))E[a(αm, tj)a(αm, tk)|αm, θm(tj) = θm(tk)]ei2π fc(τ(αm,tk)−τ(αm,tj))

= e−C|tj−tk|
a+(αm, tj)a

+(αm, tk)

2
ei2π fc(τ(αm,tk)−τ(αm,tj)).

(8)

and

(9) E[a(αm, tj)a(αm, tk)e−i(2π fc(τ(αm,tk)+τ(αm,tj))+θm(tk)+θm(tj))|αm] = 0.

The covariance of ξm is derived using (8)

K = E[|ξm|2]

=
n∑

j,k=1

c∗jckE
[
E
[
a(αm, tj)a(αm, tk)ei(2π fc(τ(αm,tk)−τ(αm,tj))+θm(tk)−θm(tj))

∣∣∣αm
]]

=

n∑

j,k=1

c∗jck
e−C|tj−tk|

2

∫ 2π

0

a+(α, tj)a
+(α, tk)ei2π fc(τ(α,tk)−τ(α,tj))p(α) dα,

(10)

and the pseudo-covariance from using (9),

J = E[ξ2
m]

=

n∑

j,k=1

c∗jckE
[
E
[
a(αm, tj)a(αm, tk)e−i(2π fc(τ(αm,tk)+τ(αm,tj))+θm(tk)+θm(tj))

∣∣∣αm
]]

= 0.

(11)

Having shown that Υt,c,M =
∑M
m=1 ξm/

√
M is a sum of i.i.d. complex valued

random variables ξm with mean µ = E[ξm] = 0, pseudo-covariance J and the
bounded covariance K as given in equation (11) and (10), respectively, it follows
by the CLT for complex valued random variables that the normalized sums Υt,c,M

converge in distribution to the complex normal NC(µ, J,K) as M →∞. �

Having proved that Zt,M converges in distribution to a complex Gaussian pro-
cess Zt, our next goal is to construct an algorithm that generates realizations Zt =
(Zt1 , Zt2 , . . . , ZtN )T of the process sampled at a set of times t = (t1, t2, . . . , tN ).
To achieve that goal, we must first describe Zt in terms of its mean, pseudo-
covariance and covariance. Consider, as in the proof of Theorem 3.4, a sum

Υt,c = limM→∞
∑N
j=1 c

∗
jZtj ,M for a complex valued vector c = (c1, c2, . . . , cN ).

By choosing c such that cj = δjk, with δjk denoting the Kronecker delta, it follows
from equation (7) and the proof of Theorem 3.4 that

µk = E[Ztk ] = E[Υt,c] = 0, forall k ∈ {1, 2, . . . , N}.
Choosing instead cj = ck = 1 and the other elements of c equal to 0, it follows from
equations (11) and (10) that J(tj , tk) = 0 and

(12) K(tj , tk) =
e−C|tj−tk|

2

∫ 2π

0

a+(α, tj)a
+(α, tk)ei2π fc(τ(α,tk)−τ(α,tj))p(α) dα
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for all j, k ∈ {1, 2, . . . , N}.
When the pseudo-covariance J = 0, the multivariate complex normal is said to be

circular symmetric and, for simplicity, its distribution is represented by NC(µ,K).
An N−dimensional circular symmetric complex normal Z ∼ NC(µ,K) has the
density representation

P (Z = z) =
e−(z−µ)HK−1(z−µ)

det(K)πN
.

For the sampled limit complex Gaussian process studied here, we thus see that
Zt ∼ NC(0,K) with the terms of K given by (12).

3.1. Gaussian process algorithm based on the covariance matrix. We now
present an algorithm that generates Gaussian process signal realizations on a set
of N sampling times t by multiplying the square root of the covariance matrix to a
vector of i.i.d. standard complex normals, see (13). This is a standard way of gen-
erating Gaussian process realizations, c.f. [2], which requires having predetermined
the covariance matrix K integral terms given in (12). Generally, however, these
covariance integral terms are not solvable by pen and paper, so we approximate
them using numerical integration. This results in an approximation of the covari-
ance matrix K, which we denote K. In the algorithm to be presented, Algorithm 2,
K is used to generate Gaussian process signal realizations Zt = (Zt1 ,Zt2 , . . . ,ZtN ).

Algorithm 2 Covariance matrix based Gaussian process algorithm

Input: Amplitude function a+, flip rate C, carrier frequency fc, scatterer
density p, receiver speed v, sampling times t = (t1, t2, . . . , tN ).
Output: Gaussian process realization Zt = (Zt1 ,Zt2 , . . . ,ZtN ).
for i = 1 to N do

for j = 1 to N do
Approximate the term K(ti, tj) of equation (12) with quadrature and store

the value in the approximate covariance matrix K(ti, tj).
end for

end for

Singular value decompose K = U S U
H

, and compute K
1/2

= U S
1/2

.

Generate a vector of N i.i.d. standard complex normal elements; Ẑ ∼ NC(0, IN ),
and thereafter the sampled output signal realization

(13) Zt = K
1/2

Ẑ.

Remark 3.5. As it were for the MFC algorithm, it is also possible to extend
the covariance based Gaussian process algorithms to scenarios with specular ray
contributions. Assume you have the input/output relation consisting of many diffuse
ray contributions modeled by the Gaussian process output Zt and one specular ray
incoming from the angle α with amplitude V by

Zt +V e−i(2π fc τ(α,t)).
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3.2. Error estimates and computational complexity. Our next objective is
to estimate the computational cost of generating signal realizations on a time grid
t = (t1, t2, . . . , tN ) ⊂ [0, T ) satisfying an accuracy requirement when using either
Algorithm 1 or 2. We first introduce a measure for how well, in distributional sense,
an algorithm’s stochastic realizations approximates the sampled limit Gaussian
process Zt.

Definition 3.6 (Distributional signal error measure). Let K denote the covari-
ance matrix of the sampled Gaussian process Zt = (Zt1 , Zt2 , . . . , ZtN ) expressed in
equation (12) and let Zt denote a generated signal realization that approximates Zt

in distributional sense. Then, under the assumption that K is non-singular, the
distributional error of Zt is defined by

e(Zt) := sup
A∈C(CN )

∣∣P
(
Zt ∈ A

)
− P (Zt ∈ A)

∣∣ ,

where C(CN ) denotes the class of convex sets in CN .

3.3. Computational cost of Algorithm 1. To estimate the error for signals
generated by Algorithm 1, we first review a theorem on the Berry-Essen bound’s
dimensional dependency.

Theorem 3.7 (Bentkus [3]). Let X̂i be i.i.d. random vectors in RN . Assume X̂i

has mean zero and identity covariance matrix. Write β = E[|X̂i|3], let

SM =
1

M

M∑

m=1

X̂m,

and denote by C(RN ) the class of all convex sets in RN . Then

sup
A∈C(RN )

∣∣∣∣∣P (SM ∈ A)−
∫

A

e−|x|
2/2

(2π)N/2
dx

∣∣∣∣∣ ≤
400N1/4E[|X̂|3]√

M
.

Remark 3.8. Considering the class of balls in RN instead of the class of convex
sets, it is possible to reduce the upper bound of Theorem 3.7 by a factor O(N−1/4),
c.f. [3]. However, for the processes studied in this paper, it is of interest to include
at least all ellipsoidally shaped sets.

Using Theorem 3.7 we next derive an upper bound for e(Zt,M ) as a function
both of the number of scatterers M and the number of sampling times N .

Corollary 3.9 (Error bound for Algorithm 1). Let Zt,M = (Zt1,M , Zt2,M , . . . , ZtN ,M )
denote a sampled output signal generated by Algorithm 1 with sample times t re-
stricted to [0, T ). Assume further the covariance matrix K of the sampled limit
Gaussian process Zt, cf. equation (12), is non-singular so that it may be rep-
resented by the singular value decomposition K = USUH with S = diag(si),
s1 ≥ s2 ≥ . . . ≥ sN > 0. Then

e(Zt,M ) ≤
23/4 · 400N7/4

∥∥E
[
(a+(α, ·))3

]∥∥
L∞([0,T ))

s
3/2
N M1/2

.

Proof. Since Zt is a circular symmetric complex normal, it holds for any set A ∈
C(CN ) that

P (Zt,M ∈ A)− P (Zt ∈ A) = P
(

(K/2)−1/2Zt,M ∈ A
)
−
∫

(K/2)−1/2A

e−|z|
2/2

(2π)N
dz,
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where (K/2)−1/2 being a linear operator implies that also (K/2)−1/2A ∈ C(CN ).
The linearly transformed signal (K/2)−1/2Zt,M may be written

(K/2)−1/2Zt,M =
1√
M

M∑

m=1

(K/2)−1/2Z̆m

with i.i.d. complex valued random vectors

Z̆m :=




a(αm, t1) exp (−i(2π fc τ(αm, t1) + θm(t1)))
a(αm, t2) exp (−i(2π fc τ(αm, t2) + θm(t2)))

...
a(αm, tN ) exp (−i(2π fc τ(αm, tN ) + θm(tN )))


 .

Following the proof of Theorem 3.4, Z̆m has zero mean, zero pseudo-covariance ma-
trix, and covariance matrix K, identical to the covariance matrix of Zt. This implies
that the random vectors (K/2)−1/2Z̆m has mean zero, zero pseudo-covariance ma-
trix, and covariance matrix equal to 2IN , with IN denoting the N−dimensional
identity matrix. Then, representing CN by R2N , we note that 2N−dimensional
real valued random vector (Re((K/2)−1/2Z̆m), Im((K/2)−1/2Z̆m)) has mean 0 and
identity covariance I2N , and the proof is completed by bounding the norm of
E[|(Re((K/2)−1/2Z̆m), Im((K/2)−1/2Z̆m))|3] = E[|(K/2)−1/2Z̆m|3], and applying
Theorem 3.7. By Hölder’s inequality,

E[|(K/2)−1/2Z̆m|3] ≤ 23/2

s
3/2
N

E







N∑

j=1

(a(α, tj))
2




3/2



≤ 23/2
√
N

s
3/2
N

N∑

j=1

E
[
(a(α, tj))

3
]

= 21/2

(
N

sN

)3/2 ∥∥E
[
(a+(α, ·))3

]∥∥
L∞([0,T ))

.

End of proof.
�

It follows from the above corollary that to generate a realization fulfilling

(14) e(Zt,M ) ≤ TOL,

requires M = O(TOL−2N7/2S−3
2N ), which has the computational cost O(MN) =

O(TOL−2(N3/2/S2N )3). For statistical purposes it is often interesting to generate
many realizations, so we also note that the cost generating L realizations fulfill-
ing (14) is

Cost(Algorithm 1) = O

(
LTOL−2

(
N3/2

S2N

)3
)
.

3.4. Computational cost of Algorithm 2. Algorithm 2 uses the covariance
matrix K to generate realizations Zt = (Zt1 ,Zt2 , . . . , ZtN ). In distribution, these
realizations differ slightly from the realizations Zt that would be obtained if using
Zt’s covariance matrix K to generate signals instead of K. Here, we will bound
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the error e(Zt) in terms of the difference between K and K, a difference which is a
consequence of approximating the integral terms K(tj , tk) of (12) by quadrature:

K(tj , tk) =
e−C|tj−tk|

2

M∑

`=1

a+(x`, tj)a
+(x`, tk)ei2π fc(τ(x`,tk)−τ(x`,tj))p(x`) ν`

for the quadrature points 0 = x1 < x2 < . . . < xM = 2π and ν` being quadrature

weights fulfilling
∑M
`=1 ν` = 2π. Using M quadrature points, the error bound

(15) max
1<j,k<N

|Kj,k −Kj,k | ≤ ε = O(M−γ)

will be fulfilled, γ > 0 here depending on the quadrature method used. Conse-
quently, we may write K = K + δK with ‖δK‖2 ≤ N1/2ε. Having described the
difference between the covariance matrices we now state a theorem that bounds
e(Zt) for circular symmetric complex normals Zt approximating the sampled limit
complex Gaussian process Zt.

Theorem 3.10. Assume the covariance matrix K of the sampled limit complex
Gaussian process Zt = (Zt1 , Zt2 , . . . , ZtN ), given in (12), is non-singular so that
it may be represented by the singular value decomposition K = USUH with S =
diag(si), s1 ≥ s2 ≥ . . . ≥ sN > 0. Let further Zt be a circular symmetric normal
Gaussian with mean 0 and covariance matrix K, and assume ‖K −K ‖2 ≤ N1/2ε,
with ε = O(M−γ), γ > 0 the convergence order of the quadrature method, and M
chosen so large that 10N3/2ε < sN . Then

e(Zt) = O

(
N3/2

sN Mγ

)
.

Proof. By construction, K is symmetric, so it has a singular value decomposition

K = U S U
H

, with s1 ≥ s2 ≥ . . . sN ∈ R. According to Corollary A.1 and the
assumption on M being sufficiently large,

max
1≤j≤N

|sj − sj | ≤ N1/2ε < sN .

This implies that sN > 0 so that K also is non-singular with

K
−1

= (K + δK)−1 = (I +K−1δK)−1K−1 = K−1 +

∞∑

j=1

(−K−1δK)jK−1.

For later reference we further note that by the assumption of M being sufficiently
large,

(16)

∥∥∥∥∥∥
K1/2

∞∑

j=1

(−K−1δK)jK−1/2

∥∥∥∥∥∥
2

≤ 2N1/2ε

sN
.
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For all Borel sets A ⊂ CN , we derive the following upper bound

P
(
Zt ∈ A

)
− P (Zt ∈ A) =

1

πN |det(K)|

∫

A

e−z
H K

−1
z

|det(K−1 K)| − e
−zHK−1z dz

=
1

πN |det(K)|1/2
∫

A

e−z
HK−1z

(
e−z

H ∑∞
j=1(−K−1δK)jK−1z

|det(K−1 K)| − 1

)
dz

=
1

(2π)N

∫

(K/2)−1/2A

e−|z|
2/2

(
e−z

HK1/2 ∑∞
j=1(−K−1δK)jK−1/2z/2

|det(K−1 K)| − 1

)
dz

(16)︷︸︸︷
≤ 1

(2π)N

∫

(K/2)−1/2A

e−|z|
2/2

(
e(N1/2ε/sN )|z|2

∏N
j=1

(
1−N1/2ε/sj

) − 1

)
dz

≤ 1

(2π)N

∫

R2N

e−|x|
2/2

((
1− N1/2ε

sN

)−N
e(N1/2ε/sN )|x|2 − 1

)
dx

=

(
1− N1/2ε

sN

)−N (
1− 2

N1/2ε

sN

)−N
− 1

≤ e10N3/2ε/sN − 1

≤ 20N3/2ε

sN
.

Here we used if X̂ is a 2N−dimensional real valued multivariate normal with mean

zero and identity covariance, then E
[
et|X̂|

2
]

= (1 − 2t)−N is the moment gen-

erating function to a chi-square distributed variable with 2N degrees of freedom.
Calculating along the same lines one obtains the lower bound

P
(
Zt ∈ A

)
− P (Zt ∈ A) ≥

(
1 +

N1/2ε

sN

)−N
E
[
e−(N1/2ε/sN )|X̂|2

]
− 1

≥ −3N3/2ε

sN
.

Since the upper and lower bound obtained are both valid for the class of all Borel
sets A ∈ CN and this class contains the class of convex sets C(CN ), the proof is
finished. �

It follows from Theorem 3.10 that to fulfill the accuracy condition e(Zt) ≤ TOL
for realizations generated by Algorithm 2 requires

M = O

((
N3/2

sN TOL

)1/γ
)
.

The cost of generating L signal realizations fulfilling the above mentioned accuracy
condition then becomes the sum of O(MN2) to compute the matrix elements of
K by quadrature, O(N3) to construct the square root of K and and O(LN2) for

creating L signal realizations by the matrix vector multiplication K
1/2

X̃:

Cost(Algorithm 2) = O

(
N3 +N2

(
N3/2

sN TOL

)1/γ

+ LN2

)
.
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3.5. A circulant-embedding based algorithm with error and computa-
tional cost analysis. Computing the square root of K in Algorithm 2 and gener-
ating the output signal by (13) were both computationally costly operations, and
in this subsection we consider modeling settings where it is possible to improve the
efficiency of these operations by circulant-embedding of the covariance matrix and
application of finite Fourier methods. The idea presented here is adapted from the
material in [2, Chapter XI].

In the modeling setting when

(17) τ(α, t) = −v cos(α)t/c and a+(α, t) = a+(α),

the limit Gaussian process Zt is a WSS process which simplifies the structure of
the covariance:
(18)

K(ti, tj) = E[ZtiZ
∗
tj ] =

e−C|ti−tj |

2

∫ 2π

0

a+(α)2ei2π fD cos(α)(ti−tj)p(α)dα =: A(ti−tj),

where we recall that fD = fc v/c is the maximum Doppler shift and A(t) denotes the
autocorrelation function. Sampling the limit Gaussian process Zt on a uniform time
grid t = (t1, t2, . . . , tN ), ti+1 − ti = ∆t, in setting (17), yields a circular symmetric
complex normal Zt with a covariance matrix K that is Toeplitz. Using the short
hand notation Aj = A(j∆t), the covariance matrix has the structure

K =




A0 A1 · AN−2 AN−1

A−1 A0 · AN−3 AN−2

· · · · ·
A−(N−2) A−(N−3) · A0 A1

A−(N−1) A−(N−2) · A−1 A0



.

To illustrate circulant-embedding of K, let us for simplicity assume A−j = Aj , and
embed K as the upper left corner of a circulant of order 2N − 2:

C =




A0 A1 · AN−2 AN−1 AN−2 AN−3 · A2 A1

A1 A0 · AN−3 AN−2 AN−1 AN−2 · A3 A2

· · · · · · · · · ·
AN−1 AN−2 · A1 A0 A1 A2 · AN−3 AN−2

AN−2 AN−1 · A2 A1 A0 A1 · AN−4 AN−3

· · · · · · · · · ·
A1 A2 · AN−2 AN−1 AN−2 AN−3 · A1 A0




.

(In the general case when we only have A−j = A∗j , the circulant-embedding of K
will be of size 4N − 4.) The circulant matrix C has the eigendecomposition

(19) C = FΛFH ,

where F is the finite Fourier matrix of order 2N−2 with elements Fjk = ei2π(j−1)(k−1)/(2N−2)/
√

2N − 2,
and Λ is the diagonal matrix of eigenvalues

(20) diag(Λ) = Fa with a = (A0, A1, . . . , AN−1, AN−2, . . . , A2, A1)T .

The representation (19) shows that provided all entries of Λ are non-negative, we
may write C1/2 = FΛ1/2. The signal generated by

Zt = RFΛ1/2Ẑ,
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with Ẑ ∼ NC(0, I2N−2) and R : C2N−2 → CN defined by Rz = (z1, z2, . . . , zN )T for
all z ∈ C2N−2, will have the sought covariance K. This leads us to the following
algorithm for generating WSS Gaussian process signal realizations.

Algorithm 3 Covariance based algorithm for WSS processes

Input: Flip rate C, maximum Doppler shift fD, scatterer density p, uniform
grid of sampling times t = (t1, t2, . . . , tN ).
Output: Gaussian process realization Zt = (Zt1 ,Zt2 , . . . ,ZtN ).
for j = −(N − 1) to N − 1 do

Approximate the term Aj by quadrature of equation (18) and store the ap-

proximation in Aj .
end for
Determine Λ by computing

diag(Λ) = F (A0, A1, . . . , AN−1, AN−2, . . . , A2, A1)T ,

using the Fast Fourier Transform (FFT).

Generate a multivariate complex normal vector Ẑ ∼ NC(0, I2N−2) and thereafter
use the FFT to compute the output realization

(21) Zt = RFΛ
1/2
Ẑ.

Since a sampled realization Zt generated by Algorithm 3 is multivariate cir-
cular symmetric complex Gaussian with mean zero and covariance K, we may
use Theorem 3.10 to conclude that, under the assumptions there stated, e(Zt) =
O
(
N3/2/(sNM

γ)
)
. Alternatively, under the assumptions that Λ is positive defi-

nite, ‖K − K ‖2 ≤ N1/2ε with ε = O(Mγ) and M chosen sufficiently large so that
N1/2 tr(Λ−1)ε < 1/2, one may derive the second error bound

e(Zt) = O

(
N1/2 tr(Λ−1)

Mγ

)

from observing that for any Borel set A ∈ CN
∣∣∣P
(
FΛ

1/2
Ẑ ∈ A× CN−2

)
− P

(
FΛ1/2Ẑ ∈ A× CN−2

)∣∣∣

=
∣∣∣P
(

(Λ−1Λ)1/2Ẑ ∈ Λ−1/2FH(A× CN−2)
)
− P

(
Ẑ ∈ Λ−1/2FH(A× CN−2)

)∣∣∣

= O
(
N1/2ε tr(Λ−1)

)
,

where tr(Λ−1) :=
∑
j Λ−1

j . The cost of generating L signal realizations with Al-

gorithm 3 fulfilling the accuracy e(Zt) ≤ TOL becomes the sum of O(MN) to

compute the covariance elements {Aj}N−1
j=−N+1 of K by quadrature, O(N log(N)) to

compute Λ and O(LN log(N)) for creating L signal realizations using FFT:

Cost(Algorithm 3) = O

{
N

[
N1/2

TOL
min

(
N

sN
, tr(Λ−1)

)]1/γ

+ LN log(N)

}
.

For a tentative comparison of the magnitude of N/sN and tr(Λ−1), see Section 5.
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4. Applications of the power spectral density

Being the Fourier dual of the covariance function, the PSD can, as the covariance,
be used in algorithms to construct signal realizations and to study properties process
properties. Here we derive the PSD for in the WSS process modeling setting

(22) τ(α, t) = −v cos(α)t/c, a+(α, t) = a+(α), and C = O(1).

The shape of the PSD is linked to the flip rate and the scattering density and
we will describe a method for estimating the flip rate C from the PSD computed
from real life signal measurements and also look into the relation between PSD and
scattering density. At the end of this section, an algorithm for generating Gaussian
process signal realizations using the PSD function is presented with cost and error
analysis included.

We first derive an expression for the PSD, using ideas from [9] and [7]. The PSD
is given by SC(f) = F{A(·)}, where A(t) is the autocorrelation of the limit complex
Gaussian process Zt, F(·) denotes the Fourier Transform, and the subscript C in
SC emphasizes that the PSD depends on the flip rate. In the setting (22), it follows
from (18) that the autocorrelation is on the form

(23) A(t) =
e−C|t|

2

∫ 2π

0

(a+(α))2ei2π fD cos(α)t p(α) dα,

where we recall that fD = vt/c. By the Convolution theorem for Fourier transforms,

SC(f) = F{A(·)}(f)

= F
{
e−C|·|

2

}
∗ F

{∫ 2π

0

(a+(α))2ei2π fD cos(α)· p(α) dα

}
(f),

where ∗ denotes the convolution operator. Observe next that

F{e−C|·|}(f) =
2C

C2 + (2πf)2
, ∀C > 0,

and

F
{∫ 2π

0

(a+(α))2ei2π fD cos(α)· p(α) dα

}
(f)

=

∫

R

∫ 2π

0

(a+(α))2ei2π fD cos(α)tp(α) dα e−i2πft dt (α = − cos−1(s/ fD) + {0, π})

=

∫

R

∫ fD

− fD

1

fD
√

1− (s/ fD)2

(
ei2πst(a+(− cos−1(s/ fD)))2p(− cos−1(s/ fD))

+ e−i2πst
(
a+
(
− cos−1(s/ fD) + π

))2

p
(
− cos−1(s/ fD) + π

)
)
e−i2πft dt ds

=
1|f |<fD(f)

fD
√

1− (f/ fD)2

(
(a+(− cos−1(f/ fD)))2p(− cos−1(f/ fD))

+
(
a+
(
− cos−1(−f/ fD) + π

))2

p
(
− cos−1(−f/ fD) + π

)
))

.
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Convolving the last two expressions leads to the following PSD integral expression

SC(f) =

∫ 2π

0

C(a+(α))2p(α)

C2 + (2π(f − fD cos(α)))2
dα.(24)
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Figure 4. The PSD function SC(f) is plotted for different flip
rate values C with fD = 50Hz when (a+)2p = (2π)−1.

We see that SC(f) depends on the flip rate C and the term (a+)2p, which
we hereafter refer to as a scaled scatterer density. Figure 4 illustrates SC(f)’s
dependency on the flip rate C in the modeling settings (a+)2p = (2π)−1. In that
setting S0(f) is Jakes’ spectrum and SC(f) is a progressively mollified version of
Jakes’ spectrum the higher the value of C is. In [9] it is remarked that the PSD
SC(f) with C = O(1) is more in accordance with real life measurements than Jakes’
spectrum is.

4.1. A link to Feng and Field’s model. Our MFC model’s output signal auto-
correlation and PSD results are very similar to what Feng and Field obtained under
quite different modeling assumptions in [9]. They considered the modified Clarke’s
model

εt =
N∑

n=1

an exp
(
i(2πfnt+ φ

(n)
t )
)
,

where the amplitudes an are i.i.d. random variables and fn = fD cos(αn) are

Doppler shifts where, as in this paper, fD = fc v/c. The phases φ
(n)
t are independent

Wiener processes with uniform initial distribution in [0, 2π):

dφ
(n)
t =

√
BdW

(n)
t , φ

(n)
0 ∼ U [0, 2π), ∀n ∈ {1, 2, . . . , N},

where B is a constant with the dimension of frequency. For this model they obtain
the autocorrelation function

(25) E[εtε
∗
0] =

N∑

n=1

E[a2
n]e−B|t|/2

∫ 2π

0

ei2π fD cos(α)tdα.
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For our model in the setting (22), we recall from (23) that the autocorrelation is
given by the quite similar expression

E[ZtZ
∗
0 ] =

e−C|t|

2

∫ 2π

0

(a+(α))2ei2π fD cos(α)t p(α) dα.

Remark 4.1. It should be noted that the autocorrelation similarity is obtained
although the modeling assumptions are quite different: in our MFC model the am-
plitude is governed by a Poisson flip process, Feng and Field’s model has time
invariant amplitude functions; our model updates a phase when the corresponding
amplitude flips, their model has Wiener process phase evolution.

4.2. Model parameter estimation from PSD measurements. Feng and Field’s
publication [9] presents a method for estimating the flip rate constant C from mea-
surements which can be used when the scaled scatterer density (a+)2p is known.

Namely, given a measurement of the PSD, Ŝ(f), estimate C by

(26) C = arg min
x>0

cos−1

(∫

R

√
Ŝ(f)Sx(f)df

)
,

where the PSDs are scaled so that ‖Ŝ‖1 = 1 and ‖Sx‖1 = 1. However, from (24)
we see that the shape of the PSD depends both on the flip rate and the scaled
scatterer density on (a+)2p, see Figure 5. So to estimate the flip rate from PSD
measurements, (a+)2p either has to be known or it has to be estimated. It is more
difficult and costly to estimate (a+)2p than the flip rate, we restrict ourselves to

a tentative approach to this problem. Let Ŝ denote a real life PSD measurement
for a moving receiver, and consider relation (24) as the inhomogeneous Fredholm
integral equation ∫ 2π

0

KC(f, α)(a+(α))2p(α)dα = Ŝ(f),

with unknown (a+(α))2p(α) and parametrized by the flip rate C. For a fixed flip
rate, this problem might be discretized to a system of linear equations and, if ex-

pecting noise in the measurement Ŝ, solved as an inverse problem using Tikhonov
or similar regularization techniques, c.f. [14]. For example, if we denote the dis-
cretized integral kernel KC ∈ Rm×n, then the Tikhonov regularized solution has
the variational representation

(27) (a+
C)2p

C
= arg min

x∈Rn
‖KCx− Ŝ‖2 + β‖x‖2

for a regularizing parameter β > 0 to be chosen. If the flip rate C and (a+(α))2p(α)
have to be determined simultaneously, we suggest coupling the solution of (27) with
a minimization problem on the form

C = arg min
x>0
‖Kx(a+

x )2px − Ŝ‖.

4.3. A PSD based Gaussian process algorithm. We now present a PSD based
algorithm for generating signal realizations of WSS complex Gaussian processes for
the modeling the setting (22). The PSD (24) can be used to represent the Gaussian
process spectrally by the Itô integral

(28) Zt =

∫

R
ei2πft

√
SC(f)dWf ,
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Figure 5. Right column plots illustrate the PSD SC(f) obtained
by equation (24) when the scaled scatterer density (a+)2p(α) is
given by respective left column plots, C = 10, and fD = 50.
Top row: (a+)2p = 1/(2π) yields the mollified Jakes’ spec-
trum PSD. Second row: (a+)2p(α) = 1[−π/2,π/2](α)/π yields a
PSD consisting almost exclusively of positive Doppler shifts since
the receiver’s moves towards the active scatterers. Third row:
(a+)2p(α) = 1[π/2,3π/2](α)/π yields a PSD consisting almost ex-
clusively of negative Doppler shifts since the receiver moves away
from the active receivers. Last row:(a+)2p(α) = exp(−|α −
π|)/scale.

where Wf ∈ C is a complex Wiener processes with independent infinitesimal incre-
ments dWf ∼ NC(0, df). Seeking to approximate the integral (28) by quadrature
we first approximate the integrand by a compactly supported function by choosing
a cut off frequency fM � fD and introducing the C3(R) window function

(29) %(f) =





0 if f ≤ − fM

%I(2(fM +f)/ fM) if − fM < f < − fM /2

1 if |f | ≤ fM /2

%I(2(fM−f)/ fM) if fM /2 < f < fM

0 else,

where %I(f) = −20f7 + 70f6 − 84f5 + 35f4 is the unique solution of the Birkhoff-

Hermite interpolation with conditions %
(j)
I (0) = 0 for j = 0, 1, . . . , 4 and %I(1) = 1,
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%
(j)
I (1) = 0 for j = 1, . . . , 4. Replacing the the integrand term

√
SC(f) in (28) with√

%(f)SC(f) yields the integral

(30)

∫ fM

− fM

ei2πft
√
%(f)SC(f)dWf .

Quadrature approximating this integral with the Inverse Discrete Fourier Transform
(IDFT) gives output signal realizations by

(31) Zt =

M1∑

j=1

ei2πfjt
√
%(fj)SC(fj)∆Wj .

Here fj = − fM +(j − 1)∆f , ∆f = 2 fM /(M1 − 1), ∆Wj ∼ NC(0,∆f) are i.i.d.

complex Wiener increments and SC(fj) approximates SC(fj) by quadrature of the
integral (24),

(32) SC(fk) =

M2∑

j=1

C(a+(xj))
2p(xj)ν̃j

C2 + (2π(fk − fD cos(xj)))2

on a grid 0 = x1 < x2 < . . . < xM2
= 2π with integration weights ν̃· ≥ 0 which

satisfies
∑M2

j=1 ν̃j = 2π.
Algorithms for generating Gaussian process signal realizations using the IDFT

have been described in [12, 15], and in Algorithm 4, we present a version suited for
our setting.

Algorithm 4 A PSD based Gaussian process algorithm

Input: Flip rate C, maximum Doppler shift fD, spectral cutoff fM, sampling
times t = (t1, t2, . . . , tN ) and scatterer density p.
Output: Gaussian process realization {Ztj}Nj=1.
Construct a grid fj = − fM +(j − 1)∆f , for j = 1, 2, . . . ,M1 with ∆f =
2 fM /(M1 − 1).
Construct a grid 0 = α1 < α2 < . . . < αM2 = 2π and quadrature weights ν̃· ≥ 0

for which
∑M2

j=1 ν̃j = 2π.
for j = 1 to M1 do

Compute SC(fj) according to (32).
end for
Generate i.i.d. Wiener increments {∆Wj}M2

j=1 distributed according to ∆Wj ∼
NC(0,∆f).
for k = 1 to N do

Compute Ztk by the IDFT (31).
end for

4.4. Computational cost of Algorithm 4. The error analysis for this algorithm
is quite similar to the error analysis of Algorithm 2 in the sense that the distri-
butional error can be bounded in terms of the difference between the covariance
matrix of realizations of Algorithm 4, denoted K, and the covariance matrix K for
the sampled limit complex Gaussian process Zt derived in (12). Our procedure for
obtaining an error bound is to first derive a bound of ‖K−K‖2 and thereafter use
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Theorem 3.10 to bound e(Zt) from above. We start with computing the elements
of K.

The representation (31) implies that for two arbitrary times tj , tk from the sam-
pling times t = (t1, t2, . . . , tN ),

K(tj , tk) = E
[
Ztj Z

∗
tk

]

=

M1∑

l,m=1

ei2π(fltj−fmtk)
√
SC(fl)SC(fm)

√
%(fl)%(fm)E [∆Wl∆W

∗
k ]

=

M1∑

l=1

ei2πfl(tj−tk)%(fl)SC(fl)∆f,

where we recall that SC is an approximation of the PSD SC . The error of the
covariance terms is split into three parts,

|K(tj , tk)−K(tj , tk)| =
∣∣∣∣∣

∫

R
ei2πf(tj−tk)SC(f) df −

M1∑

l=1

ei2πfl(tj−tk)%(fl)SC(fl)∆f

∣∣∣∣∣

≤
∣∣∣∣
∫

R
ei2πf(tj−tk)(1− %(f))SC(f) df

∣∣∣∣

+

∣∣∣∣∣

∫ fM

− fM

ei2πf(tj−tk)%(f)SC(f) df −
M1∑

l=1

ei2πfl(tj−tk)%(fl)SC(fl)νl

∣∣∣∣∣

+

∣∣∣∣∣
M1∑

l=1

ei2πfl(tj−tk)%(fl)(SC(fl)− SC(fl))νl

∣∣∣∣∣
= I + II + III.

(33)

Under the assumption C = O(1), we see from equation (24) that SC(f) = O((1 +
f2)−1). Therefore I = O(fM

−1). For the second term [4, thm. 6.3] implies that
since %SC up third derivative is continuous and (can be considered) 2 fM periodic
on [− fM, fM], II = O((fM /M1)4), where the implicit constant in the error term
depends on the derivatives of %SC up to third order. (Increasing the number of
derivative conditions in the Birkhoff interpolation %I , will increase the convergence
order in II, but, as a trade off, the error term’s implicit constant increases as well.)
For the last term, the approximation SC(f) is obtained from the quadrature (32)

using M2 integration points, so that |SC(f)− SC(f)| = O((f2 + 1)−1M−γ2 ), where
the convergence order γ > 0 depends on the numerical integrator used and is the
same order as that obtained in (15) for Algorithm 2. Thereby

(34) III ≤
M1∑

l=1

|SC(fl)− SC(fl)|∆f = O

(∫ fM

− fM

(f2 + 1)−1dfM−γ2

)
= O(M−γ2 ).

Adding the three error terms yields the covariance error bound

(35) |K(tj , tk)−K(tj , tk)| ≤ ε = O
(
fM
−1 +(fM /M1)4 +M−γ2

)
,

and by applying Theorem 3.10 we obtain the following error bound for this algo-
rithm.
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Corollary 4.2. Let K denote the covariance matrix of the stochastic process gener-
ated by Algorithm 4 in the modeling setting (22) and assume the covariance matrix
K of the Gaussian process Zt, as given by (12), is non-singular and representable by
the SVD K = USUH with S = diag(si), s1 ≥ s2 ≥ . . . ≥ sN > 0. Then, if M1, M2

and fM are chosen sufficiently large so that the error bound (35) ‖K−K ‖2 ≤
√
Nε

is fulfilled with 10N3/2ε < sN , realizations of Algorithm 4

e(Zt) = O

(
N3/2

(
fM
−1 +(fM /M1)4 +M−γ2

)

sN

)
.

Proof. The result follows from Theorem 3.10. �
To fulfill the accuracy condition e(Zt) ≤ TOL, Corollary 4.2 implies that fM =

O
(
(SN TOL)−1N3/2

)
, M1 = O

(
((SN TOL)−1N3/2)5/4

)
andM2 = O

(
((SN TOL)−1N3/2)1/γ

)
.

The cost of generating one signal realization for this algorithm is the sum of the
cost of computing SC(fk) for k = 1, 2, . . . ,M1 by (32), which generally ammounts
to O(M1M2), and the cost O(NM1) for computing (31) to generate a realization
Zt. The cost of generating L signal realizations thus becomes

Cost(Algorithm 4) = O

((
N3/2

SN TOL

)5/4+1/γ

+ LN

(
N3/2

SN TOL

)5/4
)
.

Remark 4.3. In many settings, particularly the setting when generating realiza-
tions on uniformly sampled grid points on an interval [0, T ) with ∆t = T/N , it is
possible to apply the FFT techniques to speed up the quadrature computations of
the discrete convolution (32) and the IDFT (31) so that the cost of generating L
realizations with Algorithm 4 in terms of L,N and TOL instead amounts to

Cost(Alg 4,FFT) = O

((
L

(
N3/2

SN TOL

)5/4

+

(
N3/2

SN TOL

)1+1/min(4,γ)
)
log

(
N3/2

SN TOL

))
.

Here γ is the convergence order of the discrete convloution (32) which has the
relation γ ≤ γ since when computing (32) with FFT, the quadrature grid has to
fulfill cos(xj+1)−cos(xj) = ∆f/ fD, which generally does not optimize the accuracy
of the computation.

5. Summary of the complexity estimates

Having estimated upper bounds for the computational cost of generating output
realizations by four different algorithms, we now summarize the results. We do
however stress that none of the error bounds for which the cost estimates are based
are proven to be sharp, so the following cost comparison should not be considered
conclusive. In Table 1 we present cost estimates for non-WSS modeling settings,
which occurs if the amplitude function a+ is time dependent or/and if modeling with
the full delay function τ(α, t). The results of the table indicates that for settings
when γ ≥ 3/5, the covariance based Gaussian process algorithm, Algorithm 2, is
asymptotically the most efficient algorithm.

In modeling settings resulting in WSS output processes,

(36) τ(α, t) = −v cos(α)t/c, and a+(α, t) = a+(α),

we derived the computational cost presented in Table 2. The results of the table
indicate that in the WSS setting, Algorithm 3 outperforms the other algorithms in
terms of efficiency.
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Computational cost

Algorithm 1 O

(
LTOL−2

(
N3/2

SN

)3
)

Algorithm 2 O

(
N3 +N2

(
N3/2

sN TOL

)1/γ

+ LN2

)

Table 1. Computational cost for non-WSS modeling set-
tings.Recall that γ is the convergence order for the quadrature (15).

Computational cost

Alg 1 O

(
LTOL−2

(
N3/2

SN

)3
)

Alg 2 O

(
N3 +N

(
N3/2

sN TOL

)1/γ

+ LN2

)

Alg 3 O

(
N
[
N1/2

TOL min
(
N
sN
, tr(Λ−1)

)]1/γ
+ LN log(N)

)

Alg 4 O

((
N3/2

SN TOL

)5/4+1/γ

+ LN
(

N3/2

SN TOL

)5/4
)

Alg 4, FFT O

((
L
(

N3/2

SN TOL

)5/4

+
(

N3/2

SN TOL

)1+1/min(4,γ)
)

log
(

N3/2

SN TOL

))

Table 2. Computational cost for the WSS setting (36). Re-
call that γ is the quadrature convergence order obtained in (15)
and (34) for the respective algorithms, and γ with γ ≤ γ is the
convergence order obtained when computing (34) with FFT.

For better understanding of the cost estimates, we would like an estimate on
how N/SN and tr(Λ−1) depend on the sample times t = (0, t2, . . . , tN ) used in the
generation of signal realizations. A general answer to this question is however too
demanding; we restrict ourselves to the WSS modeling setting (22).

The eigenvalue Λn is a DFT approximation of SC((n − 1)/T ), and we may, by
introducing a cutoff function as in (29) and arguing similar as in the error analysis
of (33), derive the error bound

|Λn − SC((n− 1)/tN )| ≤ O(∆t4 + e−C|tN |), n = 1, 2, . . . , N,

and

|ΛN+n − SC(−(N − 1− n)/tN )| ≤ O(∆t4 + e−C|tN |), n = 1, 2, . . . , N − 2.
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Then it follows that for settings (4/C) log(N) ≤ tN = o(N) and ∆t = tN/(N − 1),
we obtain the sharp bound

2N−2∑

j=1

Λ−1
j = O

(
t2N
N

)
+

N−1∑

j=2−N
SC(j/tN )−1

= O


 t

2
N

N
+

N−1∑

j=2−N
(j/tN )2




= O

(
N3

t2N

)
,

(37)

Figure 6 illustrates this bound for a numerical example. To relate the magnitude of
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Figure 6. Numerical study of how tr(Λ−1) varies as a function
of N in the modeling setting C = 10, fD = 50Hz, (a+)2p = π−1,

tN =
√
N and N uniform sample times on the interval [0, tN ).

sN to Λ, we note that since K is circulantly embedded into K, Cauchy’s interlacing
theorem says that minj Λj ≤ sN ≤ Λ̃N with Λ̃j denoting the jth largest eigenvalue
of Λ. In settings where estimate (37) is valid, we thereby derive the upper bound
N/sN = O(N3/t2N ), giving the relationN/sN = O(tr(Λ−1)). We end these informal
estimates with the numerical study in Figure 7, showing a setting where N/sN is
orders of magnitude smaller than tr(Λ−1).

6. Numerical examples

6.1. Example 1. The first numerical example compares realizations generated
by Algorithm 1 and 2 in a WSS model setting with the scaled scatterer density
(a+)2p(α) = 1/π and the delay function τ(α, t) = −v cos(α)t/c. The flip rate is de-
termined from a real life signal measurement from a receiver moving with the speed
v = 6.9m/s and carrier frequency fc = 1.8775GHz sampled uniformly the time in-
terval [−0.08, 0.08] using N = 1419 samples, and signal realizations are thereafter

generated using the same modeling parameters. From the measured signal Ẑ(t),

we approximate the PSD by the FFT of Ẑ(t)Ẑ(0)∗ =: Ŝ(f) and determine the flip
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Figure 7. Numerical comparison of N/sN and tr(Λ−1) in the
modeling setting C = 15, fD = 50Hz, (a+)2p = π−1, tN = log(N)
and N sample uniform sample times on the [0, tN ). (Since sN is
computed by the SVD, it cannot be computed for as large N values
as tr(Λ), cf. Figure 6.)
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Figure 8. Left plot: The best fit of SC(f) to the measured sig-

nal’s PSD Ŝ(f) as a function of the flip rate C, which is determined
by (38). Right plot: Scaled signal envelopes of a measured sig-
nal, a signal realization from the MFC algorithm, and a realization
from the Gaussian process algorithm.

rate by

(38) C = arg min
C̃>0
‖(Ŝ − S

C̃
)%‖1,

which is a slight modification of Feng and Field’s idea (26). See Figure 8 for an

comparison of SC and Ŝ for the best fit flip rate C ≈ 13.65.
Having determined the flip rate, L = 2000 signal realizations are generated

by the MFC algorithm using M = 2000 scatterers and for the covariance based
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Gaussian Process algorithm, one may derive using pen and paper that K(tj , tk) =
J0(2π fD(tk−tj)), J0 denoting the Bessel function of the first kind. Autocorrelation
and PSD functions computed for respective algorithms are plotted in figures 8 and 9.
For signal realizations of Algorithm 1, the autocorrelation is approximated by taking
the sample average of

(39) E[Zt Z
∗
0] ≈

L∑

j=1

Zt(ωj) Z0(ωj)
∗

L

with Zt(ωj) denoting the jth signal realization. The approximation 39 is compared
with the autocorrelation of signal realizations of Algorithm 2 (which is given by the
first row of the covariance matrix K).
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Figure 9. Left plot: Monte Carlo estimated autocorrelation for
realizations generated by Algorithm 1, cf. (39), and the autocorre-
lation for Gaussian process signal realizations A(t) = J0(2π fD t).
Right plot: Scaled PSD of the measured signal and of one signal
realization from each the algorithms studied.

6.2. Example 2. In the second example, we model the temporally varying scat-
tering environment with a mobile receiver moving from left to right through a thin
opening of a non-reflecting wall, as sketched in Figure 10. When situated on the
left side of the opening, the mobile receiver receives scattered rays at its rear, and
when the mobile receiver is on the right side of the opening, it receives rays at its
front. As a model for this change in scattering environment we consider the the
time interval [0, 2) seconds, assume that the receiver moves through the opening at
t = 1 and set

(40) a+(α, t) =

{
cos2(α)1(π/2,3π/2)(α) for 0 ≤ t < 1

cos2(α)1(−π/2,π/2)(α) for 1 ≤ t ≤ 2.

Other modeling parameters are set to p = (2π)−1, C = 15 and fD = 43.5Hz.
Figure 11 contains snapshots of the time dependent PSD for a single stochastic
signal realization created by Algorithm 2. It shows that when the mobile receiver is
situated on the left side of the opening, the the PSD is concentrated around −fD,
and when the receiver is on the right side of the opening, the PSD is concentrated
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around fD. By the discussion of the relation between (a+)2p and SC(f) given in
Section 4, the snapshotted PSDs in Figure 11 are reasonable.

V

Reflectors

t=0

V

Reflectors

t=1.5s

Figure 10. A receiver moving rightwards through a thin opening
in a non-scattering wall and thereby experiencing a change in the
scattering environment.
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Figure 11. Snapshots of the time dependent PSD for a signal
realization at t = 0.5s when the receiver is situated on the left side
of the wall opening (blue line) and at t = 1.5s situated at to the
right side of the wall opening (green line).
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Appendix A. Theorems

Corollary A.1 ([8][p. 198]). Let G and F be arbitrary matrices (of the same size)
where σ1 ≥ . . . ≥ σn are the singular values of G and σ′1 ≥ . . . ≥ σ′n are the singular
values of G+ F . Then |σi − σ′i| ≤ ‖F‖2.

Appendix B. Approximation of the delay function

The delay function primarily considered in this paper, τ(α, t) = −vt cos(α)/c, is
a first order approximation of the full delay function. Here we describe how this
approximation is obtained.

Assuming the scattering boundary is described by {(α,R(α))|0 ≤ α ≤ 2π} and
that the receiver is moving in the direction (v, 0), the analytical delay function is
given by

τ(α, t) =

√
(R(α) cos(α)− vt)2 +R(α)2 sin(α)2

c

=

√
(vt)2 − 2vtR(α) cos(α) +R(α)2

c
.

A Taylor expansion of this function with respect to vt yields

τ(α, t) =
R(α)

c
− cos(α)

c
vt+O

(
vt

cR(α)

)
.

Assuming that for the times of interest vt/(R(α)c) is a small term, a good approx-
imation of the delay function as a function of time is

τ(α, t) = −cos(α)

c
vt.

Here the term R(α)/c is removed since it is constant with respect to time and thus
can be considered as part of the random phase shift term θα of exp(−i(2π fc τ(α, t)+
θα)). As this first order approximation considers the Doppler effect from a given
scatterer to be constant, it is only valid when the receiver is far away from the
scattering boundary.
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Håkon Hoel, Department of Numerical Analysis and Computer Science, KTH, SE-100

44, Stockholm, Sweden.

E-mail address: haakonah1@gmail.com

Henrik Nyberg, Ericsson Research, SE-164 80, Stockholm, Sweden.

E-mail address: Henrik.L.Nyberg@ericsson.com





Paper II

89



Implementation and Analysis of an Adaptive
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Abstract

This work generalizes a multilevel Monte Carlo (MLMC) method in-
troduced in [7] for the approximation of expected values of functions de-
pending on the solution to an Itô stochastic differential equation. The
work [7] proposed and analyzed a forward Euler MLMC method based on
a hierarchy of uniform time discretizations and control variates to reduce
the computational effort required by a standard, single level, forward Eu-
ler Monte Carlo method from O

(
ε−3
)

to O
(
(ε−1 log(ε−1))2

)
for a mean

square error of size ε2. This work uses instead a hierarchy of adaptively
refined, non uniform, time discretizations, generated by an adaptive algo-
rithm introduced in [20, 19, 5]. Given a prescribed accuracy TOL in the
weak error, this adaptive algorithm generates time discretizations based
on a posteriori expansions of the weak error first developed in [24]. A
theoretical analysis gives results on the stopping, the accuracy, and the
complexity of the resulting adaptive MLMC algorithm. In particular, it is
shown that: the adaptive refinements stop after a finite number of steps;
the probability of the error being smaller than TOL is under certain as-
sumptions controlled by a given confidence parameter, asymptotically as
TOL → 0; the complexity is essentially the expected for MLMC methods,
but with better control of the constant factors. We also show that the
multilevel estimator is asymptotically normal using the Lindeberg-Feller
Central Limit Theorem. These theoretical results are based on previously
developed single level estimates, and results on Monte Carlo stopping
from [3]. Our numerical tests include cases, one with singular drift and
one with stopped diffusion, where the complexity of uniform single level
method is O

(
TOL−4

)
. In both these cases the results confirm the theory

by exhibiting savings in the computational cost to achieve an accuracy
of O (TOL), from O

(
TOL−3

)
for the adaptive single level algorithm to

essentially O
(

TOL−2 log
(
TOL−1

)2)
for the adaptive MLMC.
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1 Introduction

This work develops multilevel versions of adaptive algorithms for weak approx-
imation of Itô stochastic differential equations (SDEs)

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t < T, (1.1)

where X(t;ω) is a stochastic process in Rd, with randomness generated by a
k-dimensional Wiener process with independent components, W (t;ω); see [15],
[23]. The functions a(t, x) ∈ Rd and b(t, x) ∈ Rd×k are given drift and diffusion
fluxes.

Our goal is to, for any given sufficiently well behaved function g : Rd → R,
approximate the expected value E[g(X(T ))] by adaptive multilevel Monte Carlo
(MLMC) methods. A typical example of such an expected value is to compute

2



option prices in mathematical finance; see [14] and [9]. Other related models
based on stochastic dynamics are used for example in molecular dynamics simu-
lations at constant temperature, for stochastic climate prediction, and for wave
propagation in random media; cf. [2], [18], and [1].

The computational complexity of a Monte Carlo method is determined by
the number of generated samples approximating g(X(T )) and their average cost.
When a standard Monte Carlo method based on a uniform time stepping scheme
of weak order 1 is used to compute E[g(X(T ))] to an accuracy TOL with high
probability, the cost is asymptotically proportional to TOL−3, provided that the
functions a, b, and g are sufficiently regular. A Monte Carlo method can not do
better than a cost proportional to TOL−2, since this is the cost if each sample
of g(X(T )) can be generated exactly at a unit cost. The goal of this work is to
combine two techniques for improving the standard Monte Carlo: one technique
is to use adaptive time stepping which retains the complexity O(TOL−3) for
a wider set of problems than uniform time stepping, and which can reduce
the proportionality constant for other problems with widely varying scales; the
other is the MLMC method, which in many cases can reduce the complexity
to nearly the optimal O(TOL−2) when based on the Euler–Maruyama time
stepping scheme, and which can achieve the optimal rate using the Milstein
time stepping scheme.

In the context of weak approximation of SDEs, the MLMC method based
on uniform time stepping was introduced by Giles in [7]. A similar MLMC idea
has been used before in the different context of parametric integration; [11, 12].
In [7], Giles developed a clever control variate type variance reduction technique
for a numerical method, denoted here by X, that approximates the solution of
the SDE (1.1). The key to this variance reduction, which is an extension of a
two-level control variate technique in [16], is to compute approximate solutions,
X`, on hierarchies of uniform time meshes with size

∆t` = C−`∆t0, C ∈ {2, 3, . . .} and ` ∈ {0, 1, . . . , L}, (1.2)

thereby generating sets of realizations on different mesh levels. After computing
numerical approximations on a mesh hierarchy, the expected value E[g(X(T ))]
is approximated by the multilevel Monte Carlo estimator

AML
(
g
(
X (T )

)
;M0

)
=

M0∑

i=1

g(X0(T ;ωi,0))

M0

+

L∑

`=1

M∑̀

i=1

g(X`(T ;ωi,`))− g(X`−1(T ;ωi,`))

M`
. (1.3)

This estimator combines L+1 sample averages, based on mutually independent
sample sets on the respective meshes, each with M` independent samples. The
number of samples {M`}L`=1 have a given relation to the number of samples
on the coarsest mesh, M0, which is the only free parameter in (1.3), for a
fixed number of levels. To reduce the variance in the above estimator, the
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realization pairs X`(T ;ωi,`) and X`−1(T ;ωi,`) of the summands g(X`(T ;ωi,`))−
g(X`−1(T ;ωi,`)) for each level ` > 0 are generated by the same Brownian path,
W (t;ωi,`), but they are realized on different temporal grids with uniform time
steps, ∆t` and ∆t`−1, respectively. The efficiency of this computation relies
on an a priori known order of strong convergence for the numerical method
employed on each level of the hierarchy.

Let TOL > 0 be a desired accuracy in the approximation of E[g(X(T ))].
The main result of Giles’ work [7] is that the computational cost needed to
achieve the Mean Square Error (MSE)

E
[(
AML

(
g
(
X (T )

)
;M0

)
− E[g(X(T ))]

)2]
= O

(
TOL2

)
, (1.4)

when using the Forward Euler method to create the approximate realizations
X`(T ;ω), can be reduced from O

(
TOL−3

)
with the standard Monte Carlo

method to
O
(
(TOL−1 log(TOL−1))2

)

with Giles’ MLMC method. Furthermore, whenever the function g is Lipschitz
and for scalar Itô stochastic differential equations, the computational cost can be
further reduced to O

(
TOL−2

)
using the first order strong convergence Milstein

method. In addition, the work [6] shows how to apply the Milstein method for
several scalar SDE cases where the Lipschitz condition is not fulfilled and still
obtain the cost O

(
TOL−2

)
.

In this work we use the Euler–Maruyama method with non uniform time
steps. Let 0 = t0 < t1 < · · · < tN = T denote a given time discretization, with-
out reference to its place in the hierarchies, and {0 = W (t0;ω),W (t1;ω), . . . ,W (tN ;ω)}
denote a generated sample of the Wiener process on that discretization. Then
the Euler–Maruyama approximation to the true solution of (1.1) is given by the
scheme

X(t0;ω) = X(0),

X(tn+1;ω) = a(X(tn;ω), tn)∆tn + b(X(tn;ω), tn)∆W (tn;ω), n ≥ 0, (1.5)

where ∆tn = tn+1 − tn and ∆W (tn;ω) = W (tn+1;ω) −W (tn;ω) are the time
steps and Wiener increments, respectively.

The contribution of the present paper to the MLMC method is the de-
velopment and analysis of two novel algorithms with adaptive, non uniform
time steps. One of the algorithms uses adaptive mesh refinements to stochas-
tically create a path dependent mesh for each realization; the other algorithm
constructs the meshes adaptively based on sample averaged error densities and
then uses the same mesh hierarchy for all realizations. We refer to the previous
algorithm as the stochastic time step algorithm and the latter as the deter-
ministic time step algorithm. The construction and analysis of the adaptive
algorithms is inspired by the work on single level adaptive algorithms for weak
approximation of ordinary stochastic differential equations [19], and uses the
adjoint weighted global error estimates first derived in [24]. The goal of these
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adaptive algorithms is to choose the time steps and the number of realizations
such that the event

∣∣AML
(
g
(
X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ ≤ TOL, (1.6)

holds with probability close to one. We measure computational complexity
as the work needed to meet a given accuracy. On some problems where the
computational complexity of methods based on uniform time steps deteriorates
due to lacking regularity, these adaptive mesh refinement algorithms can regain
the same rate of convergence that uniform methods have on regular problems;
see [20].

It should be noted that in the setting of adaptive mesh refinement there is no
given notion of mesh size, so a hierarchy of meshes can no longer be described as
in the constant time step case (1.2). Instead, we generate a hierarchy of meshes
by successively increasing the accuracy in our computations, introducing the
time discretization error tolerance levels1

TOLT,` = 2`−LTOLT, for ` ∈ {0, 1, . . . , L}, (1.7)

and (by adaptive refinements based on error indicators) determining the corre-
sponding meshes so that for each level ` ∈ {0, 1, . . . , L},

∣∣E[g(X(T ))]− E
[
g(X`(T ))

]∣∣ . TOLT,`.

In Section 4, we prove that also for the adaptive algorithms the computational
cost for obtaining the error estimate (1.4), with probability close to one, is close
to O

(
TOL−2 log(TOL−1)2

)
. More precisely, there are two main results on effi-

ciency and accuracy described in Section 4. Regarding accuracy with probability
close to one, Theorem 2 states that the approximation errors in (1.2) are asymp-
totically bounded by the specified error tolerance times a problem independent
factor as the tolerance parameter tends to zero. For the efficiency, Theorem 3
states that, depending on technical assumptions on the error density of the
adaptive algorithm, the complexity is close to or equal to the standard com-
plexity in the setting of uniform time steps, with explicitly given constants. A
completely analogous result holds for the adaptive algorithm with deterministic
steps and it is not included here for the sake of brevity; confer [19].

This work also includes three numerical examples, the most relevant ones
being one with a drift singularity and one stopped diffusion. In the singularity
example multilevel Monte Carlo based on adaptive time steps requires a com-
putational work O

(
TOL−2 log(TOL−1)2

)
and in the stopped diffusion example

O
(
TOL−2.1 log(TOL−1)2

)
. For both of these examples the observed complex-

ity is close to the optimal, and more efficient than the single level version of the
adaptive algorithm.

The rest of this paper is organized as follows: Section 1.1 introduces the
notion of error density and error indicators, and recalls useful results for single

1For error control, the tolerance is split into a statistical error tolerance and a time dis-
cretization error tolerance; TOL = TOLS +TOLT, cf. Section 2.
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level adaptive forward Euler Monte Carlo methods. Section 2 describes the new
adaptive multilevel Monte Carlo algorithms. Section 3 presents results from
numerical experiments. Finally, Section 4 proves results on accuracy, stopping,
and efficiency for a simplified version of the adaptive multilevel algorithms.

1.1 A single level posteriori error expansion

Here we recall previous single level results that are useful for the multilevel
analysis in Section 4. In particular, we recall adjoint based error expansions with
computable leading order term. Assume that the process X satisfies (1.1) and
its approximation, X, is given by (1.5); then the error expansions in Theorem 1.2
and 2.2 of [24] have the form

E
[
g(X(T ))− g(X(T ))

]
= E

[
N∑

n=1

ρn∆t2n

]
+ higher order terms, (1.8)

where ρn∆t2n are computable error indicators, that is they provide information
for further improvement of the time mesh and ρn measures the density of the
global error in (1.8). A typical adaptive algorithm does two things iteratively:

1. if the error indicators satisfy an accuracy condition then it stops; otherwise

2. the algorithm chooses where to refine the mesh based on the error indica-
tors and then makes an iterative step to 1.

In addition to estimating the global error E
[
g(X(T ))− g(X(T ))

]
in the sense

of equation (1.8), the error indicators ρn∆t2n also give simple information on
where to refine to reach an optimal mesh, based on the almost sure convergence
of the density ρn as we refine the discretization, see Section 4 in [20].

In the remaining part of this section we state in Theorem 1 a single level error
expansion from [24], which can be used with either stochastic or deterministic
time steps.

Given an initial time discretization ∆t[0](t) and, for the stochastic time steps
algorithm, refining until2

|ρ(t, ω)|
(
∆t(t)

)2
< constant, (1.9)

we construct a partition ∆t(t) by repeated halving of intervals so that it satisfies

∆t(t) = ∆t[0](t)/2n for some natural number n = n(t, ω).

The criterion (1.9) uses an approximate error density function ρ, satisfying for
t ∈ [0, T ] and all outcomes ω the uniform upper and lower bounds

ρlow(TOLT) ≤ |ρ(t, ω)| ≤ ρup(TOLT). (1.10)

2The precise expressions including the constants are given in (2.7) and (2.21) below.
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The positive functions ρlow and ρup are chosen so that ρup(TOLT) → +∞ as
TOL ↓ 0 while ρlow(TOLT)→ 0 such that TOLT/ρlow(TOLT)→ 0. We further
make the assumption that for all s, t ∈ [0, T ] the sensitivity of the error density
to values of the Wiener process can be bounded,

|∂W (t)ρ(s, ω)| ≤ Dρup(TOLT), (1.11)

for some positive function Dρup such that Dρup(TOLT) → +∞ as TOLT ↓ 0.
For each realization successive subdivisions of the steps yield the largest time
steps satisfying (1.9). The corresponding stochastic increments ∆W will have
the correct distribution, with the necessary independence, if the increments ∆W
related to the new steps are generated by Brownian bridges [15]; that is the time
steps are generated by conditional expected values of the Wiener process.

We begin now by stating in the next lemma the regularity conditions to
be used in the analysis of the adaptive multilevel algorithms; the lemma cor-
responds to Lemma 2.1 in [24], while this formulation is given3 in Lemma 2.1
in [21].

Lemma 1 (Regularity). (a) Assume that the following regularity conditions
hold:

(1) The functions a(t, x) and b(t, x) are continuous in (t, x) and are twice
continuously differentiable with respect to x.

(2) The partial derivatives of first and second order with respect to x of the
functions a and b are uniformly bounded.

(3) The function g is twice continuously differentiable, and together with its
partial derivatives of first and second order it is uniformly bounded.

Then the cost to go function, defined by

u(t, x) = E
[
g(X(T )) | X(t) = x

]
, (1.12)

satisfies the Kolmogorov equation

∂tu(t, x) + ak∂ku(t, x) + dkn∂knu(t, x) = 0, u(T, ·) = g, (1.13)

where we have used Einstein summation convention4, and where dkn = 1
2b
l
kb
l
n.

(b) Furthermore, if the following regularity conditions are satisfied:

(1) The functions ∂βa(t, ·) and ∂βb(t, ·) are bounded uniformly in t for multi-
indices β with 1 ≤ |β| ≤ 8;

(2) The functions a(·, x), b(·, x) have continuous and uniformly bounded first
order time derivatives;

3Including a jump term omitted here.
4When an index variable appears twice in a single term this means that a summation

over all possible values of the index takes place; for example ak∂ku(t, x) =
∑d

k=1 ak∂ku(t, x),
where d is the space dimension of the SDE (a, x ∈ Rd).
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(3) The function g has spatial derivatives ∂βg, with polynomial growth for
|β| ≤ 8;

then the function u has continuous partial derivatives with respect to x up to the
order 8, satisfying the following polynomial growth condition: for all i ∈ {0, 1, 2}
and α ∈ Nd with i+ |α| ≤ 8 there exists pα,i ∈ N and Cα,i > 0 such that

max
0≤t≤T

∣∣ ∂it∂αu(t, x)
∣∣ ≤ Cα,i

(
1 + |x|pα,i

)
∀x ∈ Rd.

In what follows, Lemma 2 and Theorem 1 show that although the steps adap-
tively generated to satisfy (1.9)–(1.11) are not adapted to the natural Wiener
filtration, the method indeed converges to the correct limit, which is the same
as the limit of the forward Euler method with adapted time steps. Lemma 2
and Theorem 1 correspond to Lemma 3.1 and Theorem 3.3 in [24].

Lemma 2 (Strong Convergence). For X the solution of (1.1) suppose that a, b,
and g satisfy the assumptions in Lemma 1, that X is constructed by the forward
Euler method, based on the stochastic time stepping algorithm defined in Sec-
tion 2, with step sizes ∆tn satisfying (1.9)–(1.11), and that their corresponding
∆Wn are generated by Brownian bridges. Then

sup
0≤t≤T

E
[∣∣X(t)−X(t)

∣∣2
]

= O (∆tsup) = O
(

TOLT

ρlow(TOLT)

)
→ 0 (1.14)

as TOLT ↓ 0, where ∆tsup ≡ supn,ω ∆tn(ω).

In Theorem 1 and the rest of this work, we will use Einstein summation
convention with respect to functional and spatial indices, but not with respect
to the temporal one (usually denoted tn).

Theorem 1 (Single level stochastic time steps error expansion). Given the
assumptions in Lemma 2 and a deterministic initial value X(0), the time dis-
cretization error in (1.8) has the following expansion, based on both the drift and
diffusion fluxes and the discrete dual functions ϕ, ϕ′, and ϕ′′ given in (1.17)–
(1.22), with computable leading order terms:

E[g(X(T ))]−E
[
g(X(T ))

]
= E

[
N−1∑

n=0

ρ̃(tn, ω)(∆tn)2

]

+O
(( TOLT

ρlow(TOLT)

)1/2( ρup(TOLT)

ρlow(TOLT)

)ε)
E

[
N−1∑

n=0

(∆tn)2

]
,

(1.15)
for any ε > 0 and where

ρ̃(tn, ω) ≡ 1

2

((
∂tak + ∂jakaj + ∂ijakdij

)
ϕk(tn+1)

+
(
∂tdkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′km(tn+1)

+
(
2∂jdkmdjr

)
ϕ′′kmr(tn+1)

)
(1.16)

8



and the terms in the sum of (1.16) are evaluated at the a posteriori known points
(tn, X(tn)), i.e.,

∂αa ≡ ∂αa(tn, X(tn)), ∂αb ≡ ∂αb(tn, X(tn)), ∂αd ≡ ∂αd(tn, X(tn)).

Here ϕ ∈ Rd is the solution of the discrete dual backward problem

ϕi(tn) = ∂icj(tn, X(tn))ϕj(tn+1), tn < T,
ϕi(T ) = ∂ig(X(T )),

(1.17)

with

ci(tn, x) ≡ xi + ∆tnai(tn, x) + ∆W `
nb
`
i(tn, x) (1.18)

and its first and second variation

ϕ′ij ≡ ∂xj(tn)ϕi(tn) ≡ ∂ϕi(tn;X(tn) = x)

∂xj
, (1.19)

ϕ′′ikm(tn) ≡ ∂xm(tn)ϕ
′
ik(tn) ≡ ∂ϕ′ik(tn;X(tn) = x)

∂xm
, (1.20)

which satisfy

ϕ′ik(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikcj(tn, X(tn))ϕj(tn+1), tn < T,
ϕ′ik(T ) = ∂ikg(X(T )),

(1.21)

and

ϕ′′ikm(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))∂mcr(tn, X(tn))ϕ′′jpr(tn+1)

+∂imcj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)

+∂icj(tn, X(tn))∂kmcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikcj(tn, X(tn))∂mcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikmcj(tn, X(tn))ϕj(tn+1), tn < T,
ϕ′′ikm(T ) = ∂ikmg(X(T )),

(1.22)

respectively.
The previous result can also be directly applied to the particular case of

deterministic time steps.Observe that the constant in O that appears in (1.15)
may not be uniform with respect to the value ε. Thus, in practice one chooses
ε = ε(TOL) to minimise the contribution of the remainder term to the error
expansion (1.15).

Let us now discuss how to modify the error density ρ̃(tn, ω) in (1.16) to
satisfy the bounds (1.10) and at the same time guarantee that ∆tsup → 0 as
TOLT ↓ 0; see Lemma 2.

Consider, for t ∈ [tn, tn+1) and n = 1, . . . , N , the piecewise constant function

ρ(t) ≡ sign(ρ̃(tn)) min
(

max(|ρ̃(tn)|, ρlow(TOLT)), ρup(TOLT)
)
, (1.23)
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where
ρlow(TOLT) = TOL γ̄T, 0 < γ̄ < α

α+2 , 0 < α < 1
2 ,

ρup(TOLT) = TOL−rT , r > 0,
(1.24)

and with the standard notation for the function sign, that is sign(x) = 1 for
x ≥ 0 and −1 for x < 0. The function ρ defined by (1.23) measures the density
of the time discretisation error; the stochastic time stepping algorithm uses it
in (2.20) and (2.21) to guide the mesh refinements, while the deterministic (path
independent) time stepping algorithm uses a sample average of it for the same
purpose; see (2.6) and (2.7). From now on, with a slight abuse of notation,
ρ(tn) = ρn denotes the modified density (1.23).

Following the error expansion in Theorem 1, the time discretization error is
approximated by

|ET | = |E
[
g(X(T ))− g(X(T ))

]
| . E

[
N∑

n=1

r(n)

]
(1.25)

using the error indicator, r(n), defined by

r(n) ≡ |ρ(tn)|∆t2n (1.26)

with the modified error density defined by (1.23). According to Corollary 4.3
and Theorem 4.5 in [19], we have the almost sure convergence of the error
density to a limit density denoted by ρ̂, ρ→ ρ̂ as TOLT ↓ 0.

2 Adaptive Algorithms and Multilevel Variance
Reduction

In this section we will describe two versions of the adaptive MLMC algorithm
suitable for different problem settings. The first algorithm version which we
present in Section 2.1 is designed for problems with deterministic time depen-
dence on the drift and the diffusion. This algorithm version constructs a mesh
hierarchy by adaptive refinements based on comparatively small sample sets
and then performs a greater number of realizations on the constructed meshes
to control the statistical error. The second algorithm version which we present
in Section 2.2 is designed for problems where stochastic effects motivate the
adaptive refinements. For this algorithm version the computational meshes are
constructed by adaptive refinements for each individual realization of the un-
derlying Wiener process.

2.1 Path independent time stepping

We recall that for a given SDE (1.1), function g : Rd → R, and tolerance
TOL > 0, our goal is to construct an MLMC algorithm for which the event

∣∣AML
(
g
(
X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ ≤ TOL,
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holds with probability close to one for the MLMC estimator AML
(
g
(
X (T )

)
;M0

)

defined by (1.3). We approach this goal by splitting the above approximation
error as follows
∣∣AML

(
g
(
X (T )

)
;M0

)
− E[g(XT )]

∣∣
≤
∣∣E
[
g(XL(T ))− g(X(T ))

]∣∣
︸ ︷︷ ︸

=:ET

+
∣∣AML

(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣
︸ ︷︷ ︸

=:ES

,

and control the total error by requiring that the time discretization error fulfills
ET . TOLT and the statistical error fulfills ES ≤ TOLS, where the tolerance
also have been split into a time discretization error tolerance and a statistical
error tolerance,

TOL = TOLT + TOLS.

The computations then naturally divides into two phases. The first phase, con-
sisting of Algorithm 1 and Algorithm 2, constructs a hierarchy of grids to control
the time discretization error ET . The second phase, consisting of Algorithm 3
and Algorithm 4, computes a sufficiently large number of Euler–Maruyama re-
alizations (1.5) on the constructed hierarchy of grids to ensure that ES ≤ TOLS,
with probability close to one.

2.1.1 Generating the mesh hierarchy

We start with generating a hierarchy of meshes {∆t`}L`=0 for numerical approx-
imation of the SDE (1.1). The meshes are sequentially and adaptively refined
from a given initial mesh ∆t−1 such that ∆t`−1 ⊂ ∆t` for all ` ∈ {0, 1, . . . , L}.
On level ` the grid is constructed with the aim that the time discretization error
in the approximation of E

[
g(X`(T ))

]
fulfills

∣∣∣E
[
g(X`(T ))− g(X(T ))

]∣∣∣ < 2L−`TOLT =: TOLT,`, (2.1)

where X`(T ) denotes an Euler–Maruyama approximation of the SDE (1.1) on
the grid ∆t`. The number of grid levels L is chosen so that the largest tolerance

TOLT,0 = 2LTOLT, (2.2)

is much larger than TOLT and results in quite coarse meshes on the lower
levels ∆t0,∆t1, . . .. To be more precise, with a rough estimate of the magnitude
of E[g(X(T ))] taken into account we prescribe an upper bound TOLT,Max for
TOLT,0 and determine L by the equation

L = blog2(TOLT,Max/TOLT)c. (2.3)

The inputs in Algorithm 1 are: initial mesh ∆t−1, initial number of sample
realizations M−1, time discretization error tolerance TOLT, grid levels L, initial
estimate of the number of time steps on the accepted coarse mesh N 0, and
the three parameters CR, CS, and R which are all used in the refinement and
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stopping conditions (2.7), (2.6), and (2.10), respectively. We choose the initial
estimated number of time steps N 0 as a small integer no smaller than the
number of steps in ∆t−1. For smaller tolerances, ` > 0, the initial guess is
calculated according to N `,init = 2N `−1,accepted.

The grid refinement algorithm uses sample averages and sample variances
of computed error indicators (1.23). With this in mind, we introduce some
notation. Consider a set of M independent, identically distributed samples
from the probability domain, and for such a sample set, introduce the sample
average operator

A(f ;M) :=
1

M

M∑

i=1

f(ωi) (2.4)

and, similarly, define the sample variance operator

V(f ;M) :=
1

M − 1

M∑

i=1

(
f(ω)−A(f ;M)

)2

. (2.5)

When refining the grid ∆t`. the sampled error indicators r`(n), as defined in
equation (1.26), are computed for all the time steps of the grid. Let N` denote
the number of time steps and N ` be an estimate of N` as described above.
Then, if the stopping condition

max
1≤n≤N`

A(r`(n);M`) < CS
TOL`

N `

, (2.6)

is fulfilled, the grid is accepted and the refinements stop; otherwise the n-th
time step is refined by splitting it into two equal parts if

A(r`(n);M`) ≥ CR
TOL`

N `

. (2.7)

Normally, the value for CR would be around 2, and one must take CS > CR

following the theory developed in [20, 19].
The adaptive refinements of the computational grid are based on the sample

averaged error indicators A(r`(n);M`). To estimate the mean error indicators
E[r`(n)] with sufficient accuracy, we need a mechanism for deciding how many
samples to use in the sample averages. With E∆t` denoting the computed esti-
mate of the time discretization error, i.e.,

E∆t` =

N∑̀

n=1

A(r`(n);M`) , (2.8)

a reasonable reliability requirement is
√

Var(E∆t )̀ < RE[E∆t` ], (2.9)

for some suitably chosen 0 < R < 1. (In our numerical examples, for instance,
we use R = 0.2.) The variance of E∆t` is however unknown, but the i.i.d.
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distribution of the error indicators sampled motivates the approximation

Var(E∆t )̀ ≈
V
(∑N`

n=1 r`(n);M`

)

M`
for ` = 0, 1, . . . , L.

We consequently approximate the reliability requirement (2.9) by

√√√√V
(∑N`

n=1 r`(n);M`

)

M`
< R E∆t` , for ` = 0, 1, . . . , L, (2.10)

where the number of sample realizations M` used on level ` in the grid con-
struction phase is increased by repeated doubling, i.e., M`,new = 2M`,old, un-
til inequality (2.10) is satisfied. The initial batch size at each level is set by
M` = M`−1, where we for the moment let M`−1 denote the stopped number of
samples at level ` − 1, and for level ` = 0 it turns out to be sufficient to use
initial batch size M0 = M−1 with

M−1 = const · TOL−1
T . (2.11)

The adaptive algorithm that generates the above described mesh hierarchy
for the deterministic time step version of the MLMC algorithm is presented in
Algorithm 1–2 in Section 2.3.

2.1.2 Multilevel simulations on a given hierarchy

In the second phase we will describe the algorithms which ensure that our
MLMC estimate of E

[
g(XL(T ))

]
fulfills the statistical error bound

ES =
∣∣AML

(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ ≤ TOLS, (2.12)

with probability close to one. We recall from (1.3) that the MLMC estimator
is defined by

AML
(
g
(
X (T )

)
;M0

)
= A

(
g(X0(T ));M0

)
+

L∑

`=1

A
(
g(X`(T ))− g(X`−1(T ));M`

)
,

(2.13)
where the realization pairsX`(T ;ωi,`) andX`−1(T ;ωi,`) of the summands g(X`(T ;ωi,`))−
g(X`−1(T ;ωi,`)) for each level ` > 0 are generated by the Euler–Maruyama
method (1.5) using the same Brownian path W (t;ωi,`) on the respective dif-
ferent temporal meshes ∆t` and ∆t`−1 that were computed by Algorithm 1.
Furthermore, all Brownian paths {W (t;ωi,`)}i,` are independent, and the num-
ber of samples at the coarsest level is set to M0 = 2L+dCMLLe+1 for a suitable
constant CML ∈ (0, 1), cf. Remark 3, and the number of samples on higher levels
is expressed in terms of M0 by the ratio

M` =
M0

2L

⌈
2L
ρlow(TOLT,0)TOLT,`

ρlow(TOLT,`)TOLT,0

⌉
, ` = 1, . . . , L, (2.14)
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where ρlow is the lower bound for the error density introduced in (1.24) and d·e
denotes rounding upwards to the nearest integer. The enforced lower bound for
the sample sets {M`}L`=0 implies that ML →∞ as TOL ↓ 0, and this motivates
the approximation of

AML
(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]
√

Var
(
AML

(
g
(
X (T )

)
;M0

))

by a normal distributed random variable; see Lemma 8 in Section 4 for a jus-
tification of this approximation for the stochastic time step setting. Relying
on this approximation, the statistical error (2.12) will be controlled by bound-

ing the MLMC estimator variance
√

Var
(
AML

(
g
(
X (T )

)
;M0

))
≤ CCTOLS, for a

given positive confidence parameter CC . The variance Var
(
AML

(
g
(
X (T )

)
;M0

))

is however unknown, so we introduce the following approximation

Var
(
AML

(
g
(
X (T )

)
;M0

))
≈ V

(
g(X0(T ));M0

)

M0
+

L∑

`=1

V
(
g(X`(T ))− g(X`−1(T ));M`

)

M`

︸ ︷︷ ︸
=:σ2

.

(2.15)
Our stopping criterion for the Monte Carlo simulations then becomes

σ <
TOLS

CC
. (2.16)

Until this condition is fulfilled, the number of samples are iteratively doubled
(M0 = 2M0) and the number of samples at the levels {M`}L`=1 are updated
according the ratio (2.14), and a new sample estimate AML

(
g
(
X (T )

)
;M0

)
is

generated using the MLMC estimator (2.13). Having determined M0, we lastly
generate and return the output MLMC estimate AML

(
g
(
X (T )

)
;M0

)
.

The probability of controlling the statistical error, i.e., fulfilling the event (2.12)
depends on the chosen value for the confidence parameter CC. For example, with
CC = 1.65 the event

∣∣AML
(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ < CC σ,

occurs with probability greater than 0.9, asymptotically as TOL ↓ 0. See Al-
gorithm 3–4 in Section 2.3 for more details on the MLMC algorithms approxi-
mating E

[
g(XL(T ))

]
in the path independent time step setting.

2.2 Fully stochastic time stepping

In this subsection we describe the MLMC algorithm for approximating E[g(X(T ))]
in the setting with adaptive stochastic time steps.

Quite similar to the setting of path independent time steps, the error con-
trol of the MLMC estimate

∣∣AML
(
g
(
X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ is in this setting
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based on constructing numerical realizations X`(t) on stochastic adaptively re-
fined meshes ∆t` so that the time discretization errors

∣∣∣E
[
g(X`(T ))− g(X(T ))

]∣∣∣ . TOLT,`, for ` = 0, 1, . . . , L, (2.17)

are fulfilled, and by determining the number of samples M0 to ensure that the
statistical error

∣∣AML
(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ ≤ TOLS, (2.18)

is fulfilled, with a given confidence.
The statistical error (2.18) is controlled very similarly as in the setting of

path independent time steps:

1. set the initial of samples used in the MLMC estimator (2.13) as M0 =
2L+dCMLLe+1 with CML ∈ (0, 1), cf. Remark 3;

2. configure the number of samples M` on higher levels in terms of M0 by
the ratio (2.14);

3. generate realizations {X`(T )} for the MLMC estimatorAML
(
g
(
X (T )

)
;M0

)

and compute the sample variance σ2 as defined in (2.15);

4. If the stopping condition (2.16) is fulfilled, generate a last output MLMC
estimate AML

(
g
(
X (T )

)
;M0

)
and break. Otherwise, set M0 = 2M0, update

the stochastic algorithm parameters estimating the average number of
time steps on each grid level,5 and return to step 2.

For the `-th sample average summand ofAML
(
g
(
X (T )

)
;M0

)
, i.e., A

(
g(X0(T );M0

)

if ` = 0 and A
(
g(X`(T )− g(X`−1(T ));M`

)
if ` > 0, the algorithm generates M`

Euler–Maruyama realization pairs6, (X`−1(T ), X`(T )) according to (1.5) with
the time discretization errors respectively bounded by TOLT,`−1 and TOLT,` in
the sense (2.17). The realization pairs are constructed by stochastic adaptive
refinements of a given initial mesh ∆t−1. The realizations in a realization pair
(X`−1(T ), X`(T )) are respectively generated on the adaptively refined meshes
∆t`−1 and ∆t`. These meshes are determined by iteratively refining an ini-
tial mesh ∆t−1. First, ∆t−1 is adaptively refined to a mesh ∆t0 on which∣∣E
[
g(X0(T ))− g(X(T ))

]∣∣ . TOLT,0 is fulfilled. Thereafter, ∆t0 is adaptively

refined to a mesh ∆t1 on which
∣∣E
[
g(X1(T ))− g(X(T ))

]∣∣ . TOLT,1 is fulfilled.
This iterative refinement procedure continues until the mesh ∆t`−2 is adaptively
refined to generate the first output mesh ∆t`−1 and, lastly, ∆t`−1 is adaptively
refined to generate the second output mesh ∆t`.

The iterative adaptive mesh refinement procedure in Algorithm 5 ensures
that a mesh ∆t` for the fine realization in a pair (X`−1(T ), X`(T )) is de-
termined in the same way as a mesh ∆t` for the coarse realization in pair

5See Algorithm 6 for details on the parameter update.
6Observe that for the level ` = 0 only the realizations of X0(T ) are generated.
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(X`(T ), X`+1(T )), and consequently that E
[
X`(T )

]
when computed from the

finer realization in a pair (X`−1(T ), X`(T )) is equal to E
[
X`(T )

]
when com-

puted from the coarse realization in a pair (X`(T ), X`+1(T )). This property is
useful since it implies that the following consistency condition for our MLMC
estimator is fulfilled

E
[
AML

(
g
(
X (T )

)
;M0

)]
= E

[
g(XL(T ))

]
.

Let us next take a closer look at the mesh refinement. Due to the stochastic
nature of SDEs, each realization pair (X`−1(T ), X`(T )) may refine the initial
mesh ∆t−1 differently. In particular, meshes corresponding to different realiza-
tions on a given level ` may differ. To describe the mesh refinement, taking this
feature into account, we introduce some notation. Let N` and N ` denote the
number of time steps and the approximate average number of time steps for
realizations at level `, respectively; see Algorithm 6 for details on the approxi-
mation technique and its update through the iteration. Further, denote the grid
corresponding to one realization at level ` by

∆t` = [∆t`(0), . . . ,∆t`(N` − 1)] , (2.19)

and its corresponding Wiener increments by

∆W` = [∆W`(0), . . . ,∆W`(N` − 1)] .

The refinement condition is based on the error indicator r`, defined in (1.26),
and uses similar refinements to those in the single level method. The refinements
of ∆t` are stopped when

max
1≤n≤N`

r`(n) < CS
TOLT,`

N `

. (2.20)

As long as inequality (2.20) is violated, the nth time step of ∆t` is refined if

r`(n) ≥ CR
TOLT,`

N `

. (2.21)

Normally, the value for CR would be around 2, and CS > CR following the
theory developed in [20, 19].

A detailed description of the adaptive MLMC algorithm is given in Algo-
rithm 5 with subroutines Algorithm 6–7 in Section 2.3.

The inputs in Algorithm 5 are: TOLS, TOLT, initial number of sample
realizations M0, L, ∆t−1, initial guesses for the mean number of time steps
{N `,init}L`=0 of the accepted meshes from the adaptive refinements, and the
three parameters CR, CC, and CS used in the refinement condition (2.21) and
stopping conditions (2.16) and (2.20), respectively. In this algorithm the initial
estimate of the mean number of time steps are chosen as N `,init = cTOLT,`

−1,
for ` = 0, . . . , L and a constant c such that N 0,init is a small integer; in the
numerical examples in Section 3 the constant was chosen so that N 0,init ≈ 10.
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2.3 Algorithm Listings

Algorithm 1: Adaptive Generation of a Mesh Hierarchy

Input : TOLT, M−1, ∆t−1, L, N 0, CR, CS, R
Output: {∆t`}L`=0, ML

for ` = 0, 1, . . . , L do
Set keep sampling = TRUE, keep refining = TRUE,
∆t` = ∆t`−1, M` = M`−1, and TOLT,` = 2L−`TOLT.
while keep sampling or keep refining do

Set keep sampling = FALSE, keep refining = FALSE

Compute r`, E∆t` , and V
(∑N`

n=1 r`(n);M`

)
by calling

Algorithm 2: Euler(M`, ∆t`)

if V
(∑N`

n=1 r`(n);M`

)
and E∆t violates (2.10) then

Set keep sampling = TRUE
Update the number of samples by
M` = 2M`

else
if r` violates (2.6) then

Set keep refining = TRUE
Refine ∆t` by
forall intervals n = 1, 2, . . . , N` do

if r`(n) satisfies (2.7) then
divide the interval n into two equal parts

end
end
Set N ` = max {N `,newN`}.

end
end

end
Set N `+1 = 2 N `

end

Algorithm 2: Euler

Input : M`, ∆t`

Output: r`, E∆t` , V
(∑N`

n=1 r`(n);M`

)

Compute M` new realizations of X` on ∆t` by Euler–Maruyama
method (1.5) and use them to compute the error indicators r`(n) on ∆t`

by equation (1.26), E∆t` by equation (2.8), and V
(∑N`

n=1 r`(n);M`

)
by

equation (2.5).
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Algorithm 3: Multilevel Monte Carlo on a Mesh Hierarchy

Input : TOLS, M0, L, {∆t`}L`=0, CC

Output: µ = AML
(
g
(
X (T )

)
;M0

)

Set k = 0.
while k < 1 or (2.16) is violated do

Set µ = 0 and σ2 = 0.
for ` = 0, 1, . . . , L do

Set M` as in (2.14)
if ` = 0 then

Call Algorithm 4: Euler(M0, {∆t0}).
Set µ = µ+A

(
g
(
X0(T )

)
;M`

)

and σ2 = σ2 +
V(g(X0(T ));M0)

M0
.

else
Call Algorithm 4: Euler(M`, {∆t`,∆t`−1}).
Set µ = µ+A

(
g
(
X`(T )

)
− g

(
X`−1(T )

)
;M`

)

and σ2 = σ2 +
V(g(X`(T ))−g(X`−1(T ));M`)

M`
.

end
end

if σ violates (2.16) then
Update the number of samples by
M0 = 2M0

end
Increase k by 1

end

Generate and return the output µ = AML
(
g
(
X (T )

)
;M0

)
according

to (2.13).

Algorithm 4: Euler

Input : M, {∆t`}`=l0,l1
Output: V

(
g
(
X0(T )

)
;M
)
, A
(
g
(
X0(T )

)
;M
)

if l0 = l1 = 0 or

V
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)
, A
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

if
l0 6= l1

Simulate M new outcomes of the Wiener process W (t) on ∆t`1 ⊇ ∆t`0 .
if l0 = l1 = 0 then

Compute the corresponding realizations of X0 on ∆t0 and use them to
compute A

(
g
(
X0(T )

)
;M
)

and V
(
g
(
X0(T )

)
;M
)

by (2.4) and (2.5).
else

Compute the corresponding realizations of X`1 and X`0 on ∆t`1 and
∆t`0 and use them to compute A

(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

and

V
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

by (2.4) and (2.5).
end

18



Algorithm 5: Multilevel Monte Carlo with stochastic time stepping

Input : TOLS, TOLT, M0, ∆t−1, L, {N `}L`=0, CR, CS, CC

Output: µ = AML
(
g
(
X (T )

)
;M0

)

Set k = 0.
while k < 1 or (2.16) is violated do

Compute M0 new realizations of g
(
X0(T )

)

and their corresponding number of time steps, {N0,m}M0
m=1,

by generating Wiener increments {∆W−1,m}M0
m=1 on the mesh ∆t−1

(independently for each realization m) and calling Algorithm 7:
ATSSE(∆t−1,∆W−1,m,TOLT2L,N 0).

Set µ = A
(
g
(
X0(T )

)
;M0

)
and σ2 =

V(g(X0(T ));M0)
M0

.
Compute the average number of time steps A(N0;M0).
for ` = 1, . . . , L do

Set M` as in (2.14)

Compute M` new realizations of g
(
X`−1(T )

)
,

their corresponding number of time steps, {N`−1,m}M`
m=1, and

Wiener increments, {∆W`−1,m}M`
m=1, by generating Wiener steps

{∆W−1,m}M0
m=1 on the mesh ∆t−1 (independently for each

realization m) and using the loop

for ˆ̀= 0, . . . , `− 1 do
compute ∆tˆ̀,m and ∆Wˆ̀,m by calling Algorithm 7:

ATSSE(∆tˆ̀−1,m,∆Wˆ̀−1,m,TOLT2L−
ˆ̀
,N ˆ̀).

end

Compute the corresponding M` realizations of g
(
X`(T )

)
and

their number of time steps, {N`,m}M`
m=1, by calling Algorithm 7:

ATSSE(∆t`−1,m,∆W`−1,m,TOLT2L−`,N `).
Set µ = µ+A

(
g
(
X`(T )

)
− g

(
X`−1(T )

)
;M`

)
and

σ2 = σ2 +
V(g(X`(T ))−g(X`−1(T ));M`)

M`
.

Compute the average number of time steps A(N`−1;M`) and
A(N`;M`).

end

if σ violates (2.16) then
Update the number of samples by
M0 = 2M0.
Update the values of {N`}L`=0 by calling Algorithm 6:
UMNT ({M`}L`=0, {A(N`;M`)}L`=0, {A(N`−1;M`)}L`=1).

end
Increase k by 1.

end

Generate and return the output µ = AML
(
g
(
X (T )

)
;M0

)
according

to (2.13).
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Algorithm 6: Update for the mean number of time steps, (UMNT)

Input : {M`}L`=0, {A(N`;M`)}L`=0, {A(N`−1;M`)}L`=1

Output: {N`}L`=0

for ` = 0, 1, . . . , L do
if ` < L then

Set N ` = M`A(N`;M`)+M`+1A(N`;M`+1)
M`+M`+1

.

else
Set NL = A(NL;ML).

end
end

Algorithm 7: Adaptive Time Step Stochastic Euler (ATSSE)

Input : ∆tin,∆Win, TOL, N in

Output: ∆tout,∆Wout, Nout, gout
Set k = 0, ∆t[0] = ∆tin, ∆W[0] = ∆Win, N[0] = number of steps in ∆tin
while k < 1 or (r[k−1]; TOL,N in) violates (2.20) do

Compute the Euler approximation X [k] and the error indicators r[k]

on ∆t[k] with the known Wiener increments ∆W[k].

if (r[k]; TOL,N in) violates (2.20) then
Refine the grid ∆t[k] by
forall intervals n = 1, 2, . . . , N[k] do

if r[k](n) satisfies (2.21) then
divide the interval n into two equal parts

end
end
and store the refined grid in ∆t[k+1].
Compute ∆W[k+1] from ∆W[k] using Brownian bridges on ∆t[k+1].
Set N[k+1] = number of steps in ∆t[k+1].

end
Increase k by 1.

end
Set ∆tout = ∆t[k−1], ∆Wout = ∆W[k−1], Nout = N[k−1], gout = g(X [k−1]).

3 Numerical Experiments

This section presents numerical results from implementations of the algorithms
of Section 2. We have selected problems to indicate the use of the adaptive
methods. Specifically, uniform time steps are suitable for problem 3.1, adap-
tively refined deterministic time steps are suitable for problem 3.2, and fully
stochastic time steps are suitable problem 3.3. In both problems 3.2 and 3.3
the use of the multilevel adaptive algorithms is much more efficient than the
use of the corresponding single level versions of the algorithms, which is in turn
much more efficient than using a single level uniform time stepping method.
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For those problems the complexity is close to that of uniform MLMC, since the
observed order of strong convergence remains close to 1/2 even though the order
of weak convergence is reduced using uniform time steps. The current adaptive
algorithm is not optimized with respect to the strong error, but is subject to
ongoing research as an extension of the present adaptive algorithm.

The computations were performed in Matlab 7 using the built in pseudo
random number generator randn for simulating sampling from the normal dis-
tribution. For the parameter in the refinement criteria (2.7) and (2.21) we used
CR = 2 in all the cases, and for the parameter in the stopping criteria (2.6)
and (2.20) we used CS = 5 in problems 3.2 and 3.3, and CS = 3 in problem 3.1
where we expect uniform refinements and all error indicators of the same size.
In all examples the error tolerance was split equally, TOLS = TOLT = TOL/2;
the proof of Theorem 3 indicates that this choice is not optimal.

3.1 A Linear SDE

Consider first the standard geometric Brownian Motion,

dX(t) = rX(t)dt+ σX(t) dW (t), t ∈ (0, T ),

X(0) = 1,

using r = 1 and σ = 0.5 with a final time T = 1 and g(x) = x.
In this simple example adaptive time stepping is not expected to improve

the time discretization error. In fact, the path independent adaptive algorithm
produces a hierarchy of uniform grids, and when the fully stochastic adaptive
algorithm is applied to this problem all generated meshes are uniform but dif-
ferent realizations of the driving Wiener process may result in different step
sizes. The computational cost, measured as the total number of time steps,
in all stages in the adaptive refinements, for all realizations of the Euler ap-
proximation X , is shown in Figure 1. For both versions of the algorithm, the
computational cost is consistent with, but slightly better than, the main com-
plexity result in Theorem 3 of Section 4, from which we get an upper bound
cost ≤ C(TOL−1 log (TOLT,0/TOL))2. The work measured this way is very
similar in the two versions of the algorithm. However, the version in Section 2.1
is more efficient in this case since it only computes dual solutions in the con-
struction of the mesh hierarchy which is of negligible cost7, while the version in
Section 2.2 computes both primal and dual for every realization. The accuracy
of both versions of the algorithm is shown in Figure 2.

The work we measure in Figure 1 is greater than the work analyzed in
Section 4, which only counts the number of Euler steps used on the accepted
meshes. The comparison made in Table 1 shows the same growth rate as TOL ↓
0 when the fully stochastic adaptive algorithm is applied to problem 3.1.

7See Figure 3 for problem 3.2.
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Figure 1: Experimental complexity for both versions of the algorithm applied
to the geometrical Brownian motion example of Section 3.1; to the left the
version of mesh creation followed by sampling on fixed meshes, in Section 2.1,
and to the right the path dependent sampling version in Section 2.2. The
computational cost is measured as the total number of Euler time steps taken
in all refinement iterations on all levels for all realizations. The graphs show
three independent realizations of the underlying Wiener processes for each
prescribed tolerance. A least squares fit, in log2 – log2-scale, of the model
cost = c1TOL−c2(1 + log2 (TOLT,0/TOL))2 gives c2 = 1.7 and c2 = 1.8 in
the two cases respectively; this is slightly better than the prediction of Theo-
rem 3 of Section 4
The pronounced clustering of data points in the left graph is primarily due to
the fact that the tolerance changes by a constant factor 21/4 and for this exam-
ple the adaptive algorithm generates uniform meshes by repeated halving of the
same initial uniform mesh; the effect is that several consecutive tolerances result
in identical mesh hierarchies, while only the number of samples changes. With
the pathwise adaptive algorithm, to the right, the generated meshes are again
uniform for geometric Brownian motion, but the resolution may be different for
each individual outcome of the Wiener process; again the number of levels will
be constant for four consecutive tolerances since it is decided by the requirement
that TOLT,0 = 2LTOLT,L is smaller than a fixed constant.
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Figure 2: These accuracy tests show the error versus the prescribed tolerance
when the adaptive MLMC algorithm is applied to the test examples of Section 3;
to the left the version of Section 2.1 applied to the geometric Brownian motion
in Section 3.1 (top) and the singularity problem in Section 3.2 (bottom), and to
the right the version of Section 2.2 applied to the geometric Brownian motion
in Section 3.1 (top) and the stopped diffusion problem in Section 3.3 (bottom).
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sampled randn’s accepted Euler steps all Euler steps
Problem Version c1 c2 c1 c2 c1 c2
GBM, Sec. 2.1 6.9 1.7 – – 7.0 1.7
GBM, Sec. 2.2 6.1 1.7 6.5 1.8 7.0 1.8
Sing., Sec. 2.1 13.2 2.0 – – 13.4 2.0
Barrier, Sec. 2.2 8.2 1.9 8.8 1.9 9.5 2.1

Table 1: Complexity estimates for the three different problems: the geometric
Brownian motion of Section 3.1, the deterministic singularity problem of Sec-
tion 3.2, and the stopped diffusion problem of Section 3.3. The tabulated values
are least square fits of the parameters c1 and c2 in the model
log2 (cost) = c1 + log2

(
TOL−c2(1 + log2 (TOLT,0/TOL))2

)

when the cost is measured in three different ways: by counting the total number
of sampled random variables, by the number of accepted Euler steps
A[cost] = M0A(N0;M0) +

∑L
`=1M`{A(N`;M`) +A(N`−1;M`)}

which is approximated by the work estimate defined in (4.2), and by counting
the total number of Euler steps performed when solving the primal problem
in all refinement stages for all levels in the multilevel algorithms. The cost
when counting Euler steps in the accepted meshes only was not recorded in the
experiments using the path independent version of the algorithm, but it is by
necessity bounded from below and above by the other two measures of the work.

3.2 Drift singularity, linear SDE

Consider for a real constant α ∈ (0, T ) the linear stochastic differential equation

dX(t) =

{
X(t) dW (t), t ∈ [0, α],
X(t)

2
√
t−α dt+X(t) dW (t), t ∈ (α, T ],

(3.1)

X(0) = 1,

with the unique solution

X(t) =

{
exp
(
W (t)− t/2

)
, t ∈ [0, α],

exp
(
W (t)− t/2

)
exp(
√
t− α), t ∈ (α, T ].

The goal is to approximate the expected value E[X(T )] = exp(
√
T − α). Here

we choose T = 1 and α = T/3. To avoid evaluating arbitrarily large values of
the drift in (3.1) we modify the drift to be

a(t, x) =

{
0, t ∈ [0, α],

x

2
√
t−α+TOL4

, t ∈ (α, T ],
(3.2)

yielding a higher order perturbation O
(
TOL2

)
in the computed result and in

the size of the optimal time steps. This regularization was applied to maintain
consistency with the numerical tests in [19], but is not strictly necessary with
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the upper bound, ρ ≤ ρup(TOL), on the error density in (1.24). Due to the
time discontinuity of the drift function and to ensure optimal convergence of
the adaptive algorithms, we modify the Euler method to

Xn+1 −Xn = a(t̂, Xn) ∆tn +Xn ∆Wn, n = 0, 1, 2, . . . , (3.3)

where we choose the stochastic evaluation time t̂ ∈ {tn, tn+1} so that

∣∣a(t̂, Xn)
∣∣ = max

(∣∣a(tn, Xn)
∣∣ ,
∣∣a(tn+1, Xn)

∣∣).

Observe that the use of t̂ does not change the adapted nature of the Euler
method.

Since the added difficulty compared to example 3.1 is a singularity in the
drift at a deterministic time, the path independent adaptive algorithm described
in Section 2.1 is the most suitable, and it is used in this example. The goal here
is to verify that the adaptive multilevel algorithms of Section 2 give the same
improvement from the single level adaptive algorithm as multilevel Monte Carlo
does in the uniform case for regular problems.

The accuracy test in Figure 2 shows good agreement between observed error
and prescribed tolerance. As shown in the complexity study in Table 1 and Fig-
ure 3 the computational costs grow like TOL−1.8(1+log (TOLT,0/TOL))2 which
is slightly better than the predicted complexity TOL−2(log (TOLT,0/TOL))2.
The cost of the mesh construction phase of the algorithm is seen to be negligi-
ble compared to the total work.

In this example the weak rate of convergence for the Euler–Maruyama method
with uniform time steps is only 1/2, so the total cost for a single level uniform
time stepping algorithm is proportional to TOL−4. The left part of Figure 4
shows that the single level version of the adaptive algorithm improves that
complexity to approximately TOL−3, while the multilevel version improves the
complexity by nearly one order more. With the regularization (3.2) the ob-
served order of strong convergence of the Euler–Maruyama method with uni-
form time steps is still 1/2, so the complexity estimate in Theorem 1 of [7] for
uniform multilevel simulations applies, and we should get the ideal complexity
(ε−1 log (ε−1))2 for a mean square error of size ε2. The right part of Figure 4
shows that this is approximately true for the cost as a function of the maximal
observed error over 11 independent realizations.

3.3 Stopped diffusion

Here we compute the solution of a more challenging problem that motivates the
use of stochastic time steps that are adaptively refined for each sample path.

The additional difficulty of the problem is that we now wish to compute
approximations of an expected value

E[g(X(τ), τ)], (3.4)
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Figure 3: Experimental complexity when the algorithm in Section 2.1 is applied
to the drift singularity problem in Section 3.2. To the left is shown the cost
of both phases of the algorithm, and to the right the contribution from the
generation of the mesh hierarchy and the subsequent sampling to reduce the
statistical error; it is clear that the cost of the first phase is negligible compared
to the second for small tolerances. The computational cost is measured as
the total number of Euler time steps taken in all refinement iterations on all
levels for all realizations. The graphs show three independent realizations of
the underlying Wiener processes for each prescribed tolerance. A least squares
fit, in log2 – log2-scale, of the model cost = c1TOL−c2(1+log2 (TOLT,0/TOL))2

gives c2 = 1.8.
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Figure 4: The computational cost of the path independent adaptive algorithm
of Section 2.1, applied to the deterministic singularity problem 3.2, is compared
to several alternatives. Left: the multilevel version improves the computa-
tional complexity of the single level version of the same adaptive algorithm
from approximately proportional to TOL−3 to approximately proportional to

TOL−2 log (TOL−1)
2
. Right: the cost of a standard, uniform time step, Monte

Carlo method would be proportional to TOL−4; here the work was estimated
from a Central Limit Theorem type confidence interval based on the time dis-
cretization errors and sample variances. The cost of the uniform MLMC method
is shown as a function of the maximal error over 11 realizations. The observed
cost oscillates around (ε−1 log (ε−1))2, which is expected since the observed ob-
served strong order of convergence is 1/2.
For the adaptive algorithm the cost is estimated by the total number of Euler
steps taken on all levels in all stages of the adaptive refinement process.
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where X(t) solves the SDE (1.1) as before, but where the function g : D ×
[0, T ]→ R is evaluated at the first exit time

τ := inf{t > 0 : (X(t), t) 6∈ D × (0, T )}

from a given open domain D × (0, T ) ⊂ Rd × (0, T ). This kind of stopped
(or killed) diffusion problems arise for example in mathematical finance when
pricing barrier options and for boundary value problems in physics.

The main difficulty in the approximation of the stopped diffusion on the
boundary ∂D is that a continuous sample path may exit the given domain D
even though a discrete approximate solution does not cross the boundary of
D. Due to this hitting of the boundary the order of weak convergence of the
Euler–Maruyama method is reduced from 1 to 1/2, in terms of the step size of
uniform meshes; see [10]. In this subsection we combine the adaptive multilevel
algorithm of Section 2.2 with an error estimate derived in [5] that also takes into
account the hitting error. This error estimate, and the adaptive algorithm, can
be used also when D is multi dimensional even if the boundary ∂D has corners
for example.

The hitting error is accounted for by an extra contribution to the error
density in (1.23); this contribution can be expressed in terms of exit probabilities
for individual time steps, conditioned on the computed path at the beginning
and the end of the time steps, and of the change in the goal function, g, when
evaluated at a possible exit point within the time step instead of the actually
computed exit (X(τ̄), τ̄). The full expression of the resulting error indicators is
given in equation (50) of [5]. Since the differential ∂ig(X(T ), T ) in the discrete
dual backward problem (1.17) does not exist if T is replaced by τ̄ < T this initial
value must be alternatively defined; this can be done using difference quotients
with restarted computed trajectories as described, both for the discrete dual
and for its first and second variations, in equations (20-25) of [5]. Note that
for this modified error density the proof in [20] of almost sure convergence to a
limit density does not apply.

In addition to the modification of the error density a lower bound is intro-
duced on the step size to avoid excessive refinements near the barrier,

∆tn ≥ min

{
TOLT,`

1.5,
distndistn+1/b(X(tn;ω), tn)2

−3 log (TOLT,`)

}
, (3.5)

where distj denotes the distance from X(tj ;ω) to the barrier.
For the numerical example we consider the stopped diffusion problem

dX(t) =
11

36
X(t) dt+

1

6
X(t) dW (t), for t ∈ [0, 2] and X(t) ∈ (−∞, 2), (3.6)

X(0) = 1.6.

For g(x, t) = x3e−t with x ∈ R, this problem has the exact solution E[g(Xτ , τ)] =
u(X(0), 0) = X(0)3, where the solution, u, of the Kolmogorov backward equation
is u(x, t) = x3e−t. We chose an example in one space dimension for simplic-
ity, although it is only in high dimension that Monte Carlo methods are more

28



efficient than deterministic finite difference or finite element methods to solve
stopped diffusion problems. The comparison here between the standard Monte
Carlo and the Multilevel Monte Carlo methods in the simple one dimensional
example indicates that the Multilevel Monte Carlo method will also be more
efficient in high dimensional stopped diffusion problems, where a Monte Carlo
method is a good choice. In the case of a scalar SDE, where D is an inter-
val on the real line, the strong order of convergence of the Euler–Maruyama
scheme for barrier problems can be close to 1/2. In fact, it is shown in [8]that
Var
(
g(X`)− g(X`−1)

)
= O(∆t1−δ), for any δ > 0, using the Euler–Maruyama

method with uniform step size ∆t on a class of options including some barrier
options. In this case Theorem 3.1 of [7] tells us that, for any choice of δ > 0,
uniform MLMC simulations can be performed at a cost O(ε−2(1+δ)) for a mean
square error of order ε2.

In the remainder of this section we present results on the accuracy and cost
of the adaptive multilevel algorithm of Section 2.2, applied to (3.6), with the
error estimate modified for the barrier problem, and with the lower bound (3.5)
on the step size. The algorithm was applied with a sequence of tolerances
with three simulations for each tolerance using different initial states in the
pseudo random number generator. The observed errors are scattered below the
corresponding tolerances in Figure 2, showing that the algorithm achieves the
prescribed accuracy.

The experimental complexity is illustrated in Figure 5 and Table 1. A least
squares fit of the model

cost = c1

(
1

TOL

)c2 (
1 + log

(
TOLT,0

TOL

))2

(3.7)

in the log2-log2-scale of the graph using equal weights on all data points gives
c2 = 1.9 when the work is estimated by the total number of time steps on all
the accepted meshes; this is the measure of work that is estimated by (4.2) in
Section 4. When all Euler steps, in all refinement stages are included, the least
squares fit gives c2 = 2.1, which is also close to the rate predicted in Theorem 3.
However, the corresponding cost using the single level adaptive algorithm with
just one data point per tolerance used grows faster than TOL−3 in this example;
see Figure 6.

In conclusion the observed convergence of the adaptive MLMC method ap-
plied to the barrier problem (3.6) is close to the predicted rate in Theorem 3.
This shows an improved convergence compared to the single level version of
the adaptive Monte Carlo algorithm where the cost grows approximately like
TOL−3, which in itself is a better order of weak convergence than the one ob-
tained using a single level Monte Carlo method with constant time steps where
the cost grows like TOL−4.
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Figure 5: Experimental complexity for the barrier example in Section 3.3. The
computational cost of the multilevel adaptive algorithm is shown for varying
tolerances using three different initial states in the pseudo random number al-
gorithm. To the left is shown the work estimate based on the number of Euler
steps in the accepted meshes, A[cost] = M0A(N0;M0)+

∑L
`=1M`{A(N`;M`)+

A(N`−1;M`)}, which is the work measure closest to (4.2) used in Section 4; to
the right is shown the estimate based on all Euler steps taken in all stages in
the adaptive mesh refinement process. A least squares fit, in log2-log2-scale,
of the model cost = c1TOL−c2(log2 (1 + TOLT,0/TOL))2 with equal weight on
all observations results in c2 = 1.9 and c2 = 2.1 in the two cases. This is in
agreement with the prediction in Theorem 3.
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Figure 6: Left: The multilevel version of the path dependent adaptive algorithm
of Section 2.2 applied to the barrier problem 3.3 improves the computational
complexity of the single level version of the same adaptive algorithm; a sin-
gle level method based on uniform time steps has even worse complexity with
the computational cost growing like TOL−4. Right: The cost of the uniform
MLMC method is shown as a function of the maximal error over 16 realizations.
The observed cost is close to that of adaptive multilevel Monte Carlo, which is
expected since the observed observed strong order of convergence is 1/2, but
oscillates around a slightly worse fitted complexity ε−2.4(log (ε−1))2.
The cost is estimated by the total number of Euler steps taken on all levels in
all stages of the adaptive refinement process.
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4 Theoretical results

In this section we will study the asymptotic accuracy and complexity of the
MLMC algorithm in the setting of stochastic adaptive time steps introduced in
Section 2.2. We recall that for a sought accuracy TOL > 0, the goal of the
MLMC algorithm is to construct a Monte Carlo approximation of E[g(X(T ))]
that with probability close to one fulfills

∣∣E[g(X(T ))]−AML
(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL.

Our main result on asymptotic accuracy for MLMC algorithm, proved in Sub-
section 4.2, is

Theorem 2 (Multilevel accuracy). Suppose that the modeling assumptions of
Lemma 1 hold, that (4.7) holds, and that TOLT ≤ TOLS. Then the adap-
tive MLMC algorithm with confidence parameter CC > 0 and stochastic time
steps (2.20) and (2.21) satisfies

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL
)
≥
∫ CC

−CC

e−x
2/2

√
2π

dx.

(4.1)

The motivation for introducing multiple levels in the MC algorithm is to
reduce the computational complexity. To analyze the asymptotic complexity of
the adaptive MLMC algorithm we define

WORK(TOL) =
L∑

`=0

E[M`]E[N`], (4.2)

recalling that M` denotes the number of realization samples g(X`(T ;ω)) at level
` required to control the statistical error, and N` denotes the number of adaptive
time steps required in the construction of a numerical realization g(X`(T ;ω))
to control the time discretization error at level `. The function WORK(TOL)
is thus our estimate of the average number of arithmetic operations required in
the generation and sampling of {g(X`(T ))}L`=0 to approximate E[g(X(T ))] for
the prescribed confidence CC and accuracy TOL. By analyzing the asymptotics
of E[M`] and E[N`] separately, our main complexity theorem is as follows.

Theorem 3 (Multilevel computational complexity). Suppose the assumptions
of Lemma 1 and (4.7) hold and suppose the lower bound for the error density
is on the form ρlow(TOLT) = TOL γ̄T, cf. (1.24). Then the work for the MLMC
algorithm using stochastic time steps, as defined in (4.2), fulfills the following
bounds:

(I) If ρlow(TOLT) = ρmin ∈ R+ (i.e. γ̄ = 0) and

min
τ∈[0,T ]

|ρ̂(τ)| ≥ ρmin a.s. (4.3)
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then

lim sup
TOL↓0

WORK(TOL)TOL2

L2
≤ 16C2

C CG
TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.4)

(II) Let γ̄ be constant valued and satisfying 0 < γ̄ < α/(2 + α) with 0 < α <
1/2, cf. (1.24). Then

lim sup
TOL↓0

WORK(TOL)TOL2+γ̄

L

≤ (2 + γ̄)2+γ̄22+γ̄

γ̄1+γ̄ log(2)
· C2

C CG C
γ̄
S

(TOLT,Max)
1−γ̄

CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.5)

(III) If γ̄ → 0 and Lγ̄ →∞ as TOL ↓ 0, then

lim sup
TOL↓0

WORK(TOL)TOL2 γ̄

L 2γ̄L
≤ 16C2

C CG
log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.6)

Here, the number of levels L = O
(
log(TOL−1)

)
, CC is the confidence parame-

ter, CR and CS are refinement parameters described by (2.20) and (2.21), CG
is the constant in the second moment bound (4.43), where TOLT,Max is the up-
per bound of the time discretization tolerance at level ` = 0, and γ̄ is the lower
bound error density exponent; ρlow(TOLT) = TOL γ̄T, cf. (1.24).

Remark 1 (Complexity example). Case (III) of Theorem 3 implies that if the
exponent of the lower error density ρlow is given by γ̄(TOL) = log2(log2(L))/L,
then the following complexity bound, notably close to the standard complexity in
the setting of uniform time steps, is achieved:

lim sup
TOL↓0

WORK(TOL) TOL2 log2(log2(L))

L2 log2(L)

≤ 16C2
C CG

log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

To introduce the reader gently to our proofs of Theorem 2 and 3, we have
chosen to first prove analogous results for the SLMC algorithm in Subsection 4.1.
With the single level proofs fresh in mind, we move on to the more daunting task
of proving Theorem 2 and 3 in Subsection 4.2. We restrict ourselves to proving
Theorem 2 and 3 for the stochastic time step setting only. The stochastic
time step setting is however the most general setting, so one can easily prove
corresponding results for the deterministic time step setting as well.

33



In addition to Lemma 1, the analysis in this section will be derived relying
on one more technical assumption on strong approximations.

For p = 2 and 4, we have that

E
[∣∣g(X(T ))− g

(
X (T )

)∣∣p
]

= O
(

TOLT

ρlow(TOLT)

)p/2

E
[∣∣g
(
X (T )

)∣∣p
]

= O (1) ,

(4.7)

with ρlow(TOLT) denoting the lower bound for the error density, as defined
in (1.24). The work [24] gives conditions under which (4.7) is fulfilled.

4.1 Single level results

The SLMC algorithm we consider in this subsection, first described and analyzed
in [24], is reanalyzed here with the goal to construct proofs for the asymptotic
accuracy and complexity of the SLMC algorithm that are later extended to the
MLMC algorithm. In the first lemma we show that the adaptive refinement
Algorithm 7 stops after a finite number of iterations. This property allows us
to later bound the amount of computational work in the single level adaptive
algorithm. It also has another important implication: the imposed lower bound
on the error density, ρlow(TOLT) in (1.10), ensures that the maximum mesh size
of the mesh generated by Algorithm 7, ∆tsup(TOLT) introduced in Lemma 2,
tends to zero as TOLT tends to zero. This in turn implies the almost sure
convergence of the error density, which is crucial in the proofs of the main
results of this section. A similar result for the multilevel case is direct to obtain
and will not be stated for the sake of brevity.

Lemma 3 (Stopping). Suppose the adaptive Algorithm 7 applies the mesh re-
finement strategy (2.20) and (2.21) on a set of realizations having the same
uniform initial mesh of step size ∆t0. Further, assume that the estimated aver-
age number of time steps, N in, satisfies

N in < Nup :=
T 2ρup(TOLT)

CR TOLT

. (4.8)

Then, given a prescribed accuracy parameter TOLT > 0, the adaptive refinement
Algorithm 7 stops after a finite number of iterations.

Proof. The main idea of the proof is to use the uniform upper bound on the
error density, ρ̄ ≤ ρup(TOLT), according to (1.10). Given an initial mesh size
∆t0 with N0 time steps, Algorithm 7 satisfies both the stopping and the non-
refinement conditions, (2.20) and (2.21), for the uniform mesh size

∆̃t(TOLT) =
∆t0

max{1, 2k} , with k =

⌈
log2

(
ρup(TOLT)T ∆t0

CR TOLT

)⌉
. (4.9)

Furthermore, if during the refinement process one time step reaches the mesh
size ∆̃t(TOLT) then it cannot be refined further, according to (2.21) and (4.9).
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Since the number of possible refinements from the initial mesh size ∆t0 to the
mesh ∆̃t(TOLT) is bounded by N0 max{1, 2k}, there is only a finite number of
possible refinements. The proof is concluded by observing that the Algorithm 7
either stops or makes at least one refinement during each iteration.

The work [20] also proves a similar stopping result, cf. Theorem 3.2 in [20],
based on the assumption that the initial mesh is sufficiently refined so that the
error density does not vary too much between refinement levels. Then, when the
single level adaptive algorithm stops, one can prove asymptotic accuracy and
efficiency estimates on the resulting approximation. In contrast, here we make
essentially no assumption on the initial mesh size ∆t0: although the quality of
the resulting approximation for the lower levels of the multilevel estimator may
be poor, they have no influence in the bias of the multilevel approximation,
which is only determined by the finest level, L. Since L → ∞ as TOL ↓ 0 we
can still prove asymptotic accuracy and efficiency estimates. Finally, we observe
that assumption (4.8) is fulfilled in all practical cases since one should start the
adaptive algorithm with N in of the order of TOL−1

T , which is much smaller
than Nup.

The following proofs are inspired by the treatment by Chow and Robbins [3]
on the accuracy and complexity of sequential stopping rules for sampling i.i.d.
random variables.

We denote the SLMC sample average estimator of E[g(X(T ))] by

A
(
g(X(T ));M

)
=

M∑

i=1

g
(
X(T ;ωi)

)

M
,

where the realizations of X(T ) are generated on adaptive meshes and fulfill the
weak error bound

∣∣E
[
g
(
X (T )

)
− g(X(T ))

]∣∣ . TOLT. Here the total tolerance
TOL is split into a time discretization error tolerance and a statistical error
tolerance, TOL = CSTOLT +TOLS (Remark 2 discusses the optimal splitting).
Let 2N denote the set {2n|n ∈ N}. For the SLMC estimator, the number of
samples used in the sample average estimator to control the statistical error∣∣A
(
g(X(T ));M

)
− E

[
g
(
X (T )

)]∣∣ ≤ TOLS is a stochastic process M : R+ → 2N

defined by

M(TOLS) := the smallest k ∈ 2N+dlog2(TOL−1)e

such that V
(
g
(
X (T )

)
; k
)
<
kTOLS

2

C2
C

,
(4.10)

where the sample variance is defined by

V
(
g
(
X (T )

)
; k
)

=

k∑

i=1

(
g(X(T ;ωi))−A

(
g(X(T )); k

))2

k − 1
. (4.11)

Restricting the initial value of M to the set 2N+dlog2(TOL−1)e implies that that
limTOL↓0M = ∞. The asymptotic behavior of M as TOL ↓ 0 is crucial in our
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proofs of the asymptotic accuracy and complexity. When proving the asymp-
totically accuracy result of Theorem 4, M should increase sufficiently fast to
obtain the sought confidence. For the complexity result of Theorem 5, it is on
the other hand useful to bound M from above and ensure that it does not grow
too fast.

Lemma 4. Suppose the assumptions of Lemma 1 hold and (4.7) holds for at
least p = 2. Then

lim inf
TOL↓0

MTOL2
S

Var
(
g
(
X (T )

))
C2
C

= 1 a.s. and lim sup
TOL↓0

MTOL2
S

Var
(
g
(
X (T )

))
C2
C

= 2 a.s.

(4.12)

Proof. The strong convergence (4.7) for p = 2, gives limTOL↓0 V ar(g
(
X (T )

)
) =

V ar(g(X(T ))), which in particular means that there exists a constant T̃OL > 0
such that

Var(g(X(T )))

2
< Var

(
g
(
X (T )

))
< 2Var(g(X(T ))), ∀TOL ∈ (0, T̃OL].

(4.13)
The strong law of large numbers then implies that for all

lim
k→∞

V
(
g
(
X (T )

)
; k
)

= Var
(
g
(
X (T )

))
a.s. ∀TOL ∈ (0, T̃OL]. (4.14)

In order to prove (4.12), introduce the sequence of stochastic processes yk :

R+ → R+ sub-indexed by k ∈ 2N+dlog2(TOL−1)e and defined by

yk(TOL) =
V
(
g
(
X (T )

)
; k
)

Var
(
g
(
X (T )

)) . (4.15)

Using yk, definition (4.10) of M(TOLS) is equivalent to

M(TOLS) := the smallest k ∈ 2N+dlog2(TOL−1)e

such that yk(TOLS) <
kTOL2

S

Var
(
g
(
X (T )

))
C2
C

.

This gives rise to the bounds

yM (TOLS) <
MTOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2yM/2(TOLS). (4.16)

Combining (4.14) with definition (4.10), which ensures that limTOL↓0M = ∞,
we conclude that

lim
TOL↓0

V
(
g
(
X (T )

)
;M(TOLS)

)
= Var(g(X(T ))) > 0 a.s.

which implies that also limTOL↓0 yM (TOLS) = 1 a.s. Statement (4.12) then
follows by taking limits in (4.16).
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Having obtained asymptotic bounds for M , we are ready to prove the main
accuracy result for the SLMC algorithm.

Theorem 4 (Single level accuracy). Suppose the modeling assumptions of Lemma 1
holds, that (4.7) holds for at least p = 2, and that TOLT ≤ TOLS. Then, the
adaptive SLMC algorithm with confidence refinement parameter CC > 0, and
stochastic time steps (2.20) and (2.21), satisfies

lim inf
TOL↓0

P
(
|E [g(X(T ))]−A

(
g(X(T ));M

)
| ≤ TOL

)
≥
∫ CC

−CC

e−x
2/2

√
2π

dx. (4.17)

Proof. For a given δ > 0, we first bound the probability in (4.17) from below as
follows:

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−A

(
g(X(T ));M

)∣∣ ≤ TOL
)

≥ lim inf
TOL↓0

P
(∣∣E
[
g(X(T ))− g

(
X (T )

)]∣∣

+
∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ CSTOLT + TOLS
)

≥ lim inf
TOL↓0

P
(∣∣E
[
g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT

and
∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

= lim inf
TOL↓0

P
(∣∣E
[
g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT
)

× P
(∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

(4.18)

The proof is continued by analyzing the two product terms of the last line of
the inequality above separately:

The time discretization error. From the treatment of the time discretiza-
tion error for the single level case we refer to the proof of Theorem 3.4, p. 530
in [19] which shows that

lim sup
TOL↓0

∣∣E
[
g(X(T ))− g

(
X (T )

)]∣∣
TOLT

≤ CS .

Thereby,

lim inf
TOL↓0

P
(∣∣E
[
g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT
)

= 1.

The statistical error. For the above introduced δ > 0, define the family of
sets

Ωδ(TOLS) =

{
k ∈ 2N+dlog2(TOL−1)e

∣∣∣1− δ < kTOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2 + δ

}
.

(4.19)
By the convergence (4.12), we conclude that

lim
TOL↓0

P (M ∈ Ωδ) = 1.
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Recall that for the SLMC algorithm, the number of samples M is determined in
the step prior to generating the output A

(
g(X(T ));M

)
, so that M is indepen-

dent from A
(
g(X(T ));M

)
. Using this independence property, Fatou’s Lemma,

and Lindeberg-Feller’s version of the Central Limit Theorem, cf. Theorem 6,
yield that

lim inf
TOL↓0

P
(∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

= lim inf
TOL↓0

∑

k∈2N+dlog2(TOL−1)e

P
(∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

≥ lim inf
TOL↓0

∑

k∈Ωδ

P
(∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

+
∑

k∈2N+dlog2(TOL−1)e\Ωδ

lim inf
TOL↓0

P
(∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

≥ lim inf
TOL↓0

∑

k∈Ωδ

P

(
√
k

∣∣E
[
g
(
X (T )

)]
−A

(
g(X(T )); k

)∣∣
Var
(
g
(
X (T )

)) ≤ (1− δ)3/2CC

)
P (M = k)

≥
∫ (1−δ)3/2CC

−(1−δ)3/2CC

e−x
2/2

√
2π

dx.

(4.20)

The proof is finished by noting that the argument leading to inequality (4.20)
is valid for all δ > 0.

We conclude this subsection with a complexity analysis of the SLMC algo-
rithm. Similar to the definition of the work for the MLMC algorithm given
in (4.2), we define the SLMC work by

WORK(TOL) = E[M ]E[N ], (4.21)

where we recall that M denotes the number of samples of g
(
X (T )

)
required to

control the statistical error and N denotes the number of adaptive time steps
required in the construction of a numerical realization g(X(T ;ω)) to control
the time discretization error

∣∣E
[
g
(
X (T )

)
− g(X(T ))

]∣∣ ≤ TOLT. We start by
bounding E[M ].

Lemma 5. Suppose the assumptions of Lemma 1 and (4.7) hold. Then the
number of samples used in the approximation of E[g(X(T ))] is bounded by

lim sup
TOL↓0

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2. (4.22)

Proof. For a given δ > 0, define the deterministic function

M̃(TOLS) = min

{
k ∈ 2N+dlog2(TOL−1)e

∣∣∣ kTOL2
S

Var
(
g
(
X (T )

))
C2
C

> 1 + δ

}
.
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Assuming TOL is sufficiently small so that (4.13) holds, the relation (4.16),
the fourth moment bound (4.7) and k-Statistics bounds on the variance of the
sample variance, cf. [17], yield

P (M = 2M̃) ≤ P



V
(
g
(
X (T )

)
; M̃
)

Var
(
g
(
X (T )

)) > M̃
TOL2

S

Var
(
g
(
X (T )

))
C2
C




≤ P



V
(
g
(
X (T )

)
; M̃
)

Var
(
g
(
X (T )

)) > 1 + δ




≤ P
(
|V
(
g
(
X (T )

)
; M̃
)
−Var

(
g
(
X (T )

))
| > δVar

(
g
(
X (T )

)))

≤ 2E




∣∣∣V
(
g
(
X (T )

)
; M̃
)
−Var

(
g
(
X (T )

))∣∣∣
2

δ2Var
(
g
(
X (T )

))2




<
C

δ2M̃
,

Furthermore, for ` = 1, 2, . . . we get that

P (M = 2`+1M̃) ≤ P
(∣∣∣V
(
g
(
X (T )

)
; 2`M̃

)
−Var

(
g
(
X (T )

))∣∣∣ > 2`−1Var
(
g
(
X (T )

)))

≤ 2E




∣∣∣V
(
g
(
X (T )

)
; 2`M̃

)
−Var

(
g
(
X (T )

))∣∣∣
2

22(`−1)Var
(
g
(
X (T )

))2




<
C

22`M̃
.

Consequently,

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤

[
P (M ≤ M̃) +

∑∞
`=1 2`P (M = 2`M̃)

]
M̃TOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ)

[
P (M ≤ M̃) + P (M = 2M̃) +

∞∑

`=1

2`+1P (M = 2`+1M̃)

]

≤ 2(1 + δ)

[
P (M ≤ M̃) +

C

δ2M̃
+
C

M̃

∞∑

`=1

2−`
]
.

(4.23)

By taking limits in the above inequality, we obtain

lim sup
TOL↓0

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ),

and noting that this result holds for any δ > 0, the proof is finished.
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For an asymptotic bound on E[N ], we recall Theorem 3.5 of [19]. The bound
given in this theorem is derived by studying the asymptotic form of the error
indicators obtained by the stopping condition (2.20). The theorem further shows
that up to a multiplicative constant, the mesh refinement scheme (2.20)-(2.21)
yields stochastic meshes which are optimal in mean sense. The theorem is here
stated as a lemma.

Lemma 6 (Single level asymptotic average number of time steps). Suppose
that the assumptions of Lemma 1 hold. Then the final number of adaptive steps
generated by the algorithm (2.20) and (2.21) satisfies asymptotically

lim sup
TOL↓0

TOLT E[N ] ≤ 4

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

. (4.24)

The product of the asymptotic upper bounds for E[M ] and E[N ] and an
optimization of the choice of TOLT and TOLS gives the following upper bound
on the computational complexity for the SLMC algorithm.

Theorem 5 (SLMC computational complexity). Suppose the assumptions of
Lemma 1 and (4.7) hold. Then the work for the SLMC algorithm with stochastic
time steps, defined in (4.21), satisfies

lim sup
TOL↓0

WORK(TOL)TOL3 ≤ 2 · 33Var(g(X(T )))C2
CCS

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

,

(4.25)
where CC is the confidence parameter and CR and CS are refinement parameters
described by (2.20) and (2.21).

Proof. Lemma 5 and 6 straightforwardly yield the upper bound

lim sup
TOL↓0

WORK(TOL) TOL2
STOLT ≤

23Var(g(X(T )))C2
C

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

.

So WORK(TOL) = O
(
TOL−2

S TOL−1
T

)
. Minimizing TOL−2

S TOL−1
T subject to

the restriction CSTOLT + TOLS = TOL, yields

TOLT =
TOL

3CS
and TOLS =

2TOL

3
.

These values for TOLT and TOLS lead to the upper bound (4.25).

Remark 2. The optimal choices of TOLT and TOLS for minimizing WORK(TOL)
are derived in the proof of Theorem 5 to be

TOLT =
TOL

3CS
and TOLS =

2TOL

3
.
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4.2 multilevel results

We recall from the description of the MLMC algorithm in Section 2.2 that
given an accuracy TOL = CSTOLT + TOLS, the MLMC algorithm gener-
ates realizations g

(
X`(T )

)
on adaptive meshes fulfilling the weak error bounds∣∣E

[
g
(
X`(T )

)
− g(X(T ))

]∣∣ . TOLT,` on the levels ` = 0, 1, . . . , L. The time dis-
cretization tolerance levels are given by TOLT,` = 2`TOLT, and the number of
levels is set by L = blog2(TOLT,Max/TOLT)c, where TOLT,Max is a predeter-
mined max time discretization tolerance value, cf. (2.3). The MLMC sample
average estimator of E[g(X(T ))] is denoted by

AML
(
g
(
X (T )

)
;M0

)
=

M0∑

i=1

g(X0(T ;ω0,i))

M0
+

L∑

`=1

M∑̀

i=1

∆`g(X(T ;ω`,i))

M`
,

where M0 ∈ 2L+dCMLLe2N denotes the number of samples on the coarsest level
with the constant CML ∈ (0, 1), and the number of samples on higher levels is
expressed in terms of M0 by the ratio

M` =
M0

2L

⌈
2L
ρlow(TOLT,0)TOLT,`

ρlow(TOLT,`)TOLT,0

⌉
=
M0

2L

⌈
2L+(γ̄−1)`

⌉
` = 1, 2, . . . , L.

(4.26)
The number of samples at the coarsest level is a stochastic process M0 : R+ →
2N+L+dCMLLe defined by

M0(TOLS) = the smallest k0 ∈ 2N+L+dCMLLe such that

VML
(
g
(
X (T )

)
; k0

)
<
k0TOLS

2

C2
C

,
(4.27)

where

VML
(
g
(
X (T )

)
; k0

)
=

k0∑

i=1

(
g(X0(T ;ω0,i))−A

(
g(X0(T ;ω0,·)); k0

))2

k0 − 1

+
L∑

`=1

k0

k`

k∑̀

i=1

(
∆`g(X(T ;ω`,i))−A

(
∆`g(X(T ;ω`,·)); k`

))2

k` − 1

= V
(
g
(
X0(T ;ω0,·)

)
; k0

)
+ 2L

L∑

`=1

V
(
∆`g

(
X0(T ;ω`,·)

)
; k`
)

⌈
2L+`(γ̄−1)

⌉

(4.28)

and, analogous to the definition of M`,

k` :=
k0

2L

⌈
2L+(γ̄−1)`

⌉
, ` = 1, 2, . . . , L. (4.29)

Remark 3. In the analysis of the SLMC Algorithm, the requirement M0 ∈
2N+dlog(1/TOL)e ensured that the number of samples used in the MC estimate
fulfilled lim infTOL↓0M =∞. For the MLMC Algorithm, we analogously ensure
that lim infTOL↓0ML =∞ by requiring that M0 ∈ 2N+L+dCMLLe for any positive
constant CML.
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The stochastic process M0 is defined in a similar way as the stochastic pro-
cess M was defined for SLMC algorithm, cf. (4.10). For the SLMC algorithm,
asymptotic accuracy and complexity results were easily obtained by applying
the asymptotic bounds of M , cf. Lemma 4. Applying the same strategy for
the MLMC algorithm, we will derive asymptotic bounds for M0 and use these
bounds to prove the accuracy and complexity results of Theorem 2 and 3.

Lemma 7 (Asymptotic bounds for M0). Let

VarML
(
g
(
X (T )

))
:= Var

(
g
(
X0(T )

))
+ 2L

L∑

`=1

Var
(
∆`g

(
X (T )

))
⌈
2L+`(γ̄−1)

⌉ (4.30)

and suppose the assumptions of Lemma 1 and (4.7) hold. Further, assume
that VarML

(
g
(
X (T )

))
> 0 for all sufficiently small TOL > 0. Then M0(TOLS)

defined according to (4.27) fulfills

lim inf
TOL↓0

M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

= 1 in probability, and

lim sup
TOL↓0

M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

= 2 in probability.

(4.31)

Proof. The definition ofM0 given in (4.27) implies that the following inequalities
hold:

VML
(
g
(
X (T )

)
;M0

)

VarML
(
g
(
X (T )

)) ≤ M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2
VML
(
g
(
X (T )

)
;M0/2

)

VarML
(
g
(
X (T )

)) .

So to conclude the proof, we will show that

lim
TOL↓0

VML
(
g
(
X (T )

)
;M0

)

VarML
(
g
(
X (T )

)) = 1, in probability. (4.32)

Define the deterministic function k̃0(TOLT) = 2L(TOLT)+dCMLL(TOLT)e+1 and
let {k̃`}L`=1 be the corresponding level functions defined according to (4.29).
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Then, for a given ε > 0, let us consider

P



∣∣∣∣∣∣

VML
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)
; k̃0

)

VarML
(
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(
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∣∣∣∣∣∣
> ε



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(∣∣∣VML

(
g
(
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)
; k̃0

)
−VarML

(
g
(
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))∣∣∣ > VarML
(
g
(
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))
ε
)
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(∣∣∣V

(
g
(
X0(T )

)
; k̃0

)
−Var

(
g
(
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L∑
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2L
⌈
2L+`(γ̄−1)

⌉−1

×
∣∣∣V
(

∆`g
(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

)
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(∣∣∣V

(
g
(
X0(T )

)
; k̃0

)
−Var

(
g
(
X0(T )

))∣∣∣ >
VarML

(
g
(
X (T )

))
ε

L+ 1

)

+
L∑

`=1

P

(
2(1−γ̄)`

∣∣∣V
(

∆`g
(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ >
VarML

(
g
(
X (T )

))
ε

L+ 1

)

From the fourth moment bound (4.7), Chebycheff’s inequality and k-Statistics
bounds on the variance of the sample variance, cf. [17], we get that

P

(∣∣∣V
(
g
(
X0(T )

)
; k̃0

)
−Var

(
g
(
X0(T )

))∣∣∣ >
VarML

(
g
(
X (T )

))
ε

L+ 1

)

≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃0

.

The equality 2(1−γ̄)` =
ρlow(TOLT,`)TOLT,0

ρlow(TOLT,0)TOLT,`
combined with (4.7) further yields

that

P

(
2(1−γ̄)`

∣∣∣V
(

∆`g
(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ >
VarML

(
g
(
X (T )

))
ε

L+ 1

)

≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃`

.

Since k̃0 = 2L+dCMLLe+1, the definition of k̃` in (4.29) implies that k̃` ≥
2L+dCMLLe+1+(γ̄−1)` for ` = 1, 2, . . . , L, with γ̄ ≥ 0 denoting the lower error
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density exponent in ρlow(TOLT) = TOL γ̄T, cf. (1.24). Consequently,

P



∣∣∣∣∣∣

VML
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)
; k̃0

)

VarML
(
g
(
X (T )

)) − 1

∣∣∣∣∣∣
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
 ≤ C(L+ 1)2

VarML
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g
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))2
ε2k̃0

L∑
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k̃0
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≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃0

L∑

`=0

2(1−γ̄)`

<
C(L+ 1)2

2dCMLLe+γ̄LVarML
(
g
(
X (T )

))2
ε2

which implies that for any ε > 0,

lim
TOL↓0

P



∣∣∣∣∣∣

VML
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g
(
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)
; k̃0

)

VarML
(
g
(
X (T )

)) − 1

∣∣∣∣∣∣
> ε



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TOL↓0

C(L+ 1)2

2dCMLLe+γ̄LVarML
(
g
(
X (T )

))2
ε2

= 0.

Since M0 ≥ k̃0 by definition, we conclude that also (4.32) holds, i.e.

lim
TOL↓0

P

(∣∣∣∣∣
VML
(
g
(
X (T )

)
;M0

)

VarML
(
g
(
X (T )

)) − 1

∣∣∣∣∣ > ε

)
= 0,

for any ε > 0.

With the asymptotic bounds on M0 we are ready to prove the main asymp-
totic accuracy result, Theorem 2. For the convenience of the reader, we first
recall its formulation.

Theorem 2 (Multilevel accuracy). Suppose that the modeling assumptions of
Lemma 1 hold, that (4.7) holds, and that TOLT ≤ TOLS. Then the adap-
tive MLMC algorithm with confidence parameter CC > 0 and stochastic time
steps (2.20) and (2.21) satisfies

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL
)
≥
∫ CC

−CC

e−x
2/2

√
2π

dx.

(4.33)

Proof. This proof is quite similar to the proof of Theorem 4 for the asymptotic
accuracy in the single level setting, but for the sake of the differing details, a full
proof is included in this setting also. For a given δ > 0, we start by bounding
the left-hand side of (4.33) by a product of the statistical error and the time
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discretization error.

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL
)

≥ lim inf
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P
(∣∣E
[
g(X(T ))− g(XL(T ))

]∣∣

+
∣∣E
[
g
(
XL(T )

)]
−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ CSTOLT + TOLS

)

≥ lim inf
TOL↓0

P
(∣∣E
[
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(
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)]∣∣ ≤ (CS + δ)TOLT
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(
g
(
X (T )

)
;M0

)
| ≤ (1− δ)TOLS

)
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P
(
|E
[
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× P
(∣∣E
[
g
(
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)]
−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ (1− δ)TOLS

)

The time discretization error. The proof of Theorem 3.4, p. 530 in [19]
shows that the following bound is fulfilled

lim
TOL↓0

∣∣E
[
g(X(T ))− g

(
XL(T )

)]∣∣
TOLT,L

≤ CS .

By construction TOLT,L = TOLT, and this implies by the above that

lim inf
TOL↓0

P
(∣∣E
[
g(X(T ))− g

(
XL(T )

)]∣∣ ≤ (1 + δ)CSTOLT

)
= 1.

The statistical error. From the above introduced δ > 0, define the family of
sets

Ωδ(TOLS) =

{
k ∈ 2N+L+dCMLLe

∣∣∣∣∣ 1− δ <
kTOLS

2

VarML
(
g
(
X (T )

))
C2
C

≤ 2 + δ

}
,

(4.34)
indexed by TOLS > 0. Lemma 7 then implies that limTOL↓0 P (M0 ∈ Ωδ) = 1.
Recall further that for the MLMC algorithm, the number of samples M0 is
determined in the step prior to generating the outputAML

(
g
(
X (T )

)
;M0

)
, so that

M0 is independent from AML
(
g
(
X (T )

)
;M0

)
. Using this independence property
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and Fatou’s Lemma, the statistical error is bounded from below as follows:

lim inf
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e−x
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√
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(4.35)

The last inequality above follows from the application of Lindeberg-Feller’s Cen-
tral Limit Theorem (CLT) which is justified by Lemma 8 and the observation
that E

[
AML

(
g
(
X (T )

)
; k0

)]
= E

[
g(XL(T ))

]
. The reasoning leading to inequal-

ity (4.35) is valid for any δ > 0, so the proof of (4.33) is finished.

Next we derive the weak convergence CLT result for the multilevel estimator
AML

(
g
(
X (T )

)
; k0

)
which is needed in Theorem 2.

Lemma 8 (A CLT result). Suppose the assumptions of Lemma 1 and (4.7)
hold and, for a given δ > 0, let

k0(TOLS) := min
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k ∈ 2N+L+dCMLLe
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kTOLS

2

VarML
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}
,

in correspondence with the set defined in (4.34). Then for any z ∈ R+, we have
that

lim
TOL↓0

P


√k0

∣∣E
[
AML

(
g
(
X (T )

)
; k0

)]
−AML

(
g
(
X (T )

)
; k0

)∣∣
√

VarML
(
g
(
X (T )

)) ≤ z


=

∫ z

−z

e−x
2/2

√
2π

dx.

(4.36)

Proof. This Lemma will be proved by verifying that the assumptions of the
Lindeberg-Feller CLT are fulfilled, cf. Theorem 6. Let us write

√
k0

E
[
AML

(
g
(
X (T )

)
; k0

)]
−AML

(
g
(
X (T )

)
; k0

)
√

VarML
(
g
(
X (T )

)) =
K∑

i=1

YK,i
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where K :=
∑L
`=0 k` and the elements of YK,i are independent and defined by

YK,i :=





E[g(X0(T ))]−g(X0(T ;ωi))
√
k0

√
VarML(g(X (T )))

for i = 1, 2, . . . , k0,
√
k0
k1

(E[∆1g(X(T ))]−∆1g(X(T ;ωi)))
√
k1

√
VarML(g(X (T )))

for i = k0 + 1, . . . , k0 + k1

...
...√

k0
kL

(E[∆Lg(X (T ))]−∆Lg(X(T ;ωi)))
√
kL

√
VarML(g(X (T )))

for i = kL−1 + 1, . . . ,K.

Then it follows that

K∑

i=1

E
[
Y 2
K,i

]
=

VarML
(
g
(
X (T )

))

VarML
(
g
(
X (T )

)) = 1, ∀TOL > 0,

so condition (a) of Theorem 6 is fulfilled. To verify that condition (b) of Theo-
rem 6 is fulfilled, one must show that for any ε > 0,

lim sup
TOL→0

K∑

i=1

E
[
Y 2
K,i1|YK,i|>ε

]
= 0.

The definition of k`, cf. (4.29), combined with the moment bound (4.7) implies
that there exists a C > 0 such that

E

[(
k0

k`

)2 ∣∣∆`g
(
X (T )

)
− E

[
∆`g

(
X (T )

)]∣∣4
]
≤ C, ∀` ∈ {1, 2, . . . , L}.

Using Chebycheff’s inequality and the fact that kL ≥ 2dCMLLe+γ̄L+1, cf. (4.29),
we derive that

K∑

i=1

E
[
Y 2
K,i1|YK,i|>ε

]
≤

K∑

i=1

ε−2E
[
Y 4
K,i

]

=
1

ε2 VarML
(
g
(
X (T )

))2

{
1

k0
E
[∣∣g(X0(T ))− E

[
g
(
X0(T )

)]∣∣4
]

+

L∑

`=1

1

k`
E

[(
k0

k`

)2 ∣∣∆`g
(
X (T )

)
− E

[
∆`g

(
X (T )

)]∣∣4
]}

≤ C

ε2 VarML
(
g
(
X (T )

))2
L∑

`=0

k−1
`

≤ C L

kL ε2 VarML
(
g
(
X (T )

))2 → 0, as TOL ↓ 0.

This verifies that condition (b) is fulfilled.
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We conclude the analysis of the MLMC algorithm by estimating the work
required to fulfill the accuracy estimate (4.1). We recall that WORK(TOL),
defined in (4.2) by

WORK(TOL) =

L∑

`=0

E[M`]E[N`],

is an estimate of the average number of operations required in the generation of
AML

(
g
(
X (T )

)
;M0

)
to approximate E[g(X(T ))] with the prescribed confidence

CC and accuracy TOL. First, let us derive an asymptotic bound for E[M0].

Lemma 9. Suppose the assumptions of Lemma 1 and (4.7) hold. Then the
number of samples M0 used at the base level of the MLMC algorithm approxi-
mation of E[g(X(T ))] satisfies

lim sup
TOL↓0

E[M0]TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2. (4.37)

Proof. For given δ > 0, define the deterministic function

M̃0(TOL) = min

{
k ∈ 2N+L+dCMLLe

∣∣∣ k0TOL2

VarML
(
g
(
X (T )

))
C2
C

> 1 + δ

}

By the relation (4.16), the moment bound assumption (4.7), Hölder’s inequality,
and k-Statistics bounds on the variance of the sample variance, cf. [17], we derive
that

P (M0 = 2M̃0) ≤ P



VML
(
g
(
X (T )

)
; M̃0

)

VarML
(
g
(
X (T )

)) > M̃0
TOL2

VarML
(
g
(
X (T )

))
C2
C




≤ P



VML
(
g
(
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)
; M̃0

)

VarML
(
g
(
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)) > 1 + δ



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(
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(
g
(
X (T )

)
; M̃0

)
−VarML

(
g
(
X (T )

))
> δVarML

(
g
(
X (T )

)))

≤ E




∣∣∣VML
(
g
(
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)
; M̃0

)
−VarML

(
g
(
X (T )

))∣∣∣
2

δ2VarML
(
g
(
X (T )

))2




≤
Var
(
V
(
g
(
X0(T )

)
; M̃0

))
+
∑L
`=1 Var

(
V
(

∆`g
(
X (T )

)
; M̃`

))

δ2VarML
(
g
(
X (T )

))2

≤ CL

δ2VarML
(
g
(
X (T )

))2
M̃L

,
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and for ` = 1, 2, . . . that

P (M0 = 2`+1M̃0)

≤ P
(
VML
(
g
(
X (T )

)
; 2`M̃0

)
−VarML

(
g
(
X (T )

))
> 2`−1VarML

(
g
(
X (T )

)))

≤ E




∣∣∣VML
(
g
(
X (T )

)
; 2`M̃0

)
−VarML

(
g
(
X (T )

))∣∣∣
2

22(`−1)VarML
(
g
(
X (T )

))2




<
CL

23` VarML
(
g
(
X (T )

))2
M̃L

.

Consequently,

E[M0]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤
[
P (M0 ≤ M̃0) +

∞∑

`=1

2`P (M0 = 2`M̃0)

]
M̃0TOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ)

[
P (M0 ≤ M̃0) + P (M0 = 2M̃0) +

∞∑

`=1

2`+1P (M0 = 2`+1M̃0)

]

≤ 2(1 + δ)

[
P (M0 ≤ M̃0) +

CL

δ2M̃L

+
CL

M̃L

∞∑

`=1

2−2`

]
.

Taking limits in the above inequality leads to

lim sup
TOL↓0

E[M0]TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ).

Finally, observe that since the obtained inequality holds true for any δ > 0, the
proof is finished.

An asymptotic bound on E[N`] may be deduced from the single level result
of Lemma 6. For the convenience of the reader we present the result of Lemma 6
in a way that is fitting for the multilevel setting.

Lemma 10 (Multilevel asymptotical average number of time steps). Suppose
that the assumptions of Lemma 1 hold. Then the final number of adaptive steps
generated by the MLMC algorithm with stochastic time steps (2.20) and (2.21)
and TOLT,` = 2−`TOLT,0 satisfies

lim sup
`↑∞

TOLT,` E[N`] ≤
4

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

. (4.38)

With bounds for E[M0] and E[N`] in hand, we are ready to prove the main
complexity theorem for the MLMC algorithm, Theorem 3. The proof is divided
into three cases.
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Proof of case (I). Lemma 10 implies that for any given δ > 0, there exists an
L̂(δ) not depending on TOL such that

TOLT,` E[N`] ≤ (1 + δ)
4

CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

, ∀` ≥ L̂. (4.39)

Furthermore, for ρlow(TOLT) = ρmin, M` as defined in (4.26) fulfills

E[M`] = 2−`E[M0], ∀` ∈ {0, 1, . . . , L}. (4.40)

By inequality (4.39), equation (4.40), and the monotonic relation N` ≤ N`+1,
we derive that

L∑

`=0

E[M`]E[N`] ≤ E
[
NL̂
]
TOLT,L̂

L̂∑

`=0

E[M`]

TOLT,L̂

+
L∑

`=L̂+1

E[M`]

TOLT,`
E[N`]TOLT,`

≤ 4(1 + δ)E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

2L̂

L̂−1∑

`=0

2−` +
L∑

`=L̂

1




≤ 4(1 + δ)E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2 (
2L̂+1 + (L− L̂)

)
.

(4.41)

Recalling the definition L = blog2(TOLT,Max/TOLT)c and that L̂ is fixed, it
follows that

lim
TOL↓0

2L̂+1 + (L− L̂)

L
= 1.

Using (4.41) combined with Lemma 9 and recalling that TOLT,0 > TOLT,Max/2,
we obtain the bound

lim sup
TOL↓0

WORK(TOL) TOL2
S

VarML
(
g
(
X (T )

))
L
≤ 16(1 + δ)E[M0]

CR TOLT,Max

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.42)

We observe that WORK(TOL) = O
(
TOL−2

S LVarML
(
g
(
X (T )

)))
, and to obtain

a bound on more explicit form, we note that by the assumption (4.7) on Lp

convergence, there exists a CG > 0 such that

lim sup
`↑∞

ρlow(TOLT,`)

TOLT,`
E
[∣∣∆`g

(
X (T )

)∣∣2
]
≤ CG. (4.43)

See for instance Remark 4 for a discussion on how to estimate CG. Inequal-
ity (4.43) further implies that

lim sup
TOL↓0

VarML
(
g
(
X (T )

))

L
≤ CG. (4.44)
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To approximately minimize the complexity we introduce the splitting choice

TOLS =
log(TOL−1)

log(TOL−1) + log(log(TOL−1))
TOL, and

TOLT =
log(log(TOL−1))

(log(TOL−1) + log(log(TOL−1)))CS
TOL,

which we see fulfills the restrictions CSTOLT + TOLS = TOL and TOLT ≤
TOLS. Combining (4.43) with the above splitting choice in inequality (4.42),
and noting that this bounding procedure is valid for any δ > 0 leads to (4.4).

Proof of case (II). Recall that M` as defined in (4.26) fulfills

E[M`] ≤ (2`(γ̄−1) + 2−L)E[M0], ∀` ∈ {0, 1, . . . , L}.

By this property, intequality (4.39) and recalling that by construction TOLT,0 >
TOLT,Max/2, we derive the following

L∑

`=0

E[M`]E[N`] ≤ E
[
NL̂
]
TOLT,L̂

L̂∑

`=0

E[M`]

TOLT,L̂

+
L∑

`=L̂+1

E[M`]

TOLT,`
E[N`]TOLT,`

≤ (1 + δ)4E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

×


2L̂

L̂−1∑

`=0

(2`(γ̄−1) + 2−L) +

L∑

`=L̂

(2`γ̄ + 2−L+`)




≤ (1 + δ)8E[M0]

CR TOLT,Max

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2(
2L̂

1− 2γ̄−1
+ L̂2L̂−L +

2(L+1)γ̄

log(2γ̄)
+ 2

)
.

(4.45)

By noting that L̂(δ) is fixed, we have

lim
TOL↓0

2L̂

1−2γ̄−1 + L̂2L̂−L + 2(L+1)γ̄

log(2γ̄) + 2

2γ̄L
=

2γ̄

γ̄ log(2)
,

and by Lemma 9 and (4.44), we derive the bound

lim sup
TOL↓0

WORK(TOL) TOL2
S

2γ̄LL

≤ (1 + δ)
24+γ̄ C2

C CG
γ̄ log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.
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Since 2−L ≥ TOLT/TOLT,Max by construction, we further obtain

lim sup
TOL↓0

WORK(TOL) TOL2
S TOL γ̄T

L

≤ (1 + δ)
24+γ̄ C2

C CG
γ̄ log(2) (TOLT,Max)1−γ̄ CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.46)

To approximately minimize the complexity, we introduce the splitting choice

TOLS =
2

2 + γ̄
TOL, and, TOLT =

γ̄

(2 + γ̄)CS
TOL,

which fulfills the constraints CSTOLT + TOLS = TOL and TOLT ≤ TOLS.
Using the splitting choice in inequality (4.46) leads to (4.4) when noting that
the bounding procedure is valid for any δ > 0.

Proof of case (III). First, we note that the conditions γ̄ → 0 and Lγ̄ → ∞ as
TOL ↓ 0 yields a consistent lower error density, since it leads to

ρlow(TOLT) = TOL γ̄T = O
(
2−Lγ̄

)
,

which implies that ρlow(TOLT)→ 0 as TOL ↓ 0.
For proving case (III), recall inequality (4.45) from the proof of case (II)

which is valid in the present setting as well, namely

L∑

`=0

E[M`]E[N`] ≤
(1 + δ)8E[M0]

CR TOLT,Max

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

×
(

2L̂

1− 2γ̄−1
+ L̂2L̂−L +

2(L+1)γ̄

log(2γ̄)
+ 2

)
.

The asymptotic conditions on γ̄ imply that

lim
TOL↓0

γ̄

2γ̄L

(
2L̂

1− 2γ̄−1
+ L̂2L̂−L +

2(L+1)γ̄

log(2γ̄)
+ 2

)
=

1

log(2)
.

This property, Lemma 9 and (4.44), yield

lim sup
TOL↓0

WORK(TOL) TOL2
S γ̄

L 2γ̄L

≤ (1 + δ)
16C2

C CG
log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.47)

To approximately minimize the complexity, we introduce the splitting choice

TOLS =
2

2 + γ̄(TOL)
TOL and TOLT =

γ̄(TOL)

(2 + γ̄(TOL))CS
TOL.
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Inserting the splitting into (4.47) and noting that this argument is valid for all
δ > 0 leads to (4.6).

Remark 4 (Particular estimate for the constant CG). It is possible to estimate
the constant CG. For instance, in the particular case when the exact error
density is bounded away from zero, i.e. there exist a constant ρmin such that
ρ̂ > ρmin > 0 a.s. and, considering the equation

dX(t) = b(X(t))dW (t), t > 0

X(0) = X0,

we have

CG ≤ CS E

[∥∥∥∥
(b′b)2(X(t))(ϕ)2(t)

ρ̂(t)

∥∥∥∥
L∞([0,T ])

]
.

Here ϕ(t) = g′(X(T ))X
′(T )

X′(t) and the first variation X ′(s) solves, for s > 0, the

linear equation
dX ′(s) = b′(X(s))X ′(s)dW (s),

with initial condition X ′(0) = 1. The constant CS is the parameter in the stop-
ping condition (2.20).

Remark 5 (Jump Diffusions). It is possible to extend these results of adaptive
multilevel weak approximation for diffusions to the case of jump diffusions with
time dependent jump measure analyzed in [22].

5 Conclusions

In this paper we have presented and analyzed an adaptive multilevel Monte
Carlo algorithm, where the multilevel simulations are performed on adaptively
generated mesh hierarchies based on computable a posteriori weak error esti-
mates. The theoretical analysis of the adaptive algorithm showed that the algo-
rithm stops after a finite number of steps, and proceeded to show accuracy and
efficiency results under natural assumptions in Theorems 2 and 3. In particular,
Theorem 2 states that the probability of the weak error being bounded by the
specified tolerance TOL is asymptotically bounded by any desired probability
through the confidence parameter. Theorem 3 states computational complexity
results where the involved constants are explicitly given in terms of algorithm
parameters and problem properties. It shows that the L1/2-quasi norm of the
error density appears as a multiplicative constant in the complexity bounds,
instead of the larger L1-norm of the same error density that would appear using
a uniform time step MLMC algorithm; the difference between these two factors
can be arbitrarily large even in problems with smooth coefficients where they
are both finite. Disregarding the constants the result shows that, depending on
assumptions on the limit error density and the lower bound on the computed
error density used by the adaptive algorithm, the complexity can be either the
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same as or nearly the same as the complexity uniform MLMC has in cases where
the order of strong convergence of the Euler-Maruyama method is 1/2.

Numerical results for scalar SDEs confirmed the theoretical analysis. For the
two problems with reduced weak convergence order a simple single level Monte
Carlo method has complexity O(TOL−4) while the adaptive MLMC method has
the improved complexity O(TOL−2 log2(TOL0/TOL)2). The use of advanced
Monte Carlo methods such as the adaptive MLMC algorithm presented in this
paper is most attractive for SDEs in higher dimension, where the corresponding
PDE-based computational techniques are not competitive. Numerical experi-
ments using adaptive MLMC is ongoing work and will be presented in a later
report; this also makes for an interesting comparison to uniform MLMC method
for barrier problems, since it is not clear that the order of strong convergence of
the Euler-Maruyama method will be (1− δ)/2, for any positive δ, in that case.
The fact that computational complexity of uniform multilevel Monte Carlo, dis-
regarding constants, depends on the strong convergence indicates that adaptive
mesh refinements based on strong error estimates can also be used to improve
the computational efficiency; such methods are also subjects of ongoing research.

In this paper the adaptive algorithms were presented with global error con-
trol in the quantity of interest, starting from a given coarse mesh. Alternatively
we can use local error estimates to guide adaptive time step control in the com-
putation of the forward problem. This approach can be used on its own when
global error control is deemed unnecessary or too computationally expensive,
but it can also be used together with the global error control in situations with
stiff SDEs where any given initial mesh can be too coarse depending on the
realization. This is particularly relevant for MLMC simulations where stability
issues in the computations on the coarsest level can destroy the results of the
whole multilevel simulation, as was pointed out by Hutzenthaler, Jentzen, and
Kloeden in [13].

A Theorems

Theorem 6 (Lindeberg-Feller Theorem [4][p. 114]). For each n, let Xn,m, 1 ≤
m ≤ n, be independent random variables with E[Xn,m] = 0. Suppose

(a)
n∑

m=1

E[X2
n,m]→ σ2 > 0, and

(b) for all δ > 0,

lim
n→∞

n∑

m=1

E[X2
n,m1|Xn,m|>δ] = 0.

Then the Central Limit Theorem holds, i.e., the random variable

Sn :=
n∑

m=1

Xn,m ⇀ σΞ, as n→∞,
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where Ξ is a standard normal distributed random variable.
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pone. An adaptive algorithm for ordinary, stochastic and partial differen-
tial equations. In Recent advances in adaptive computation, volume 383 of
Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.

[21] E. Mordecki, A. Szepessy, R. Tempone, and G. E. Zouraris. Adaptive
weak approximation of diffusions with jumps. SIAM J. Numer. Anal.,
46(4):1732–1768, 2008.

[22] E. Mordecki, A. Szepessy, R. Tempone, and G. E. Zouraris. Adaptive
weak approximation of diffusions with jumps. SIAM J. Numer. Anal.,
46(4):1732–1768, 2008.

[23] Bernt Øksendal. Stochastic differential equations. Universitext. Springer-
Verlag, Berlin, fifth edition, 1998. An introduction with applications.

56
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ON NON-ASYMPTOTIC OPTIMAL STOPPING CRITERIA IN

MONTE CARLO SIMULATIONS

CHRISTIAN BAYER, HÅKON HOEL, ERIK VON SCHWERIN, AND RAÚL TEMPONE

Abstract. We consider the setting of estimating the mean of a random vari-
able by a sequential stopping rule Monte Carlo (MC) method. The perfor-

mance of a typical second moment based sequential stopping rule MC method

is shown to be unreliable in such settings both by numerical examples and
through analysis. By analysis and approximations, we construct a higher mo-

ment based stopping rule which is shown in numerical examples to perform

more reliably and only slightly less efficiently than the second moment based
stopping rule.

1. Introduction

Given i.i.d. random variables X1, X2, . . . the typical way of approximating their
expected value µ = E[X] using M samples is the sample average

XM :=
M∑

i=1

Xi

M
.

We consider the objective of choosing M sufficiently large so that the error proba-
bility satisfies

P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ, (1)

for some fixed small constants TOL > 0 and δ > 0. Clearly, P
(∣∣XM − µ

∣∣ > TOL
)

decreases as M increases, but at the same time the cost of computing XM increases.
From an application and cost point of view it is therefore of interest to derive
theory or algorithms that will give upper bounds on M satisfying (1) that are not
far too large. When a-priori information about the distribution of X is available,
for example if X is a bounded r.v. with an explicitly given bound, it is possible
to derive good theoretical upper bounds for M using Hoeffding type inequalities,
cf. Hoeffding [5]. In the general case when no or little information of the distribution
is given, little theory is however known, and the typical way of estimating E[X]
using a sufficiently large number of samples M is through a sequential stopping
rule. Below we give the general structure of the class of sequential stopping rules
we have in mind.

(I) Generate a batch of M i.i.d. samples X1, X2, . . . , XM .
(II) Infer distributive properties of XM from the generated batch of samples

through higher order sample moments, e.g., the sample mean and the sample
variance.

(III) Based on the sample moments, estimate the error probability. When, based
on the estimated probability, (1) is violated, increase the number of samples
M and return to step (I).
Else, break and accept M .

2010 Mathematics Subject Classification. Primary 65C05; Secondary 62L12, 62L15.
Key words and phrases. Monte Carlo methods, optimal stopping, sequential stopping rules,

non-asymptotic.
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Algorithm 1 Sample Variance Based Stopping Rule

Input: Number of samples M0, accuracy TOL, confidence δ, the cumulative
distribution function of the standard normal distributed r.v. Φ(x).
Output: XMn .

Set k = 0, generate Mk samples {Xi}Mk
i=1 and compute the sample variance

σ2
Mk

:=
1

Mk − 1

Mk∑

i=1

(Xi −XMk
)2. (2)

while 2
(

1− Φ(
√
Mk TOL /σMk

)
)
> δ do

Set k = k + 1 and Mk = 2Mk−1.

Generate a batch of Mk i.i.d. samples {Xi}Mk
i=1.

Compute the sample variance σ2
Mk

as given in (2).

end while
Set Mn = Mk, generate samples {Xi}Mn

i=1 and compute the output sample mean

XMn
. (See Section 2 for a motivation of the choice of the stopping criterion in

the while loop above.)

Certainly the most natural and important representative of this class of algo-
rithms is given in Algorithm 1. The algorithm estimates the error probability by
appealing to the Central Limit Theorem (CLT). Consequently, it only relies on the
sample variance in addition to the sample mean. In particular, the algorithm only
requires mild additional assumptions on X, namely square integrability.

In the literature, various second moment based sequential stopping rules have
been introduced to estimate the steady-state mean of stochastic processes, see for
example Law and Kelton [7, 8] for comparisons of the performance of different
stopping rules and Bratley, Bennet, and Fox [1] for an overview. Second moment
based sequential stopping rules generally tend to perform well in the asymptotic
regime when TOL→ 0. In fact, Chow and Robbins [2] proved that under very loose
restrictions, second moment based sequential stopping rules such as Algorithm 1
are asymptotically consistent, meaning that for a fixed δ,

lim
TOL→0

P
(∣∣XM − µ

∣∣ > TOL
)

= δ,

and in Glynn and Whitt [4] the consistency property is proven to hold for such
stopping rules applied to more general stochastic processes. The performance for
second moment based stopping rules in the non-asymptotic regime – when TOL
and δ are fixed values – is however not as well understood. This is unsatisfactory,
as in applications this is precisely the interesting regime, in particular since very
often we have TOL� δ. While consistency is clearly a re-assuring property in any
case, in many situations one is in dire need of quantitative estimates of the error
probability in the non-asymptotic regime, for instance when one tries to optimize
the computational cost needed to meet a certain accuracy target using an adap-
tive algorithm. We could not find such a quantitative, non-asymptotic analysis of
algorithms like Algorithm 1 in the literature.

In this note we demonstrate by numerical examples that second moment based
stopping rules can fail convincingly in the non-asymptotic regime, especially when
the underlying distribution X is heavy-tailed, see Section 2. We proceed by giving
an error analysis of Algorithm 1 specifically in the non-asymptotic regime. We
note a-priori that there are two obvious approximation errors in the underlying
assumptions of Algorithm 1:



ON NON-ASYMPTOTIC OPTIMAL STOPPING CRITERIA IN MC SIMULATIONS 3

(I) The algorithm appeals to the CLT to approximate the tail probabilities for
XM even though M is finite.

(II) In doing so, it uses the sample variance σ2
M instead of the true variance σ2.

To get a hold on the error probability (1) despite the fact that the distribution of
the sample mean XM is unknown, we again appeal to the central limit theorem,
but we adjust the estimate by adding a Berry-Esseen type term, which extends
the validity of the estimate to the non-asymptotic case, thereby dealing with the
first approximation error. As the error probability (1) is a tail probability for
the distribution of the sample mean and the Berry-Esseen theorem itself is rather
aimed at being sharp at the center of the distribution, we appeal to non-uniform
versions of the Berry-Esseen theorem, see Theorem 1.1 and Corollary 1.2 below.
However, both intuition and numerical tests suggest that the approximation of the
tail probabilities by the non-uniform Berry-Esseen theorem is far too pessimistic at
least when the second approximation error is small, i.e., when the computed sample
variance is actually close to the true variance. In this case, we adjust the normal
distribution by a less stringent extra term, which is obtained from an Edgeworth
expansion of the distribution function of the sample mean XM , c.f. Feller [3].1

Having identified possible origins of failure of Algorithm 1, we propose an im-
provement of Algorithm 1. However, this variant requires third and fourth sample
moments, see Section 4. Finally, in Section 5, we test the new algorithm numer-
ically. We find that the new stopping Algorithm 2 indeed satisfies the desired
confidence level δ on the error probability (1) even when δ � TOL.

As already discussed above, we need to approximate the unknown distribution of
a sample mean in a general, non-asymptotic regime. The uniform and non-uniform
Berry-Esseen theorems provide quantitative bounds for the difference between the
true distribution of the sample mean and its asymptotic limit, namely the nor-
mal distribution. The following classical theorem can be found, for instance, in
Petrov [10].

Theorem 1.1 (Uniform and Non-Uniform Berry-Esseen). Suppose X1, X2, . . . are

i.i.d. r.v. with E[X] = 0, σ2 = Var (X) and β =
E[|X|3]
σ3 <∞. Then, for a positive

constant C0, the following uniform bound∣∣∣∣∣P
(

1

σ
√
n

n∑

i=1

Xi < x

)
− Φ(x)

∣∣∣∣∣ ≤ C0
β√
n

holds. For another positive constant C1, the following non-uniform bound holds∣∣∣∣∣P
(

1

σ
√
n

n∑

i=1

Xi < x

)
− Φ(x)

∣∣∣∣∣ ≤ C1
β

√
n(1 + |x|3)

.

Up to our knowledge, the best upper bounds presently known for the Berry-
Esseen constants are C0 < 0.4785, cf. Tyurin [11], and C1 < C0+8(1+e1) < 30.2338,

1Note that here we are introducing a gap in the analysis: the estimate based on the non-

uniform Berry-Esseen theorem is reliable in the sense that it always leads to an upper bound of
the error probability (1). For the Edgeworth expansion, however, there might be situations when

the true error probability is underestimated, and, consequently, the accuracy target might still be

missed. Numerical evidence, however, suggests that the estimate obtained from solely relying on
the non-uniform Berry-Esseen theorem is usually by orders of magnitude too pessimistic. Apart

from intrinsic reasons, one reason might be that the constants known in the non-uniform Berry-

Esseen theorems might be far from being optimal. In the end, we think that the above compromise
between Berry-Esseen type estimations and estimations based on the Edgeworth expansion might

be a good compromise which retains the goal of reliably meeting the accuracy target – except
maybe for very extreme situations – while keeping a certain level of efficiency. We note, however,

that it is also possible to construct even more conservative stopping rules which are only based

on the Berry-Esseen theorem.
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cf. Michel [9]. For the purpose of this paper, it will be useful to combine the uniform
and non-uniform Berry-Esseen bound as follows.

Corollary 1.2 (Berry-Esseen). Suppose X1, X2, . . . are i.i.d. r.v. with E[X] = 0,
σ2 = Var (X) and β = E

[
|X|3

]
/σ3 <∞. Then

∣∣∣∣∣P
(

1

σ
√
n

n∑

i=1

Xi < x

)
− Φ(x)

∣∣∣∣∣ ≤ CBE(x)
β√
n

where the bound function CBE : R→ [0, C0] is defined by

CBE(x) := min

(
C0,

C1

(1 + |x|)3

)
.

In the asymptotic regime, the distribution of P
(

1
σ
√
n

∑n
i=1Xi < x

)
can be ex-

pressed by so called Edgeworth expansions. Here we present the one-term Edge-
worth expansion.

Theorem 1.3 (Edgeworth expansion, cf. Feller [3]). Suppose X1, X2, . . . are i.i.d.
r.v. with a distribution which is not a lattice distribution and E[X] = 0, σ2 =
Var (X) and E

[
X3
]
<∞. Then

P

(
1

σ
√
n

n∑

i=1

Xi < x

)
= Φ(x) +

(x2 − 1)e−x
2/2

6
√

2πn

E
[
X3
]

σ3
+ o
(
n−1/2

)
,

uniformly for x ∈ R.

2. Stopping rule failures

Suppose we seek to estimate µ = E[X] using Monte Carlo simulation and we
actually do know the variance σ2 = Var (X). As before, our objective is to achieve
P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ, for some fixed, small constants TOL, δ > 0. The CLT

motivates the stopping rule

M =
C2

CLTσ
2

TOL2 , CCLT := Φ−1

(
2− δ

2

)
, (3)

which would exactly fulfill our objective (1) in the asymptotic regime M →∞. Of
course, this conflicts with our choice (3) for M , since we treat δ and TOL as finite
constants. However, we can still estimate the probability in (1) using Corollary 1.2
and obtain

P
(∣∣XM − µ

∣∣ > TOL
)

= P

(
√
M

∣∣XM − µ
∣∣

σ
>

√
M TOL

σ

)

≤ 2

(
1− Φ

(√
M TOL

σ

))
+ 2CBE

(√
M TOL

σ

)
β√
M

= 2(1− Φ(CCLT)) + 2CBE(CCLT)
β√
M

TOL

= δ + 2
CBE(CCLT)β

σCCLT
TOL

(4)

This means that in the worst case, the actual error probability could be δ+O (TOL)
instead of δ 2. For instance, in situations where the statistical confidence in the
result is more stringent than the accuracy so that δ � TOL, the asymptotically
motivated choice of M in (3) could, granted the bound (4) is sharp, fail to deliver

2Note that CCLT as defined in (3) grows only very slowly as δ decreases, since we have CCLT <√
2 log(δ−1). Thus, the factor in front of TOL in the error probability can almost be neglected.
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the expected level of confidence. For most r.v. however, the bound (4) is far too
conservative, and one might ask whether it is reasonable to fear overshooting the
error probability in the fashion we have described. The following numerical example
shows the existence of r.v. for which the stopping rule (3) fails in the non-asymptotic
regime

Example 2.1. The heavy-tailed Pareto-distribution has the probability distribu-
tion function

f(x) =

{
αxαmx

−(α+1) if x ≥ xm
0 else,

(5)

where α, xm ∈ R+ are respectively the shape and the scale parameter. The moments
of E[Xn] for the Pareto r.v. only exists for n < α and, supposing α > 2, its mean
and variance are given by

µ =
αxm
α− 1

and σ2 =
x2
mα

(α− 1)2(α− 2)
.

It is further easy to derive that for a Pareto r.v. with α = 3 + γ and 0 < γ < 1,

β =
E
[
|X − µ|3

]

σ3
= O

(
γ−1

)
.

This implies that there exists r.v. for which the second summand of the bound (4)
can become arbitrary large. So for such r.v. the stopping rule (3) might fail. Let us
investigate by numerical approximations. Considering the distribution with α = 3.1
(and xm = 1), yields a heavy-tailed r.v. with known mean, variance and third

moment. For a set of accuracies TOL ∈ [0.05, 0.2] and confidences δ = TOL`,
` = 0.5, 1, 1.5, and 2 we have numerically approximated P

(∣∣XM − µ
∣∣ > TOL

)
≤ δ

using, in accordance with (3), the stopping rule

M =

⌈
C2

CLTσ
2

TOL2

⌉

The results, illustrated in Figure 1, show that when δ � TOL, the sought confidence
is far from met.

Example 2.1 shows that for some r.v. the confidence goal of (1) will not be met
by using the stopping rule (3), at least in settings with δ � TOL. Supposing we do
not know the variance prior to sampling, yet another type of stopping rule failure
is given in Example 2.2; it considers how the MC estimate of Algorithm 1 depends
on the initial number of samples M0.

Example 2.2 (Premature Stopping). In this example we will sample the mean of
various r.v. using Algorithm 1 and investigate how the MC estimate XM depends
on the initial number of samples M0. Let M(M0) denote the number of r.v. used in
the stopped estimate as a function of the initial number of samples M0. Our MC
estimate goal then becomes to achieve

P
(∣∣XM(M0) − µ

∣∣ > TOL
)
≤ δ. (6)

To investigate whether this goal is fulfilled we plot P
(∣∣XM(M0) − µ

∣∣ > TOL
)

as a
function of M0 for four different r.v. in Figure 2. Figure 2 indicates that the more
heavy-tailed or skewed the distribution is, the higher M0 is needed to ensure that
the goal (6) is met.

The demonstrated stopping rule failures motivated us to study and develop ways
of constructing more reliable stopping rules. In Section 3, we first analyze the
stopping rule of Algorithm 1, and derive an approximate upper bound for the
failure probability expressed in terms of M,TOL and δ. In Section 4, we develop
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10-2 10-1
10-1

TOL

P(|XM −µ| ≤TOL) δ

10-2 10-1
10-2

10-1

TOL

10-2 10-1
10-3

10-2

10-1

TOL 10-2 10-1
10-4

10-3

10-2

TOL

Figure 1. MC estimate using the stopping rule (3) for i.i.d.
Pareto r.v. with parameters α = 3.1 and xm = 1. The obtained
failure probability P

(∣∣XM − µ
∣∣ > TOL

)
(blue lines) is plotted in

comparison to the sought confidence parameter δ(TOL) = TOL`

(green lines), for ` = 0.5 (upper left), ` = 1 (upper right), ` = 1.5
(lower left), and ` = 2 (lower right). We observe that the smaller
δ is relative to TOL, the more apparent does the failure of the
stopping rule become.

a more reliable stopping rule algorithm, which in addition to second moment of
the r.v. in question, also depends on third and fourth order moments. The paper
is concluded with numerical examples comparing the reliability and computational
cost of Algorithm 1 with the stopping rule developed in Section 4.

3. Error analysis for Algorithm 1

Examples 2.1 and 2.2 illustrate that for some r.v. the stopping rule in Algo-
rithm 1 does not meet the accuracy-confidence constraint (1). To construct a more
reliable stopping rule, penalty terms have to be added to the stopping criterion in
Algorithm 1. Some care should be taken to make the penalty terms of right size:
if too large penalties are added, the new stopping rule will be reliable but very
inefficient, while if too small penalty terms are added, the algorithm will of course
be efficient but unreliable.

In this section, we first derive an approximate upper bound for the failure prob-
ability

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M
)

(7)
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24 25 26 27 28 29 2100.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

M0

Uniform distribution

P(|X̄M(M0 )−µ|>TOL) δ C 2
C σ

2 TOL−2

24 25 26 270.000

0.005

0.010

0.015

0.020

0.025

0.030

M0

Exponential distribution

24 25 26 27 28 290.000

0.005

0.010

0.015

0.020

0.025

M0

Lognormal distribution

24 25 26 27 28 290.00

0.01

0.02

0.03

0.04

M0

Pareto distribution

Figure 2. Plots of P
(∣∣XM(M0) − µ

∣∣ > TOL
)

as a function of M0

when using Algorithm 1 to sample XM(M0). The accuracy and

confidence is set to TOL = 0.1 and δ = TOL2, respectively. Up-
per left: The Uniform distribution X ∼ U(−1, 1) with µ = 0
and σ2 = 2/3 (light-tailed). Upper right: The Exponential dis-
tribution with µ = 1/3 and σ2 = 1/9 (not heavy-tailed). Lower
left: The Lognormal distribution X ∼ log(N (µN , σ2

N )) with
with µN = −1 and σ2

N = 1. This gives µ = exp(µN + σ2
N /2) and

σ2 = (exp(σ2
N ) − 1) exp(2µN + σ2

N ) (quite heavy-tailed). Lower
right: The Pareto distribution with xm = 1 and α = 3.1, cf. (5).
(heavy-tailed).

corresponding to the stopping rule of Algorithm 1 conditional on the (random)
final number of samples M . Clearly, the bound for (7) will also be a r.v. Using the
bound for (7), we thereafter construct reasonable penalty terms to be added to the
stopping criterion of our new stopping rule.

Let σM denote the sample variance generated from the stopped sample batch,
i.e., the samples used to generate the output MC estimate XM . Then our first step
towards an upper bound for (7) is partitioning the probability (7) into two parts
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as follows

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M
)

= P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| ≥ σ2/2

})
P
(
|σ2
M − σ2| ≥ σ2/2

∣∣∣M
)

+ P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| < σ2/2

})
P
(
|σ2
M − σ2| < σ2/2

∣∣∣M
)
.

(8)

The event |σ2
M−σ2| ≥ σ2/2 implies the estimate of the real variance is substantially

wrong, and then it is likely that we use far too few samples M to ensure that our
MC estimate is reliable. A relatively high penalty term should therefore be added
to the stopping criterion to avoid the event |σ2

M − σ2| ≥ σ2/2 from occurring. To
derive such a penalty term, we will first bound the factors of the product

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| ≥ σ2/2

})
P
(
|σ2
M − σ2| ≥ σ2/2

∣∣∣M
)

(9)

separately. For the first factor of this product,

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| ≥ σ2/2

}))
,

we recall that in Algorithm 1 the samples used in the output estimate XM and for
σM are independent of the samples used to determine M . Keeping this in mind,
we derive the following approximate upper bound

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| ≥ σ2/2

})

= P
(∣∣Xn − µ

∣∣ > TOL
∣∣∣
{
|σ2
n − σ2| ≥ σ2/2

})∣∣∣
n=M

/ 2

(
1− Φ

(√
M TOL

σ

)
+ CBE

(√
M TOL

σ

)
β√
M

)
.

(10)

Here the Berry-Esseen bound of Corollary 1.2 was used to derive the approximate
bound of the last line.

For the second factor of the product (9), we obtain the following equality

P
(
|σ2
M − σ2| ≥ σ2/2

∣∣∣M
)

= P
(
|σ2
n − σ2| ≥ σ2/2

)∣∣
n=M

.

Furthermore, using Chebycheff’s inequality and k-Statistics to bound the variance
of the sample variance, cf. Keeping [6], we derive that

P
(
|σ2
M − σ2| ≥ σ2/2

∣∣∣M
)

= P
(
|σ2
n − σ2| ≥ σ2/2

)∣∣
n=M

≤ 4 E

[∣∣σ2 − σ2
n

∣∣2

σ4

]∣∣∣∣∣
n=M

≤ 4
σ4
(

2
M−1 + κ

M

)

σ4
= 4

(
2

M − 1
+

κ

M

)
.

Here κ denotes the kurtosis, i.e.

κ =
E
[
|X − µ|4

]

σ4
− 3.

We conclude that

P
(
|σ2
M − σ2| ≥ σ2/2

∣∣∣M
)
≤ min

{
1, 4

(
2

M − 1
+

κ

M

)}
. (11)

Next, we want to bound the first factor of the second term of (8),

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| ≤ σ2/2

})
.
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The event |σ2
M −σ2| ≤ σ2/2 indicates that the variance is not substantially wrong-

estimated and thereby that it is quite likely that sufficiently many samples are
used in our MC estimate. Example 2.1 however illustrated that even in settings
with reasonably well-estimated M , failing to meet the confidence is still possible.
A relatively weak penalty should thus be added to the stopping criterion to avoid
failure in this setting. Applying the Edgeworth expansion with truncated o

(
n−1/2

)

as a weak penalty, cf. Theorem 1.3, we derive the approximate bound

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M,

{
|σ2
M − σ2| > σ2/2

})

= P
(∣∣Xn − µ

∣∣ > TOL
∣∣∣
{
|σ2
n − σ2| > σ2/2

})∣∣∣
n=M

= P

(
√
n

∣∣Xn − µ
∣∣

σ
>

√
nTOL

σ

∣∣∣∣∣
{
|σ2
n − σ2| > σ2/2

}
)∣∣∣∣∣

n=M

/ 2


1− Φ

(√
M TOL

σ

)
+

∣∣∣M TOL2

σ2 − 1
∣∣∣ exp

(
−M TOL2

σ2

)

6
√

2πM

∣∣E
[
(X − µ)3

]∣∣
σ3


 .

(12)

Combining (10), (11) and (12), and noting that for all x ∈ R+ and n ∈ N,
∣∣x2 − 1

∣∣ e−x2/2

6
√

2πn

∣∣E
[
(X − µ)3

]∣∣
σ3

≤ CBE(x)
β√
n
,

we obtain the following approximate bound for failing to meet the accuracy of
Algorithm 1 conditioned on the stopped number of samples M :

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M
)

/ 2

{
1− Φ

(√
M TOL

σ

)
+ CBE

(√
M TOL

σ

)
β√
M

}
P
(
|σ2
M − σ2| ≤ σ2/2

∣∣M
)

+ 2



1− Φ

(√
M TOL

σ

)
+

∣∣∣M TOL2

σ2 − 1
∣∣∣
∣∣E
[
(X − µ)3

]∣∣

exp
(
M TOL2

2σ2

)
× 6
√

2πMσ3



P

(
|σ2
M − σ2| > σ2/2

∣∣M
)

/ 2

(
1− Φ

(√
M TOL

σ

))
+ 2CBE

(√
M TOL

σ

)
β√
M

min

{
1, 4

(
2

M − 1
+

κ

M

)}

+

∣∣∣M TOL2

σ2 − 1
∣∣∣
∣∣E
[
(X − µ)3

]∣∣

exp
(
M TOL2

2σ2

)
× 3
√

2πMσ3
max

{
1− 4

(
2

M − 1
+

κ

M

)
, 0

}
.

(13)

4. A higher moments based stopping rule

From the approximate stochastic error bound (13) we will in this section con-
struct a new, more reliable stopping rule with a stopping criterion based on second,
third, and fourth moments of the r.v. that is sampled. The sampled moments our
new algorithm will depend on are (here represented in biased form)

σM :=

√√√√
M∑

i=1

(Xi −XM )2

M
, βM :=

M∑

i=1

|Xi −XM |3
Mσ3

M

, (14)

β̂M :=

M∑

i=1

(Xi −XM )3

Mσ3
M

, and κM :=

M∑

i=1

(Xi −XM )4

Mσ4
M

− 3.
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Replacing moments with sample moments in (13), we obtain a computable approx-
imate stochastic error bound

P
(∣∣XM − µ

∣∣ > TOL
∣∣∣M
)

/ 2

(
1− Φ

(√
M TOL

σM

))
+ 2CBE

(√
M TOL

σM

)
βM√
M

min

{
1, 4

(
2

M − 1
+
κM
M

)}

+

∣∣∣M TOL2

σ2
M
− 1
∣∣∣ |β̂M |

exp
(
M TOL2

2σ2
M

)
× 3
√

2πMσ3
M

max

{
1− 4

(
2

M − 1
+
κM
M

)
, 0

}
.

(15)

The resulting approximate stochastic error bound will be implemented as the fol-
lowing stopping criterion in Algorithm 2:

2

(
1− Φ

(√
M TOL

σM

))
+ 2CBE

(√
M TOL

σM

)
βM√
M

min

{
1, 4

(
2

M − 1
+
κM
M

)}

+

∣∣∣M TOL2

σ2
M
− 1
∣∣∣ |β̂M |

exp
(
M TOL2

2σ2
M

)
× 3
√

2πMσ3
M

max

{
1− 4

(
2

M − 1
+
κM
M

)
, 0

}
< δ

(16)

We now present the new stopping rule algorithm.

Algorithm 2 Higher Moments Based Stopping Rule

Input: Accuracy TOL, confidence δ, and initial number of samples M0.
Output: XM .

Set n = 0, generate i.i.d. samples {Xi}Mn
i=1 and compute the sample moments

σMn
, βMn

, β̂Mn
and κMn

according to (14).

while Inequality (16) is not fulfilled. do

Set n = n+ 1 and Mn = 2Mn−1.

Generate Mn i.i.d. samples {Xi}Mn
i=1 and compute the sample moments σMn

,

βMn
, and κMn .

end while

Set M = Mn, generate i.i.d. samples {Xi}Mi=1 and return the sample mean XM .

5. Numerical experiments

In the numerical experiments we will estimate the mean of four differently dis-
tributed r.v. by using both the the sample variance based stopping rule in Algo-
rithm 1 and the new higher moments based stopping rule in Algorithm 2. We com-
pare the reliability and complexity of the algorithms, with the complexity measured
in terms of average number of r.v. realizations needed to generate the given MC
estimate for a given accuracy-confidence pair TOL and δ. The distributions consid-
ered here are the light-tailed Uniform distribution, the Exponential distribution, the
heavier-tailed Lognormal distribution, and the heavy-tailed Pareto distribution. In
all these experiments we have set the algorithm parameter initial number of samples
to M0 = 30. From Figures 3, 4, 5, and 6, which illustrate the results of the nu-
merical experiments, we observe that for the heavy-tailed distributions Algorithm 2
performs reliably and succeeds in meeting the accuracy-confidence constraint while
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Algorithm 1 does not. For the light tailed distributions considered, both Algo-
rithms meet the accuracy-confidence constraint. Regarding the complexity of the
algorithms, we see that Algorithm 2 is only slightly more costly than Algorithm 1,
and, as expected, the complexities of the algorithms seem to become more similar
as TOL decreases.

2-5 2-4 2-3

10-1

Accuracy
δ(TOL) Algorithm 1 Algorithm 2

2-5 2-4 2-3
102

103

Complexity

2-5 2-4 2-3

10-2

10-1

2-5 2-4 2-3

103

104

2-5 2-4 2-3
10-3

10-2

10-1

2-5 2-4 2-3

103

104

2-5 2-4 2-310-4

10-3

10-2

10-1

TOL
2-5 2-4 2-3

103

104

TOL

Figure 3. (Pareto Distribution) Numerical compari-
son of the accuracy and complexity of reaching the goal
P
(∣∣XM − µ

∣∣ > TOL
)
< δ with Algorithm 1 and 2 when sampling

Pareto distributed r.v.s with parameters α = 3.1 and xm = 1,
cf. (5). Row plots from top to bottom is the output for the

respective confidences δ(TOL) = TOL1/2, δ(TOL) = TOL,

δ(TOL) = TOL3/2, and δ(TOL) = TOL2.
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2-5 2-4 2-3

10-1

Accuracy
δ(TOL) Algorithm 1 Algorithm 2

2-5 2-4 2-3
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103

Complexity

2-5 2-4 2-3

10-2

10-1

2-5 2-4 2-3

103

104

2-5 2-4 2-3
10-3

10-2

10-1

2-5 2-4 2-3

103

104

2-5 2-4 2-3
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10-2

TOL

2-5 2-4 2-3
103

104
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Figure 4. (Lognormal Distribution) Numerical compari-
son of the accuracy and complexity of reaching the goal
P
(∣∣XM − µ

∣∣ > TOL
)
< δ with Algorithm 1 and 2 when sam-

pling Lognormal distributed r.v. X ∼ log(N (µN , σ2
N )) with with

µN = −1 and σ2
N = 1. Row plots from top to bottom is the output

for the respective confidences δ(TOL) = TOL1/2, δ(TOL) = TOL,

δ(TOL) = TOL3/2, and δ(TOL) = TOL2.
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2-5 2-4 2-3

10-1

Accuracy
δ(TOL) Algorithm 1 Algorithm 2

2-5 2-4 2-3
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2-5 2-4 2-3
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103

2-5 2-4 2-3
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2-5 2-4 2-3
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103

2-5 2-4
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TOL

2-5 2-4 2-3

103

TOL

Figure 5. (Exponential Distribution) Numerical compar-
ison of the accuracy and complexity of reaching the goal
P
(∣∣XM − µ

∣∣ > TOL
)
< δ with Algorithm 1 and 2 when sam-

pling exponentially distributed r.v. with µ = 1/3. Row plots
from top to bottom is the output for the respective confidences

δ(TOL) = TOL1/2, δ(TOL) = TOL, δ(TOL) = TOL3/2, and
δ(TOL) = TOL2.
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Accuracy
δ(TOL) Algorithm 1 Algorithm 2

2-5 2-4 2-3
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2-5 2-4 2-3

10-2
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2-5 2-4 2-3
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2-5 2-4 2-3
10-3

10-2

10-1

2-5 2-4 2-3
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TOL

2-5 2-4 2-3
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104

TOL

Figure 6. (Uniform Distribution) Numerical compar-
ison of the accuracy and complexity of reaching the goal
P
(∣∣XM − µ

∣∣ > TOL
)
< δ with Algorithm 1 and 2 when sam-

pling uniformly distributed r.v. X ∼ U(−1, 1). Row plots
from top to bottom is the output for the respective confidences

δ(TOL) = TOL1/2, δ(TOL) = TOL, δ(TOL) = TOL3/2, and
δ(TOL) = TOL2.

6. Conclusion

We have shown that second moment based sequential stopping rules such as
Algorithm 1 run the risk of using too few samples in MC estimates, especially when
sampling heavy-tailed r.v. in settings with very stringent confidence requirements,
i.e., δ � TOL. Algorithm 2, a higher moment based stopping rule algorithm is
proposed in this work, and, according to the numerical examples of Section 5, our
new stopping rule performs more much reliable than Algorithm 1 while only slightly
increasing the computational cost. In short, we believe that our new stopping rule
presented in Algorithm 2 is well worth considering in settings with heavy tailed
r.v. and/or δ � TOL.

Note that our analysis of the original Algorithm 1 critically depends on three
main ingredients:

(I) a general, non-asymptotic estimate of the tail probabilities for the sample
mean XM , for which we used either the non-uniform Berry-Esseen theorem
given in Corollary 1.2 or the Edgeworth expansion given in Theorem 1.3,

(II) a choice between the more conservative Berry-Esseen bound and the approx-
imate Edgeworth bound made depending on whether the sample variance of
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the samples used to generate the output MC estimate is close to, or far from
the true variance,

(III) an estimate of the conditional distribution function of the sample variance
given the output M of the stopping algorithm given in (11).

There is clearly room for improvement in all these steps. First of all, the second
ingredient above is dangerous as we do not know how to estimate the correlation
between XM and the events |σ2

M − σ2| > σ2/2 and |σ2
M − σ2| ≤ σ2/2. This is

problematic, as these approximations can potentially have the wrong sign, i.e., it is
possible that the right-hand sides of (10) and (12) are smaller than their respective
left-hand sides even though we actually seek upper bounds. It is however our hope
that these approximation errors are compensated by the the overly pessimistic non-
uniform Berry-Esseen estimate and by using Chebycheff’s inequality to bound the
conditional distribution function of the sample variance. Even though the numerical
evidence obtained in Section 5 seems to confirm that the compensations work well,
we would prefer an analysis in which each estimation step can be controlled, at
least in the sense that we indeed obtain an upper bound for the error probability.

To a lesser extent, it is not clear that the truncation of the o
(
n−1/2

)
of the

Edgeworth expansion will lead to an upper bound for the error probability, either.
In this case, the approximation error is however of higher order, so a stronger
case can be made on why the effect will finally be negligible. In fact, when we used
truncated Edgeworth expansion also for the estimation of (10) – instead of the non-
uniform Berry-Esseen theorem – then the corresponding stopping rule turned out
to be not much more reliable than Algorithm 1, indicating that there is a delicate
balance between reliability in meeting the accuracy target (1) and maintaining an
acceptable efficiency.
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HOW ACCURATE IS MOLECULAR DYNAMICS?
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ANDERS SZEPESSY, AND RAUL TEMPONE

Abstract. Born-Oppenheimer dynamics is shown to provide an accurate approximation of time-independent

Schrödinger observables for a molecular system with an electron spectral gap, in the limit of large ratio of
nuclei and electron masses, without assuming that the nuclei are localized to vanishing domains. The

derivation, based on a Hamiltonian system interpretation of the Schrödinger equation and stability of the

corresponding hitting time Hamilton-Jacobi equation for non ergodic dynamics, bypasses the usual separa-
tion of nuclei and electron wave functions, includes caustic states and gives a different perspective on the

Born-Oppenheimer approximation, Schrödinger Hamiltonian systems and numerical simulation in molecular

dynamics modeling at constant energy.
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1. Motivation for error estimates of molecular dynamics

Molecular dynamics is a computational method to study molecular systems in materials science, chemistry
and molecular biology. The simulations are used, for example, in designing and understanding new materials
or for determining biochemical reactions in drug design, [14]. The wide popularity of molecular dynamics
simulations relies on the fact that in many cases it agrees very well with experiments. Indeed when we have
experimental data it is easy to verify correctness of the method by comparing with experiments at certain
parameter regimes. However, if we want the simulation to predict something that has no comparing experi-
ment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems
with few particles such studies are made by directly solving the Schrödinger equation. A fundamental and
still open question in classical molecular dynamics simulations is how to verify the accuracy computationally,
i.e., when the solution of the Schrödinger equation is not a computational alternative.

The aim of this paper is to derive qualitative error estimates for molecular dynamics and present new
mathematical methods which could be used also for a more demanding quantitive accuracy estimation,
without solving the Schrödinger solution. Having molecular dynamics error estimates opens, for instance,
the possibility of systematically evaluating which density functionals or empirical force fields are good ap-
proximations and under what conditions the approximation properties hold. Computations with such error
estimates could also give improved understanding when quantum effects are important and when they are
not, in particular in cases when the Schrödinger equation is too computational complex to solve.

The first step to check the accuracy of a molecular dynamics simulation is to know what to compare with.
Here we compare with the value of any observable g(X), of nuclei positions X, for the time-independent
Schrödinger eigenvalue equation HΦ = EΦ, so that the approximation error we study is

(1.1)

∫

R3(N+n)

g(X)Φ(x,X)∗Φ(x,X) dx dX − lim
T→∞

1

T

∫ T

0

g(Xt)dt ,

for a molecular dynamics path Xt, with total energy equal to the Schrödinger eigenvalue E. The observable
can be, for instance, the local potential energy, used in [37] to determine phase-field partial differential equa-
tions from molecular dynamics simulations, see Figure 1. The time-independent Schrödinger equation has
a remarkable property of accurately predicting experiments in combination with no unknown data, thereby
forming the foundation of computational chemistry. However, the drawback is the high dimensional solution
space for nuclei-electron systems with several particles, restricting numerical solution to small molecules. In
this paper we study the time-independent setting of the Schrödinger equation as the reference. The pro-
posed approach has the advantage of avoiding the difficulty of finding the initial data for the time-dependent
Schrödinger equation.

Figure 1. A Lennard-Jones molecular dynamics simulation of a phase transition with pe-
riodic boundary conditions, from [37]. The left part is solid and the right is liquid. The
color measures the local potential energy.

The second step to check the accuracy is to derive error estimates. We have three types of error: time dis-
cretization error, sampling error and modeling error. The time discretization error comes from approximating

2



the differential equation for molecular dynamics with a numerical method, based on replacing time deriva-
tives with difference quotients for a positive step size ∆t. The sampling error is due to truncating the infinite
T and using a finite value of T in the integral in (1.1). The modeling error (also called coarse-graining error)
originates from eliminating the electrons in the Schrödinger nuclei-electron system and replacing the nuclei
dynamics with their classical paths; this approximation error was first analyzed by Born and Oppenheimer
in their seminal paper [2].

The time discretization and truncation error components are in some sense simple to handle by comparing
simulations with different choice of ∆t and T , although it can, of course, be difficult to know that the behavior
does not change with even smaller ∆t and larger T . The modeling error is more difficult to check since a direct
approach would require to solve the Schrödinger equation. Currently the Schrödinger partial differential
equation can only be solved with few particles, therefore it is not an option to solve the Schrödinger equation
in general. The reason to use molecular dynamics is precisely in avoiding solution of the Schrödinger equation.
Consequently the modeling error requires mathematical error analysis. In the literature there seems to be
no error analysis that is precise, simple and constructive enough so that a molecular dynamics simulation
can use it to asses the modeling error. Our alternative error analysis presented here is developed with the
aim to to give a different point of view that could help to construct algorithms that estimate the modeling
error in molecular dynamics computations. Our analysis differs from previous ones by using

- the time-independent Schrödinger equation as the reference model to compare molecular dynamics
with,

- an amplitude function in a WKB-Ansatz that depends only on position coordinates (x,X) (and not
on momentum coordinates (p, P )) for caustic states,

- actual solutions of the Schrödinger equation locally and asymptotic solutions globally (and not only
asymptotic solutions),

- the theory of Hamilton-Jacobi partial differential equations to derive estimates for the corresponding
Hamiltonian systems, i.e., the molecular dynamics systems.

Understanding both the exact Schrödinger model and the molecular dynamics model through Hamilton-
ian systems allows us to obtain bounds on local and some global problems for the difference of the solutions
by well-established comparison results for the solutions of Hamilton-Jacobi equations, by regarding the
Schrödinger Hamiltonian and the molecular dynamics Hamiltonians as perturbations of each others. The
Hamilton-Jacobi theory applied to Hamiltonian systems is inspired by the error analysis of symplectic meth-
ods for optimal control problems for partial differential equations, [31]. The result is that the modeling error
can be estimated based on the difference of the Hamiltonians, for the molecular dynamics system and the
Schrödinger system, along the same solution path, see Theorem 7.1 and Section 8.2. The stability analysis
limits the study to non ergodic dynamics.

The next section introduces the Schrödinger and molecular dynamics models. Sections 3 and 4 establish
local analysis relating the Schrödinger problem to a Hamiltonian system for non caustic and caustic states,
respectively. Sections 5 and 6 extend the local picture to a global construction, in the case of non ergodic
dynamics. Sections 7 and 8 formulate approximation and stability results in the Hamilton-Jacobi setting.
Section 9 presents numerical results.

2. The Schrödinger and molecular dynamics models

In deriving the approximation of the solutions to the full Schrödinger equation the heavy particles are
often treated within classical mechanics, i.e., by defining the evolution of their positions and momenta by
equations of motions of classical mechanics. Therefore we denote Xt : [0,∞)→ R3N and Pt : [0,∞)→ R3N

time-dependent functions of positions and momenta with time derivatives denoted by

Ẋt =
dXt

dt
, Ẍt =

d2Xt

dt2
.

We denote the Euclidean scalar product on R3N by

X · Y =
3N∑

i=1

XiY i .

3



Furthermore, we use the notation ∇Xψ(x,X) = (∇X1ψ(x,X), . . . ,∇XNψ(x,X)), and as customary ∇Xiψ =
(∂Xi1ψ, ∂Xi2ψ, ∂Xi3ψ).

On the other hand, the light particles are treated within the quantum mechanical description and the
following complex valued bilinear map 〈· , ·〉 : L2(R3n × R3N ) × L2(R3n × R3N ) → L2(R3N ) will be used in
the subsequent calculations

(2.1) 〈φ, ψ〉 =

∫

R3n

φ(x,X)∗ψ(x,X) dx .

The notation ψ(x,X) = O(M−α) is also used for complex valued functions, meaning that |ψ(x,X)| =
O(M−α) holds uniformly in x and X.

The time-independent Schrödinger equation

(2.2) H(x,X)Φ(x,X) = EΦ(x,X)

models many-body (nuclei-electron) quantum systems and is obtained from minimization of the energy in
the solution space of wave functions, see [33, 32, 1, 35, 7]. It is an eigenvalue problem for the energy E ∈ R
of the system in the solution space, described by wave functions, Φ : R3n×R3N → C, depending on electron
coordinates x = (x1, . . . , xn) ∈ R3n, nuclei coordinates X = (X1, . . . , XN ) ∈ R3N , and the Hamiltonian
operator H(x,X)

(2.3) H(x,X) = V(x,X)− 1

2
M−1

N∑

n=1

∆Xn .

We assume that a quantum state of the system is fully described by the wave function Φ : R3n × R3N → C
which is an element of the Hilbert space of wave functions with the standard complex valued scalar product

〈〈Φ,Ψ〉〉 =

∫

R3n×R3N

Φ(x,X)∗Ψ(x,X) dx dX ,

and the operator H is self-adjoint in this Hilbert space. The Hilbert space is then a subset of L2(R3n×R3N )
with symmetry conditions based on the Pauli exclusion principle for electrons, see [7, 22].

In computational chemistry the operator V, the electron Hamiltonian, is independent of M and it is
precisely determined by the sum of the kinetic energy of electrons and the Coulomb interaction between
nuclei and electrons. We assume that the electron operator V(·, X) is self-adjoint in the subspace with the
inner product 〈·, ·〉 of functions in (2.1) with fixed X coordinate and acts as a multiplication on functions that
depend only on X. An essential feature of the partial differential equation (2.2) is the high computational
complexity of finding the solution in an antisymmetric/symmetric subset of the Sobolev spaceH1(R3n×R3N ).
The mass of the nuclei, which are much greater than one (electron mass), are the diagonal elements in the
diagonal matrix M .

In contrast to the Schrödinger equation, a molecular dynamics model of N nuclei X : [0, T ] → R3N ,
with a given potential Vp : R3N → R, can be computationally studied for large N by solving the ordinary
differential equations

(2.4) Ẍt = −∇XVp(Xt) ,

in the slow time scale, where the nuclei move O(1) in unit time. This computational and conceptual
simplification motivates the study to determine the potential and its implied accuracy compared with the
the Schrödinger equation, as started already in the 1920’s with the Born-Oppenheimer approximation [2].
The purpose of our work is to contribute to the current understanding of such derivations by showing
convergence rates under new assumptions. The precise aim in this paper is to estimate the error

(2.5)

∫
R3N+3n g(X)Φ(x,X)∗Φ(x,X) dx dX∫

R3N+3n Φ(x,X)∗Φ(x,X) dx dX
− lim
T→∞

1

T

∫ T

0

g(Xt) dt

for a position dependent observable g(X) of the time-indepedent Schrödinger equation (2.2) approximated

by the corresponding molecular dynamics observable limT→∞ T−1
∫ T

0
g(Xt) dt, which is computationally

cheaper to evaluate with several nuclei. The Schrödinger eigenvalue problem may typically have multiple
eigenvalues and the aim is to find an eigenfunction Φ and a molecular dynamics system that can be compared.
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There may be eigenfunctions that we cannot approximate and the stability analysis we use limits the study
to non ergodic dynamics.

The main step to relate the Schrödinger wave function and the molecular dynamics solution is the so-called
zero-order Born-Oppenheimer approximation, whereXt solves the classical ab initio molecular dynamics (2.4)
with the potential Vp : R3N → R determined as an eigenvalue of the electron Hamiltonian V(·, X) for a given
nuclei position X. That is Vp(X) = λ0(X) and

V(·, X)ΨBO(·, X) = λ0(X)ΨBO(·, X) ,

for an electron eigenfunction ΨBO(·, X) ∈ L2(R3n), for instance, the ground state. The Born-Oppenheimer
expansion [2] is an approximation of the solution to the time-independent Schrödinger equation which is
shown in [15, 19] to solve the time-independent Schrödinger equation approximately. This expansion, ana-
lyzed by the methods of multiple scales, pseudo-differential operators and spectral analysis in [15, 19, 13],
can be used to study the approximation error (2.5). However, in the literature, e.g., [24], it is easier to find
precise statements on the error for the setting of the time-dependent Schrödinger equation, since the stability
issue is more subtle in the eigenvalue setting.

Instead of an asymptotic expansion we use a different method based on a Hamiltonian dynamics formu-
lation of the time-independent Schrödinger eigenfunction and the stability of the corresponding perturbed
Hamilton-Jacobi equations viewed as a hitting problem. This approach makes it possible to reduce the error
propagation on the infinite time interval to finite time excursions from a certain co-dimension one hitting
set. A motivation for our method is that it forms a sub-step in trying to estimate the approximation error
using only information available in molecular dynamics simulations.

The related problem of approximating observables to the time-dependent Schrödinger equation by the
Born-Oppenheimer expansions is well studied, theoretically in [4, 28] and computationally in [20] using the
Egorov theorem. The Egorov theorem shows that finite time observables of the time-dependent Schrödinger
equation are approximated with O(M−1) accuracy by the zero-order Born-Oppenheimer dynamics with an
electron eigenvalue gap. In the special case of a position observable and no electrons (i.e., V = V (X) in
(2.3)), the Egorov theorem states that

(2.6)

∣∣∣∣
∫

R3N

g(X)Φ(X, t)∗Φ(X, t) dX −
∫

R3N

g(Xt)Φ(X0, 0)∗Φ(X0, 0) dX0

∣∣∣∣ ≤ CtM−1 ,

where Φ(X, t) is a solution to the time-dependent Schrödinger equation

i∂tΦ(·, t) = HΦ(·, t)
with the Hamiltonian (2.3) and the path Xt is the nuclei coordinates for the dynamics with the Hamiltonian
1
2 |Ẋ|2 +V (X). If the initial wave function Φ(X, 0) is the eigenfunction in (2.2) the first term in (2.6) reduces
to the first term in (2.5) and the second term can also become the same in an ergodic limit. However, since
we do not know that the parameter Ct (bounding an integral over (0, t)) is bounded for all time we cannot
directly conclude an estimate for (2.5) from (2.6).

In our perspective studying the time-independent instead of the time-dependent Schrödinger equation has
the important differences that

- the infinite time study of the Born-Oppenheimer dynamics can be reduced to a finite time hitting
problem,

- the computational and theoretical problem of specifying initial data for the Schrödinger equation is
avoided, and

- computationally cheap evaluation of the position observable g(X) is possible using the time average

limT→∞ 1
T

∫ T
0
g(Xt) dt along the solution path Xt.

In this paper we derive the Born-Oppenheimer approximation from the time-independent Schrödinger
equation (2.2) and we establish convergence rates for molecular dynamics approximations to time-independent
Schrödinger observables under simple assumptions including the so-called caustic points, where the Jacobian
determinant det J(Xt) ≡ det(∂Xt/∂X0) of the Eulerian-Lagrangian transformation of X-paths vanish. As
mentioned previously, the main new analytical idea is an interpretation of the time-independent Schrödinger
equation (2.2) as a Hamiltonian system and the subsequent analysis of the approximations by comparing
Hamiltonians. This analysis employs the theory of Hamilton-Jacobi partial differential equations. The
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problematic infinite-time evolution of perturbations in the dynamics is solved for non ergodic dynamics by
viewing it as a finite-time hitting problem for the Hamilton-Jacobi equation, with a particular hitting set.
In contrast to the traditional rigorous and formal asymptotic expansions we analyze the transport equation
as a time-dependent Schrödinger equation.

The main inspiration for this paper are works [27, 6, 5] and the semi-classical WKB analysis in [25]:

the works [27, 6, 5] derive the time-dependent Schrödinger dynamics of an x-system, iΨ̇ = H1Ψ, from
the time-independent Schrödinger equation (with the Hamiltonian H1(x) + εH(x,X)) by a classical limit
for the environment variable X, as the coupling parameter ε vanishes and the mass M tends to infinity;
in particular [27, 6, 5] show that the time derivative enters through the coupling of Ψ with the classical
velocity. Here we refine the use of characteristics to study classical ab initio molecular dynamics where
the coupling does not vanish, and we establish error estimates for Born-Oppenheimer approximations of
Schrödinger observables. The small scale, introduced by the perturbation

−(2M)−1
∑

k

∆Xk

of the potential V, is identified in a modified WKB eikonal equation and analyzed through the corresponding
transport equation as a time-dependent Schrödinger equation along the eikonal characteristics. This modified
WKB formulation reduces to the standard semi-classical approximation, see [25], in the case of the potential
function V = V (X) ∈ R, depending only on nuclei coordinates, but becomes different in the case of operator-
valued potentials studied here. The global analysis of WKB functions was initiated by Maslov in the
1960’, [25], and lead to the subjects Geometry of Quantization and Quantum Ergodicity, relating global
classical paths to eigenfunctions of the Schrödinger equation, see [10] and [38]. The analysis presented in
this paper is based on a Hamiltonian system interpretation of the time-independent Schrödinger equation.
Stability of the corresponding Hamilton-Jacobi equation, bypasses the usual separation of nuclei and electron
wave functions in the time-dependent self-consistent field equations, [3, 23, 36].

A unique property of the time-independent Schrödinger equation we use is the interpretation that the
dynamics Xt ∈ R3N can return to a co-dimension one surface I which then can reduce the dynamics to
a hitting time problem with finite-time excursions from I. We assume that the (Lagrangian) manifold,

generated by the visited points (Xt, Ẋt) ∈ R6N in phase space is smooth, which excludes ergodic dynamics.
Another advantage of viewing the molecular dynamics as an approximation of the eigenvalue problem is
that stochastic perturbations of the electron ground state can be interpreted as a Gibbs distribution of
degenerate nuclei-electron eigenstates of the Schrödinger eigenvalue problem (2.2), see [34]. The time-
independent eigenvalue setting also avoids the issue on “wave function collapse” to an eigenstate, present in
the time-dependent Schrödinger equation.

Theorem 7.1 demonstrates that observables from the zero-order Born-Oppenheimer dynamics approximate
observables for the Schrödinger eigenvalue problem with the error of order O(M−1+δ), for any δ > 0,
assuming that the electron eigenvalues satisfy a spectral gap condition and that the Lagrangian manifold
is smooth. The result is based on the Hamiltonian (2.3) with any potential V that is smooth in X, e.g., a
regularized version of the Coulomb potential. The derivation does not assume that the nuclei are supported
on small domains; in contrast derivations based on the time-dependent self-consistent field equations require
nuclei to be supported on small domains. The reason that the small support is not needed here comes from
the combination of the characteristics and sampling from an equilibrium density. In other words, the nuclei
paths behave classically although they may not be supported on small domains. Section 6 shows that caustics
couple the WKB modes, as is well-known from geometric optics, see [18, 25], and generate non-orthogonal
WKB modes that are coupled in the Schrödinger density. On the other hand, with a spectral gap and
without caustics the Schrödinger density is asymptotically decoupled into a simple sum of individual WKB
densities. Section 4 constructs a WKB-Fourier integral Schrödinger solution for caustic states. Section 7.2
relates the approximation results to the accuracy of symplectic numerical methods for molecular dynamics.

We believe that these ideas can be further developed to better understanding of molecular dynamics
simulations. Our study does not directly apply to ergodic dynamics, since then the Lagrangian manifold
becomes dense in a set of dimension 6N − 1 in phase-space, which violates our assumption of a smooth
Lagrangian manifold of dimension 3N . It would also be desirable to have more precise conditions on the
data (i.e. molecular dynamics initial data and potential V) instead of our implicit assumption on hitting
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times, smooth Lagrangian manifold and convergence of the Born-Oppenheimer power series approximation
in Lemma 8.2.

3. A time-independent Schrödinger WKB-solution

3.1. Exact Schrödinger dynamics. For the sake of simplicity we assume that all nuclei have the same

mass. If this is not the case, we can introduce new coordinates M
1/2
1 X̃k = M

1/2
k Xk, which transform the

Hamiltonian to the form we want V(x,M
1/2
1 M−1/2X̃) − (2M1)−1

∑N
k=1 ∆X̃k . The singular perturbation

−(2M)−1
∑
k ∆Xk of the potential V introduces an additional small scale M−1/2 of high frequency oscilla-

tions, as shown by a WKB-expansion, see [29, 17, 16, 26]. We shall construct solutions to (2.2) in such a
WKB-form

(3.1) Φ(x,X) = φ(x,X)eiM
1/2θ(X) ,

where the amplitude function φ : R3n × R3N → C is complex valued, the phase θ : R3N → R is real
valued, and the factor M1/2 is introduced in order to have well-defined limits of φ and θ as M → ∞.
Note that it is trivially always possible to find funtions φ and θ satisfying (3.1), even in the sense of a true
equality. Of course, the ansatz only makes sense if φ and θ do not have strong oscillations for large M .
The standard WKB-construction, [25, 16], is based on a series expansion in powers of M1/2 which solves
the Schrödinger equation with arbitrary high accuracy. Instead of an asymptotic solution, we introduce an
actual solution based on a time-dependent Schrödinger transport equation. This transport equation reduces
to the formulation in [25] for the case of a potential function V = V (X) ∈ R, depending only on nuclei
coordinates X ∈ R3N , and modifies it for the case of a self-adjoint potential operator V(·, X) on the electron
space L2(R3n) which is the primary focus of our work here. In Sections 6 and 4 we use a linear combination
of WKB-eigensolutions, but first we study the simplest case of a single WKB-eigensolution as motivated by
the following subsection.

3.1.1. Molecular dynamics from a piecewise constant electron operator on a simplex mesh. The purpose of
this section is to convey a first formal understanding of the relation between ab initio molecular dynamics
Ẍt = −∇Xλ0(Xt) and the Schrödinger eigenvalue problem (2.2) and motivate the WKB ansatz (3.1). In
subsequent sections we will describe precise analysis of error estimates for the WKB-method. The idea
behind this first study is to approximate the electron operator V by a finite dimensional matrix Vh, which
is piecewise constant on a simplex mesh in the variable X, with the mesh size h. Furthermore, we introduce
the change of variables

Φ =

J∑

j=0

ϕjΨj =: Ψϕ

based on the piecewise constant electron eigenvalues and eigenvectors VhΨj = λhjΨj , 〈Ψj ,Ψj〉 = 1, j =
0, . . . J , normalized and ordered with respect to increasing eigenvalues. Then the Schrödinger equation (2.2)
becomes

− 1

2M
∆X(Ψϕ) + VhΨϕ = EΨϕ ,

with the notation ∆X =
∑
j ∆Xj , so that on each simplex

− 1

2M
∆Xϕj + λhjϕj = Eϕj ,

which by separation of variables, for each j = 0, 1, 2, . . . , J , implies

(3.2) ϕj =
∑

P j

a(P j)eiM
1/2P j ·X

for any P j ∈ C3N that satisfies the eikonal equation

1

2
P j · P j + λhj = E ,

for any a(P j) ∈ C, if all components of P j are non zero. If P jk = 0 we have a(P j) =
∏
{k :P jk=0}(AkXk +Bk)

for any Ak ∈ C, Bk ∈ C, since e±iM
1/2P jkXk = 1 in this case. The solution Φ, to (2.2), and its normal
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derivative are continuous at the interfaces of the simplices. On the intersection of the faces the normal
derivative is not defined but this set is of measure zero and thus negligible as seen from the H1(R3N )
solution concept of (2.2).

We investigate a simpler, one-dimensional case, X ∈ R, first. Then the solution ϕ simplifies to

ϕj = aje
iM1/2P j ·X + bje

−iM1/2P j ·X

for aj , bj , P
j ∈ C and (P j)2/2 + λj = E . The continuity conditions

lim
X→X0+

Φ(X) = lim
X→X0−

Φ(X)

lim
X→X0+

∂XΦ(X) = lim
X→X0−

∂XΦ(X)
(3.3)

hold for any X0 ∈ R, in particular, at the interval boundary where for X0 = 0

lim
X→X0±

Φ(X) =
∑

j

(aj±Ψj± + bj±Ψj±)

lim
X→X0±

∂XΦ(X) = iM1/2
∑

j

(aj±P
j
±Ψj± − bj±P j±Ψj±) .

(3.4)

It is clear that given a− and b− we can determine a+ and b+ so that (3.3) holds. In order to prepare for the
multi-dimensional case it is convenient to consider each incoming wave a− and b+ separately: the incoming
a− wave is split into a refracted a+ and reflected b− wave

(3.5)
∑

j

aj−Ψj−P
j
− =

∑

j

(aj+Ψj+P
j
+ + bj−Ψj−P

j
−)

and similarly the incoming b+ wave is split into a refracted b− wave and a reflected a+ wave, see Figure 2.

The jump conditions at the different interfaces are coupled by the oscillatory functions e±iM
1/2P j ·X . The

global construction of ϕ and Ψ in one dimension follows by marching in the positive X-direction to successive

intervals, creating in each interval both a eiM
1/2P j ·XΨj and a e−iM

1/2P j ·XΨj wave.
In general each interface condition (3.4) also couples all eigenvectors Ψj . However, we shall see that if

M is large, V smooth and there is a spectral gap λ1 − λ0 > c > 0 then, in the limit of the simplex size h

tending to zero, there is an asymptotically uncoupled WKB-solution Φ(x,X) = φ(x,X)eiM
1/2θ(X), where

θ : R3N → R, φ : R3n × R3N → C. Under these assumptions the Born-Oppenheimer approximation in
Lemma 8.2 shows that φ is asymptotically parallel, in L2(dx), to the electron eigenfunction Ψ0 as M →∞.
The gradient∇Xθ(X) = P 0 is obtained from the differential θ(X) = θ(X0)+∇Xθ(X0)·(X−X0)+o(|X−X0|).

In the case of electron eigenvalue crossing, i.e., λ1(X) = λ0(X) for some X, or so called avoided crossings
(meaning that the eigenvalue gap c� 1 is small and dependent on M), a refraction will, in general, include

all components aje
iM1/2P j ·XΨj , j = 1, . . . , J and consequently the Born-Oppenheimer approximation fails.

The construction of a solution to the Schrödinger equation with a piecewise constant potential is more
involved in the multi-dimensional case for two reasons: each reflection at an interface generates, in general,
an additional path in a new direction, so that many paths are needed. Furthermore, the construction of a
solution to the eikonal equation is more complicated since the jump condition (3.4) implies that the tangential

component P jt of P j must be continuous across a simplex face and only the normal component P jn = P j−P jt
may have a jump. In multi-dimensional cases it is still possible to construct a solution of the form (3.2) by

following the characteristic paths Ẋt = P j(Xt) and using the jump conditions (3.4): when the path Xt hits

a simplex face, the tangential part P jt of P j is continuous and the normal component P jn of P j may jump.

At a simplex face the new value of the P jn is determined by (P jn · P jn + P jt · P jt )/2 + λhj = E. Analogously

to the one dimensional case we treat the pair eiM
1/2(P jt +P jn)·X and eiM

1/2(P jt −P jn)·X together. However,

each collision with eiM
1/2(P jt +P jn)·X on an interface now creates a reflected wave in another direction, in

particular, eiM
1/2(P jt −P jn)·XΨj , and we get many paths to follow. Therefore each mode eiM

1/2P j ·X follows

its characteristic Xt, where Ẋt = P j , through the simplex to the adjacent simplicial faces, which the
characteristic pass through when they leave the simplex, and at these outflow faces a reflected mode is
created and a refracted mode continues into the adjacent simplices, see Figure 2. In this way we can
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formally construct a solution of the form
∑
P j a(P j)eiM

1/2P j ·XΨj to the Schrödinger equation (2.2), with
possibly several different characteristic paths in each simplex.

Figure 2. The value of P j is constructed by following the characteristic paths Xt (the blue

and green curves), based on Ẋt = P j , with a reflection-refraction at each simplex face (left)
following the path through simplices (middle) and each simplex may have several P j (right).

In conclusion, the piecewise constant electron operator shows that the solution to the Schrödinger equation

(2.2) is composed of a linear combination of highly oscillatory function modes aje
iM1/2P j ·XΨj based on the

electron eigenvectors Ψj and eigenvalues λj , where P j satisfies the eikonal equation P j ·P j/2 + λj(X) = E.

These modes can be followed be characteristics Ẋ = P j from simplex to simplex. In this paper we show that
observables based on the related WKB Schrödinger solutions can be approximated by molecular dynamics
time averages, when there is a spectral gap around λ0.

3.1.2. A first WKB-solution. The WKB-solution satisfies the Schrödinger equation (2.2) provided that

0 = (H− E)φ eiM
1/2θ(X)

=

(
(
1

2
|∇Xθ|2 + V − E)φ − 1

2M
∆Xφ−

i

M1/2
(∇Xφ · ∇Xθ +

1

2
φ∆Xθ)

)
eiM

1/2θ(X) .
(3.6)

We shall see that only eigensolutions Φ that correspond to dynamics without caustics correspond to such
a single WKB-mode, as for instance when the eigenvalue E is inside an electron eigenvalue gap. Solutions
in the presence of caustics use a Fourier integral of such WKB-modes, and we treat this case in detail in

Section 4. To understand the behavior of θ, we multiply (3.6) by φ∗e−iM
1/2θ(X) and integrate over R3n.

Similarly we take the complex conjugate of (3.6), and multiply by φ eiM
1/2θ(X) and integrate over R3n. By

adding these two expressions we obtain

0 = 2
(1

2
|∇Xθ|2 − E

)
〈φ, φ〉+ 〈φ,Vφ〉+ 〈Vφ, φ〉︸ ︷︷ ︸

=2〈φ,Vφ〉

− 1

2M
(〈φ,∆Xφ〉+ 〈∆Xφ, φ〉)

− i

M1/2

(
〈φ,∇Xφ · ∇Xθ〉 − 〈∇Xφ · ∇Xθ, φ〉

)
︸ ︷︷ ︸

=2iIm 〈φ,∇Xφ·∇Xθ〉

+
i

2M1/2

(
〈φ, φ〉 − 〈φ, φ〉

)
︸ ︷︷ ︸

=0

∆Xθ .
(3.7)

The purpose of the phase function θ is to generate an accurate approximation in the limit as M → ∞. A
possible and natural definition of θ would be the formal limit of (3.7) as M → ∞, which is the Hamilton-
Jacobi equation, also called the eikonal equation

(3.8)
1

2
|∇Xθ|2 = E − V0 ,

where the function V0 : R3N → R is

(3.9) V0 :=
〈φ,Vφ〉
〈φ, φ〉 .

The solution to the Hamilton-Jacobi eikonal equation can be constructed from the associated Hamiltonian
system

Ẋt = Pt

Ṗt = −∇XV0(Xt)
(3.10)
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through the characteristics path (Xt, Pt) satisfying ∇Xθ(Xt) =: Pt. The amplitude function φ can be
determined by requiring the ansatz (3.6) to be a solution, which gives

0 = (H− E)φ eiM
1/2θ(X)

=
(

(
1

2
|∇Xθ|2 + V0 − E)

︸ ︷︷ ︸
=0

φ

− 1

2M
∆Xφ+ (V − V0)φ− i

M1/2
(∇Xφ · ∇Xθ +

1

2
φ∆Xθ)

)
eiM

1/2θ(X) ,

so that by using (3.8) we have

− 1

2M
∆Xφ+ (V − V0)φ− i

M1/2
(∇Xφ · ∇Xθ +

1

2
φ∆Xθ) = 0 .

The usual method for determining φ from this so-called transport equation uses an asymptotic expansion

φ '∑K
k=0M

−k/2φk, see [15, 19] and the beginning of Section 8. An alternative is to write it as a Schrödinger
equation, similar to work in [25]: we apply the characteristics in (3.10) to write

d

dt
φ(Xt) = ∇Xφ · Ẋt = ∇Xφ · ∇Xθ ,

and define the weight function G by

(3.11)
d

dt
logGt =

1

2
∆Xθ(Xt) ,

and the variable ψt := φ(Xt)Gt. We use the notation φ(X) instead of the more precise φ(·, X), so that e.g.
ψt = ψt(x) = φ(x,Xt)Gt. Then the transport equation becomes a Schrödinger equation

(3.12) iM−1/2ψ̇t = (V − V0)ψt −
Gt
2M

∆X

(
ψt
Gt

)
.

In conclusion, equations (3.8)-(3.12) determine the WKB-ansatz (3.1) to be a local solution to the Schrödinger
equation (2.2).

Theorem 3.1. Assume the Hamilton-Jacobi equation, with the corresponding Hamiltonian,

HS(X,P ) :=
1

2
|P |2 +

〈ψ(X),V(X)ψ(X)〉
〈ψ(X), ψ(X)〉︸ ︷︷ ︸

=:V0(X)

−E = 0 ,

based on the primal variable X and the dual variable P = P (X) = ∇Xθ(X), has a smooth solution θ(X) in
a domain U ⊆ R3N , then θ generates a solution to the time-independent Schrödinger equation (H−E)Φ = 0
in U , in the sense that

Φ(Xt, x) = Ĝ−1(Xt)ψ̂(x,Xt)e
iM1/2θ(Xt) ,

solves the equation (2.2) in U , where ψ̂(Xt) := ψt satisfies the transport equation (3.12) and

Ĝ(Xt) = Gt ,

d

dt
logGt =

1

2
∆Xθ(Xt) ,

(Xt, Pt) solves the Hamiltonian system (3.10) corresponding to HS.

The theorem tells us that if there is a C2 solution to the Hamilton-Jacobie equation, then we have a
family of characteristic paths with the desired property. It is well know that Hamilton-Jacobi equations in
general do not have global C2 solutions, due to X-paths that collide, as seen by (5.4) generating blow up
in ∂XXθ(X). However if the domain is small enough, the data on the boundary is compatible (in the sense
that HS(X,∇Xθ(X)) = 0 in the boundary) and noncharacteristic (in the sense that the normal derivative
∂nθ(X) 6= 0 on the boundary) and V0 is smooth, then the converse property holds: that the characteristics
generate a local solution to the Hamilton-Jacobi equation, see Ref. [12]. In Section 5 we describe Maslov’s
method to find a global asymptotic solution by patching together local solutions; an important ingredient is
how to set up data for the Hamiltonian system, which is previewed in the next section.

10



3.1.3. Data for the Hamiltonian system. For the energy E chosen larger than the potential energy, that
is such that E ≥ V0, Theorem 3.1 yields a solution θ : U → R to the eikonal equation (3.8) locally in a
neighborhood U ⊆ R3N , for regular compatible data (X0, P0) given on a 3N−1 dimensional ”inflow”-domain
X0 ∈ I ⊂ U . For a Schrödinger eigenvalue problem, the domain I and the data (X0, P0)|I are not given
(except that the total energy is E). In contrast for a scattering problem, the domain I has given data. If
paths leaving from I return to I, there is an additional global compatibility of data on I: assume X0 ∈ I and
Xt ∈ I, then the values Pt are determined from P0; continuing the path to subsequent hitting points Xtj ∈ I,
j = 1, 2, . . . determines Ptj from P0. The characteristic path (Xt, Pt), t > 0, generates a 3N dimensional
Lagrangian manifold in the 6N dimensional phase space (X,P ), which is smooth under our assumptions.
This Lagrangian manifold is in general only locally of the form (X,P (X)), but in the case of no caustics it
is globally of this form and then there is a phase function X 7→ θ(X) such that P (X) = ∇Xθ(X) globally.
Section 5.1 reviews background material on Lagrangian manifolds used in this paper.

In Section 4 we study phase space manifolds with caustics and Section 5 presents a global construction of
a Lagrangian manifold in some cases. We will use a variant of Maslov’s construction [25] to obtain a global
asymptotic solution to the Schrödinger equation (2.2) from local WKB-solutions and we apply a Poincare
map to determine the initial Lagrangian manifold, as described in Section 5: the first step is to define a
codimension one hitting plane in the phase space R6N ; the problem is reduced to find an initial Lagrangian
manifold of dimension 3N − 1 in the hitting plane by following the characteristic paths extending θj and φj
locally; around a caustic the solution is a Fourier integral of WKB solutions, described in Section 4 and the
stationary phase method yields boundary conditions for the phase and amplitude functions from the Fourier
integral solution; on the hitting plane the solution has to coincide with the initial data, giving a fixed point
problem for the initial Lagrangian manifold.

3.1.4. Liouville’s formula. In this section we verify Liouville’s formula

(3.13)
G2

0

G2
t

= e−
∫ t
0

Tr (∇XP (Xt)) dt =

∣∣∣∣det
∂(X0)

∂(Xt)

∣∣∣∣ ,

given in [25]. The characteristic Ẋt = P (Xt) implies d
dtJ(Xt) = ∇XP J(X), where J(X)ij = ∂Xi

t/∂X
j
0

denotes the first variation with respect to perturbations of the initial data. The logarithmic derivative then
satisfies d/dt

(
log J(X)

)
ij

= ∂XjP
i(Xt) = ∂XiXjθ(X) which implies that log J(Xt) is symmetric and shows

that (3.13) holds

divP = Tr∇XP =
d

dt
Tr log J(X) =

d

dt
log detJ(X) .

The last step uses that J(X) can be diagonalized by an orthogonal transformation and that the trace is
invariant under orthogonal transformations.

3.1.5. The density and the first variation. Note that the nuclei density, using Ĝ, can be written

(3.14) ρ :=
〈φ, φ〉∫

R3N 〈φ, φ〉 dX
=

〈ψ̂, ψ̂〉 Ĝ−2

∫
R3N 〈ψ̂, ψ̂〉 Ĝ−2 dX

,

and since each time t determines a unique point (Xt, Pt) = (Xt,∇Xθ(Xt)) in the phase space the functions

Ĝ and ψ̂ are well defined.
The integrating factor G and its derivative ∂XiG can be determined from (P, ∂XiP, ∂XiXjP ) along the

characteristics by the following characteristic equations obtained from (3.8) by differentiation with respect
11



to X

d

dt
∂XrP

k =


∑

j

P j∂XjXrP
k =

∑

j

P j∂XrXkP
j




= −
∑

j

∂XrP
j∂XkP

j − ∂XrXkV0 ,

d

dt
∂XrXqP

k =


∑

j

P j∂XjXrXqP
k +

∑

j

P j∂XrXkXqP
j




= −
∑

j

∂XrP
j∂XkXqP

j −
∑

j

∂XrXqP
j∂XkP

j − ∂XrXkXqV0 ,

(3.15)

and similarly ∂XiXjG can be determined from (P, ∂XiP, ∂XiXjP, ∂XiXjXkP ).

3.2. Born-Oppenheimer dynamics. The Born-Oppenheimer approximation leads to the standard for-
mulation of ab initio molecular dynamics, in the micro-canonical ensemble with the constant number of
particles, volume and energy, for the nuclei positions X = XBO,

Ẋt = Pt ,

Ṗt = −∇Xλ0(Xt) ,
(3.16)

by using that the electrons are in the eigenstate ψ = ΨBO with eigenvalue λ0 to V, in L2(dx) for fixed X,
i.e., V(X)ΨBO = λ0(X)ΨBO. The corresponding Hamiltonian is HBO(X,P ) := |P |2/2 + λ0(X) with the
eikonal equation

(3.17)
1

2
|∇XθBO(X)|2 + λ0(X) = E .

3.3. Equations for the density. We note that

φ = Ĝ−1ψ̂ =

(
ρ

〈ψ̂, ψ̂〉/
∫
〈ψ̂, ψ̂〉Ĝ−2 dX

)1/2

ψ̂ ,

shows that G and ψ determine the density

(3.18) ρS = ρ =
〈ψ̂, ψ̂〉|Ĝ|−2

∫
〈ψ̂, ψ̂〉 |Ĝ|−2dX

,

defined in (3.14). Using the Born-Oppenheimer approximation in Lemma 8.2 we have 〈ψ̂, ψ̂〉 = 1 +O(M−1)

in the case of a spectral gap. Therefore the weight function |Ĝ|−2 approximates the density and we know

from Theorem 3.1 that |Ĝ|−2 is determined by the phase function θ.

The Born-Oppenheimer dynamics generates an approximate solution ΨBOĜ
−1
BOe

iM1/2θBO which yields the
density

(3.19) ρBO = |ĜBO|−2,

where
d

dt
log |ĜBO|−2 = −∆XθBO(X) .

This representation can also be obtained from the conservation of mass

(3.20) 0 = div(ρBO∇XθBO)

implying

(3.21)
d

dt
ρBO(Xt) = ∇XρBO(Xt) · Ẋt = −ρBO(Xt) div∇XθBO ,

with the solution

(3.22) ρBO(Xt) =
C

|ĜBO(Xt)|2
,

12



where C is a positive constant for each characteristic. Note that the derivation of this classical density does
not need a corresponding WKB equation but uses only the conservation of mass that holds for classical paths
satisfying a Hamiltonian system. The classical density corresponds precisely to the Eulerian-Lagrangian
change of coordinates |Gt|2/|G0|2 = det(∂Xt/∂X0) in (3.13).

3.4. Construction of the solution operator. The WKB Ansatz (3.1) is meaningful when φ does not
include the full small scale. In Lemma 8.2 we present conditions for ψ to be smooth.

To construct the solution operator it is convenient to include a non interacting particle in the system, i.e.,
a particle without charge, and assume that this particle moves with a constant, high speed dX1

1/dt = P 1
1 � 1

(or equivalently with the unit speed and a large mass). Such a non interacting particle does not affect the
other particles. The additional new coordinate X1

1 is helpful in order to simply relate the time-coordinate t
and X1

1 . We add the corresponding kinetic energy (P 1
1 )2/2 to E in order not to change the original problem

(2.2) and write the equation (3.12) in the fast time scale τ = M1/2t

i
d

dτ
ψ = (V − V0)ψ − 1

2M
G
∑

j

∆Xj (G
−1ψ) .

Furthermore, we change to the coordinates

(τ,X∗) := (τ,X1
2 , X

1
3 , X

2, . . . , XN ) ∈ [0,∞)× I , instead of (X1, X2, . . . , XN ) ∈ R3N ,

where Xj = (Xj
1 , X

j
2 , X

j
3) ∈ R3. Hence we obtain

(3.23) iψ̇ +
1

2(P 1
1 )2

ψ̈ = (V − V0)ψ − 1

2M
G
∑

j

∆Xj∗
(G−1ψ) =: Ṽψ ,

using the notation ẇ = dw/dτ in this section. In Section 8.1 we show that the left hand side can be reduced

to iψ̇ as P 1
1 → ∞, by choosing special initial data. Note also that G is independent of the first component

in X1. We see that the operator

V̄ := G−1ṼG = G−1(V − V0)G︸ ︷︷ ︸
=V−V0

− 1

2M

∑

j

∆Xj∗

is symmetric on L2(R3n+3N−1). Assume now the data (X0, P0, Z0) for X0 ∈ R3N−1 is (LZ)3N−1-periodic,
then also (Xτ , Pτ , Zτ ) is (LZ)3N−1-periodic, for Zt = θ(Xt) and Pt = ∇Xθ(Xt). To simplify the notation
for such periodic functions, define the periodic circle

T := R/(LZ) .

We seek a solution Φ of (2.2) which is (LZ)3(n+N)−1-periodic in the (x,X∗)-variable. The Schrödinger
operator V̄(·, Xτ ) has, for each τ , real eigenvalues {λm(τ)} with a complete set of eigenvectors {ζm(x,X∗, τ)}
orthogonal in the space functions, a subset of L2(T3n+3N−1), see [1]. The proof uses that the operator
V̄τ + γI generates a compact solution operator in the Hilbert space functions in L2(T3n+3N−1), for the
constant γ ∈ (0,∞) chosen sufficiently large. The discrete spectrum and the compactness comes from
Fredholm theory for compact operators and the fact that the bilinear form

∫
T3(n+N)−1 vV̄τw+ γvw dx dX∗ is

continuous and coercive on H1(T3(n+N)−1), see [12]. We see that Ṽ has the same eigenvalues {λm(τ)} and
the eigenvectors {Gτζm(τ)}, orthogonal in the weighted L2-scalar product

∫

T3N−1

〈v, w〉 Ĝ−2 dX∗ .

The construction and analysis of the solution operator continues in Section 8.1 based on the spectrum.

Remark 3.2 (Boundary conditions). The Schrödinger problem (2.2) makes sense not only in the periodic
setting but also with alternative boundary conditions, e.g. from interaction with an external environment
in scattering problems.
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4. Fourier integral WKB states including caustics

4.1. A preparatory example with the simplest caustic. As an example of a caustic, we study first the
simplest example of a fold caustic based on the Airy function A : R→ R which solves

(4.1) −∂xxA(x) + xA(x) = 0 .

The scaled Airy function

u(x) = C A(M1/3x)

solves the Schrödinger equation

(4.2) − 1

M
∂xxu(x) + xu(x) = 0 ,

for any constant C. In our context an important property of the Airy function is the fact that it is the
inverse Fourier transform of the function

Â(p) =

√
2

π
eip

3/3 ,

i.e.,

(4.3) A(x) =
1

π

∫

R
ei(xp+p

3/3) dp .

In the next section, we will consider a general Schrödinger equation and determine a WKB Fourier integral
corresponding to (4.3) for the Airy function; as an introduction to the general case we show how the derive
(4.3): by taking the Fourier transform of the ordinary differential equation (4.1)

(4.4) 0 =

∫

R
(−∂xx + x) A(x)e−ixp dx = (p2 + i∂p)Â(p) ,

we obtain an ordinary differential equation for the Fourier transform Â(p) with the solution Â(p) = Ceip
3

, for
any constant C. Then, by differentiation, it is clear that the scaled Airy function u solves (4.2). Furthermore,
the stationary phase method, cf. Section 10, shows that to the leading order u is approximated by

u(x) ' C
(
−xM1/3

)−1/4

cos
(
M1/2(−x)3/2 − π/4

)
, for x < 0 ,

and u(x) ' 0 to any order (i.e., O(M−K) for any positive K) when x > 0. The behaviour of the Airy
function is illustrated in Figure 3.

4.1.1. Molecular dynamics for the Airy function. The eikonal equation corresponding to (4.2) is

p2 + x = 0

with solutions for x ≤ 0, which leads to the phase

(4.5) p = θ′(x) = ±(−x)1/2 , and θ(x) = ∓2

3
(−x)3/2 .

We compute the Legendre transform

θ∗(p) = xp− θ(x)

where by (4.5) and −x = p2 we obtain

θ∗(p) = −p2p+
2

3
p3 = −p

3

3
.

We note that this solution is also obtained from the eikonal equation

p2 + ∂pθ
∗(p) = 0 ,

which is solved by

θ∗(p) = −p3/3 .

Thus we recover the relation for the Legendre transform −xp+ θ∗(p) = −θ(x).
14
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Figure 3. The Airy function.

4.1.2. Observables for the Airy function. The primary object of our analysis is an observable (a functional
depending on u) rather than the solution u(x) itself. Thus we first compute the observable evaluated on the
solution obtained from the Airy function. In the following calculation we denote by C a generic constant
not necessarily the same at each occurrence,∫

R
g(x)|u(x)|2dx = C

∫

R
g(x)

∫

R

∫

R
e−iM

1/2(xp+p3/3)eiM
1/2(xq+q3/3) dq dp dx

= C

∫

R

∫

R
ĝ
(
M1/2(p− q)

)
eiM

1/2(q3/3−p3/3) dq dp

= C

∫

R

∫

R
ĝ
(
M1/2(p− q)

)
eiM

1/2((q−p)3/12+(q−p)(p+q)2/4) dq dp

= C

∫

R

∫

R
ĝ(−M1/2q̄︸ ︷︷ ︸

=t

) eiM
1/2(q3/12+q p2/4)

q=q−p, p=p+q︷︸︸︷
dqdp

= C

∫

R

∫

R
ĝ(t)e−i(t

3/(12M)+t p2/4) dt dp

= C

∫

R
g ∗AM ( −p2

︸︷︷︸
=∂pθ∗(p)=x

) dp

= C

∫ 0

−∞
g ∗AM (x)|∂xp(x)| dx ,

(4.6)

where

(4.7) AM (x) :=

(
M

4

)1/3

A

((
M

4

)1/3

x

)
is the Fourier transform of e−it

3/(12M).
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Lemma 4.1. The scaled Airy function AM is an approximate identity in the following sense

(4.8) ‖g ∗AM − g‖L2(R) ≤
1

12M
‖∂3
xg‖L2(R) .

Proof. Plancherel’s Theorem implies

M‖g ∗AM − g‖L2 = M‖ĝÂM − ĝ‖L2 = ‖ĝ(eip
3/(12M) − 1)M‖L2

≤ 1

12
‖|p|3ĝ‖L2 =

1

12
‖∂3
xg‖L2 .

The inequality follows from |eiy − 1| ≤ |y| which holds for all y ∈ R. �

The classical molecular dynamics approximation corresponding to the Schrödinger equation (4.2) is the
Hamiltonian system

Ẋ = p , ṗ = −1

2
with a solution Xt = −t2/4 and the corresponding approximation of the observable

1

T

∫ T

0

g(Xt) dt =
1

T

∫ T

0

g(Xt)
dXt

Ẋt

=
1

T

∫ 0

−T 2/4

g(x)
dx

|p(x)| .

In this specific case the phase satisfies |p(x)| = |x|1/2 and |∂xp| = |x|−1/2/2, and hence the non-normalized
density |p|−1 is in this case equal to 2|∂xp|. Equation (4.6) and Lemma 4.1 imply

|
∫

R
g|u|2 dx−

∫

R
g∂xp(x) dx| = O(M−1)

and consequently for two different observables g1 and g2 we have that Schrödinger observables are approxi-
mated by the classical observables with the error O(M−1)

(4.9)

∫
R g1|u|2 dx∫
R g2|u|2 dx

−
∫
R g1|∂xxθ| dx∫
R g2|∂xxθ| dx

= O(M−1) ,

using ∂xp(x) = ∂xxθ(x). The reason we compare two different observables with a compact support is that∫
R u

2(x) dx =∞ in the case of the Airy function.
We note that in (4.6) we used

1

3
(q3 − p3) = θ∗(p)− θ∗(q) = (p− q)∂pθ∗

(
1

2
(p+ q)

)
+

1

3
∂3θ∗

(
1

2
(p+ q)

)(
1

2
(p− q)

)3

which in the next section is generalized to other caustics. For the Airy function there holds

1

3
∂3θ∗

(
1

2
(p+ q)

)
= −2

3
.

4.2. A general Fourier integral ansatz. In order to treat a more general case with a caustic of the
dimension d we use the Fourier integral ansatz

(4.10) Φ(X,x) =

∫

Rd
φ(X,x)e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌

and we write

X = (X̂, X̌) , P = (P̂ , P̌ )

X̌ · P̌ =
d∑

j=1

X̌jP̌ j , X̂ · P̂ =
N∑

j=d+1

X̂jP̂ j

Θ(X̌, X̂, P̌ ) = X̌ · P̌ − θ∗(X̂, P̌ ) ,

based on the Legendre transform

θ∗(X̂, P̌ ) = min
X̌

(
X̌ · P̌ − θ(X̂, X̌)

)
.
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If the function θ∗(X̂, P̌ ) is not defined for all P̌ ∈ Rd, but only for P̌ ∈ U ⊂ Rd we replace the integral over
Rd by integration over U using a smooth cut-off function χ(P̌ ). The cut-off function is zero outside U and
equal to one in a large part of the interior of U , see Section 4.2.3. The ansatz (4.10) is inspired by Maslov’s

work [25], although it is not the same since our amplitude function φ depends on (X̂, X̌, x) but not on P̌ .
We emphasize that our modification consisting in having an amplitude function that is not dependent on P̌
is essential in the construction of the solution and for determining the accuracy of observables based on this
solution.

4.2.1. Making the ansatz for a Schrödinger solution. In this section we construct a solution to the Schrödinger
equation from the ansatz (4.10). The constructed solution will be an actual solution and not only an
asymptotic solution as in [25]. We consider first the case when the integration is over Rd and then conclude
in the end that the cut-off function χ(P̌ ) can be included in all integrals without changing the property of

the Fourier integral ansatz being a solution in the X̌-domain where X̌ = ∇P̌ θ∗(X̂, P̌ ) for some P̌ satisfying

χ(P̌ ) = 1.
The requirement to be a solution means that there should hold

0 = (H− E)Φ

=

∫

Rd

(
1

2
|∇X̂θ∗(X̂, P̌ )|2 +

1

2
|P̌ |2 + V0(X)− E

)
φ(X,x)e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌

−
∫

Rd

(
iM−1/2(∇X̂φ · ∇X̂θ∗ −∇X̌φ · P̌ +

1

2
φ∆X̂θ

∗)− (V − V0)φ+
1

2M
∆Xφ

)
e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌ .

(4.11)

Comparing this expression to the previously discussed case of a single WKB-mode we see that the zero order
term is now ∆X̂θ

∗ instead of ∆Xθ and that we have −∇X̌φ · P̌ instead of ∇X̌φ · ∇X̌θ. However, the main
difference is that the first integral is not zero (only the leading order term of its stationary phase expansion
is zero, cf. (10.1)). Therefore, the first integral contributes to the second integral. The goal is now to

determine a function F (X̂, X̌, P̌ ) satisfying
∫

Rd

(
1

2
|∇X̂θ∗|2 +

1

2
|P̌ |2 + V0(X)− E

)
e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌

= iM−1/2

∫

Rd
F (X̂, X̌, P̌ ) e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌ ,

(4.12)

and verify that it is bounded.

Lemma 4.2. There holds F = F0 + F1 where

F0 =
1

2

∑

i,j

∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ ) ,

F1 = iM−1/2

∫ 1

0

∫ 1

0

∫

Rd

∑

i,j,k

t(1− t)∂P̌k
[
∂X̌iX̌jX̌kV0

(
∇P̌ θ∗(P̌ ) + s t δθ∗(P̌ )

)
∂P̌j P̌i∇P̌ θ

∗(P̌ )
]
dt ds .

Proof. The function θ∗(X̂, P̌ ) is defined as a solution to the Hamilton-Jacobi (eikonal) equation

(4.13)
1

2
|∇X̂θ∗(X̂, P̌ )|2 +

1

2
|P̌ |2 + V0

(
X̂,∇P̌ θ∗(X̂, P̌ )

)
− E = 0

for all (X̂, P̌ ). Consequently, the integral on the left hand side of (4.12) is
∫

Rd

(
V0(X̂, X̌)− V0(X̂,∇P̌ θ∗(X̂, P̌ )

)
e−iM

1/2(X̌·P̌−θ∗(X̂,P̌ )) dP̌ .

Let P̌0(X̌) be any solution to the stationary phase equation X̌ = ∇P̌ θ∗(X̂, P̌0) and introduce the notation

Θ′(X̌, X̂, P̌ ) := ∇P̌ θ∗(X̂, P̌0) · P̌ − θ∗(X̂, P̌ ) .
17



Then by writing a difference as V (y1)−V (y2) =
∫ 1

0
∂yV (y2 + t(y1− y2))dt · (y1− y2), identifying a derivative

∂P̌i and integrating by parts the integral can be written
∫

Rd

(
V0(X̂,∇P̌ θ∗(X̂, P̌0))− V0(X̂,∇P̌ θ∗(X̂, P̌ )

)
e−iM

1/2Θ′(X̌,X̂,P̌ ) dP̌

=

∫ 1

0

∫

Rd

∑

i

∂X̌iV0

(
∇P̌ θ∗(P̌ ) + t

[
∇P̌ θ∗(P̌0)−∇P̌ θ∗(P̌ )

])
×

×
(
∂P̌ iθ

∗(P̌0)− ∂P̌ iθ∗(P̌ )
)
e−iM

1/2Θ′(X̌,X̂,P̌ ) dP̌ dt

= −iM−1/2

∫ 1

0

∫

Rd

∑

i

∂X̌iV0

(
∇P̌ θ∗(P̌ ) + t

[
∇P̌ θ∗(P̌0)−∇P̌ θ∗(P̌ )

])
∂P̌ie

−iM1/2Θ′(X̌,X̂,P̌ ) dP̌ dt

= iM−1/2

∫ 1

0

∫

Rd

∑

i

∂P̌i∂X̌iV0

(
∇P̌ θ∗(P̌ ) + t

[
∇P̌ θ∗(P̌0)−∇P̌ θ∗(P̌ )

])
e−iM

1/2Θ′(X̌,X̂,P̌ ) dP̌ dt .

Therefore the leading order term in F =: F0 + F1 is

F0 :=

∫ 1

0

∑

i,j

(1− t)∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ ) dt

=
1

2

∑

i,j

∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ ) .

Denoting δθ∗(P̌ ) = ∇P̌ θ∗(P̌0)−∇P̌ θ∗(P̌ ) the remainder becomes

− iM−1/2

∫ 1

0

∫

Rd

∑

i,j

[
∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ )

)
− ∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ ) + t δθ∗(P̌ )

)]

× (1− t)∂P̌ j P̌ iθ∗(P̌ ) e−iM
1/2Θ′(X̌,X̂,P̌ ) dP̌ dt

= iM−1/2

∫ 1

0

∫ 1

0

∫

Rd

∑

i,j,k

t(1− t)∂X̌iX̌jX̌kV0

(
∇P̌ θ∗(P̌ ) + s t δθ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ )

×
(
∂P̌kθ

∗(P̌0)− ∂P̌kθ∗(P̌ )
)
e−iM

1/2Θ′(X̌,X̂,P̌ ) dP̌ dt ds

= − 1

M

∫ 1

0

∫ 1

0

∫

Rd

∑

i,j,k

t(1− t)∂P̌k
[
∂X̌iX̌jX̌kV0

(
∇P̌ θ∗(P̌ ) + s t δθ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ )
]

× e−iM1/2Θ′(X̌,X̂,P̌ ) dP̌ dt ds ,

hence the function F1 is purely imaginary and small

F1 = iM−1/2

∫ 1

0

∫ 1

0

∫

Rd

∑

i,j,k

t(1− t)∂P̌k
[
∂X̌iX̌jX̌kV0

(
∇P̌ θ∗(P̌ ) + s t δθ∗(P̌ )

)
∂P̌j P̌i∇P̌ θ

∗(P̌ )
]
dt ds ,

and

(4.14) 2ReF =
∑

i,j

∂X̌iX̌jV0

(
∇P̌ θ∗(P̌ )

)
∂P̌ j P̌ iθ

∗(P̌ ) .

�

The eikonal equation (4.13) and the requirement that (H− E)Φ = 0 in (4.11) then imply that

0 =

∫

Rd

[
iM−1/2

(
∇X̂φ · ∇X̂θ∗ −∇X̌φ · P̌ +

1

2
φ
(
∆X̂θ

∗ − 2F (X, P̌ )
))

−(V − V0)φ+
1

2M
∆Xφ

]
e−iM

1/2Θ(X̌,X̂,P̌ ) dP̌ .

(4.15)
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The Hamilton-Jacobi eikonal equation (4.13), in the primal variable (X̂, P̌ ) with the corresponding dual

variable P̂ , X̌), can be solved by the characteristics

˙̂
X = P̂

˙̂
P = −∇X̂V0(X̂, X̌)

˙̌X = −P̌
˙̌P = ∇X̌V0(X̂, X̌) ,

(4.16)

using the definition

∇X̂θ∗(X̂, P̌ ) = P̂

∇P̌ θ∗(X̂, P̌ ) = X̌ .

The characteristics give

d

dt
φ = ∇X̂φ · ∇X̂θ∗ −∇X̌φ · P̌ ,

so that the Schrödinger transport equation becomes, as in (3.12),

(4.17) iM−1/2

(
φ̇+ φ

Ġ

G

)
= (V − V0)φ− 1

2M
∆Xφ

and for ψ = Gφ

(4.18) iM−1/2ψ̇ = (V − V0)ψ − G

2M
∆X

ψ

G

with the complex valued weight function G defined by

(4.19)
d

dt
logGt =

1

2
∆X̂θ

∗(X̂t, P̌t)− F (X̂t, P̌t) .

This transport equation is of the same form as the transport equation for a single WKB-mode, with a
modification of the weight function G.

Differentiation of the second equation in the Hamiltonian system (4.16) implies that the first variation
∂P̌t/∂X̌0 satisfies

d

dt

(
∂P̌ it
∂X̌0

)
=
∑

j,k

∂X̌iX̌jV0(X̂, X̌t)∂P̌ j P̌kθ
∗(P̌ )

∂P̌ kt
∂X̌0

,

which by the Liouville formula (3.13) and the equality

2ReF =
∑

i,j

∂X̌iX̌jV0∂P̌ j P̌ iθ
∗ = Tr (

∑

j

∂X̌iX̌jV0∂P̌ j P̌kθ
∗)

in (4.14) yields the relation,

(4.20) e−2
∫ t
0

ReF dt′ = C

∣∣∣∣det
∂P̌t

∂X̌0

∣∣∣∣ ,

for the constant C := |det ∂X̌0

∂P̌0
|. We use relation (4.20) to study the density in the next section.

Remark 4.3. The conclusion in this section holds also when all integrals over dP̌ in Rd are replaced by
integrals with the measure χ(P̌ ) dP̌ . Then there holds 2ReF =

∑
ij ∂X̌iX̌jV∂P̌ i(χ∂P̌ jθ∗). We use that

the observable g is zero when the cut-off function χj is not one, see Section 4.2.3. In Section 5 we show
how to construct a global solution by connecting the Fourier integral solutions, valid in a neighborhood
where det ∂(X)/∂(P ) vanishes (and χ(P̌ ) = 1), to a sum of WKB-modes, valid in neighborhoods where
det ∂(P )/∂(X) vanishes (and χ(P̌ ) < 1).
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4.2.2. The Schrödinger density for caustics. In this section we study the density generated by the solution

Φ(X,x) =

∫

Rd
φ(X,x) e−iM

1/2(X̌·P̌−θ∗(X̂,P̌ )) dP̌ .

The analysis of the density generalizes the calculations for the Airy function in Section 4.1.2. We have, using
the notation ˆ̃g for the Fourier transform of g̃ with respect to the X̌ variable, and by introducing the notation
Ř = 1

2 (P̌ + Q̌) and Š = P̌ − Q̌
∫
g(X)|Φ(x,X)|2 dxdX =

∫
g(X)〈φ, φ〉︸ ︷︷ ︸

=:g̃(X)

eiM
1/2(X̌·P̌−θ∗(X̂,P̌ )) e−iM

1/2(X̌·Q̌−θ∗(X̂,Q̌)) dP̌ dQ̌ dX

=

∫
ˆ̃g(X̂,M1/2Š) eiM

1/2(θ∗(X̂,Q̌)−θ∗(X̂,P̌ )) dP̌ dQ̌ dX̂

=

∫
ˆ̃g(X̂,M1/2Š) eiM

1/2 1
6 (Š·∇P̌ )3θ∗(X̂,Ř+γŠ/2)×

× eiM1/2Š·∇P̌ θ∗(X̂,Ř) dŠ dŘ dX̂

=

(
1

2π

)d/2
M−1/2

∫
g̃ ∗AM

(
X̂,∇P̌ θ∗(X̂, Ř︸ ︷︷ ︸

=X̌

)
)
dŘdX̂

=

(
1

2π

)d/2
M−1/2

∫
g̃ ∗AM (X̂, X̌)

∣∣∣∣det
∂(P̌ )

∂(X̌)

∣∣∣∣ dX .

(4.21)

In the convolution g̃ ∗AM , the function AM , analogous to (4.7), is the Fourier transform of

ei
1
M (ω·∇P̌ )3θ∗(X̂,P̌ )

∣∣∣
P̌=Ř+γω

with respect to ω ∈ Rd and the integration in X̌ is with respect to the range of ∇P̌ θ∗(X̂, ·). As a next step
we evaluate the Fourier transform and its derivatives at zero and obtain∫

Rd
AM (X̌) dX̌ = 1 ,

∫

Rd
X̌iAM (X̌) dX̌ = 0 ,

∫

Rd
X̌iX̌jAM (X̌) dX̌ = 0 , M

∫

Rd
X̌iX̌jX̌kAM (X̌) dX̌ = O(1).

Here we use that both differentiation with respect to (ω · ∇P̌ )3 and θ∗(X̂, Ř + γω) yield factors of ω which
vanish. The vanishing moments of AM imply that

(4.22) ‖g̃ ∗AM − g̃‖L2(dX̌) = O(M−1)

as in (4.8), so that up to O(M−1) error the convolution with AM can be neglected.

4.2.3. Integration over a compact set in P̌ . In the case when the integration is over U ⊂ Rd instead of Rd,
we use a smooth cut-off function χ(P̌ ), which is zero outside U and restrict our analysis to the case when

the smooth observable mapping P̌ 7→ g(X̂,∇P̌ θ∗(X̂, P̌ )) is compactly supported in the domain where χ is

one. In this way g(X̂,∇P̌ θ∗(X̂, P̌ )) is zero when ∇P̌χ(P̌ ) is non zero. The integrand is thus equal to

(g(X) 〈φ, φ〉)χ(P̌ )χ(Q̌)

and we use the convergent Taylor expansion

χ(Ř+M−1/2ω︸ ︷︷ ︸
P̌

)χ(Ř−M−1/2ω︸ ︷︷ ︸
Q̌

) =
∞∑

k=0

|ω|2k
Mk

ak(Ř) .

Then the observable becomes

(2π)−d/2M−1/2
∞∑

k=0

∫ (
ak (M−1∆X̌)kg̃

)
∗AM

(
X̂,∇P̌ θ∗(X̂, Ř)

)
dŘ dX̂ .
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As in (4.22) we can remove the convolution with AM by introducing an error O(M−1) and since for k > 0

we have ak(Ř)g(X̂,∇P̌ θ∗(X̂, Ř)) = 0 and a0 = 1, we obtain the same observable as before
∞∑

k=0

∫ (
ak (M−1∆X̌)kg̃

)
∗AM

(
X̂,∇P̌ θ∗(X̂, Ř)

)
dŘ dX̂

=

∞∑

k=0

∫ (
ak (M−1∆X̌)kg̃

) (
X̂,∇P̌ θ∗(X̂, Ř)

)
dŘ dX̂ +O(M−1)

=

∫
g̃
(
X̂,∇P̌ θ∗(X̂, Ř)

)
dŘ dX̂ +O(M−1)

=

∫
g̃(X̂, X̌)

∣∣∣∣det
∂(P̌ )

∂(X̌)

∣∣∣∣ dX +O(M−1) .

4.2.4. Comparing the Schrödinger and molecular dynamics densities. We compare the Schrödinger density
to the molecular dynamics density generated by the continuity equation

0 = div(ρ∇θ) = ∇ρ · ∇θ + ρdiv(∇θ) = ρ̇+ ρdiv(∇θ)
which yields the density

e−
∫

div(∇θ) dt .

We have P = ∇θ, so that ∂(P )
∂(X) = ∂XXθ. The Liouville formula (3.13) implies the molecular dynamics

density

ρBO = e−
∫ t
0

div(∇θ) dt′ = det
∂X0,BO

∂Xt,BO
.(4.23)

The observable for the Schrödinger equation has, by (4.21), the density

(g〈φ, φ〉) ∗AM

∣∣∣∣det
∂(P̌ )

∂(X̌)

∣∣∣∣ .

We want to compare it with the molecular dynamics density ρBO. The convolution with AM gives an error
term of the order O(M−1), as in (4.8). The Schrödinger transport equation (4.17) and the definition of
the weight G in (4.19), show that the amplitude function satisfies, by (4.18) and (4.19) and the Born-
Oppenheimer approximation Lemma 8.2,

〈φ, φ〉 = |G|2〈ψ,ψ〉 = e
∫

2Re F−∆X̂θ
∗ dt +O(M−1),

so that by (4.20)

(g〈φ, φ〉) ∗AM |det
∂(P̌ )

∂(X̌)
| = (g〈φ, φ〉)|det

∂(P̌ )

∂(X̌)
|+O(M−1)

= g e
∫

2ReF−∆X̂θ
∗ dt |det

∂(P̌ )

∂(X̌)
|+O(M−1)

= g |det
∂(X̌0)

∂(P̌ )
| |det

∂(X̂0)

∂(X̂)
| |det

∂(P̌ )

∂(X̌)
|+O(M−1) ,

= g |det
∂(X̌0)

∂(X̌)
| |det

∂(X̂0)

∂(X̂)
|+O(M−1) ,

= g |det
∂(X0)

∂(X)
|+O(M−1) .

(4.24)

When we restrict the domain to U with the cut-off function χ as in Remark 4.3 we use the fact that
g(X̂,∇P̌ θ∗(X̂, P̌ )) is zero when ∇P̌χ(P̌ ) is non zero and obtain the same. The representations (4.24) and
(4.23) show that the density generated in the caustic case with a Fourier integral also takes the same form,
to the leading order, as the molecular dynamics density and the remaining discrepancy is only due to θ∗ = θ∗S
and θ∗ = θ∗BO being different. This difference is, as in the single mode WKB expansion, of size O(M−1)
which is estimated by the difference in Hamiltonians of the Schrödinger and molecular dynamics eikonal
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equations. The estimate of the difference of the phase functions uses the Hamilton-Jacobi equation (4.13)

for θ∗S(X̂, P̌ ) and a similar Hamilton-Jacobi equation for θ∗BO(X̂, P̌ ) with V0 = λBO +O(M−1) replaced by

λBO. The difference in the weight functions log(|G(X̂, P̌ )|−2) is estimated by the Hamilton-Jacobi equation
(
∇X̂θ∗S(X̂, P̌ ) · ∇X̂ −∇X̌V0(X̂, X̌) · ∇P̌

)
log |GS(X̂, P̌ )|−2 −∆X̂θ

∗
S(X, P̌ ) + ReF (X, P̌ ) = 0 ,

where ReF is given in (4.14), and by the similar Hamilton-Jacobi equation with V0 = λBO + O(M−1)
replaced by λBO and θ∗S by θ∗BO.

5. A global construction coupling caustics with single WKB-modes

We use the paths generated by the Hamiltonian to construct a global asymptotic solution. More precisely,
we will construct a 3N -dimensional Lagrangian manifold from a Hamiltonian; for this we need some initial
data, i.e. a 3N −1 dimensional Lagrangian manifold, which we construct from a Poincare map in four steps.
The basic properties of a Lagrangian manifold we use are reviewed in Section 5.1 and the basic assumption
we make is that the Lagrangian manifold is smooth, which excludes ergodic dynamics where the Lagrangian
manifold is dense in set of dimension 6N − 1.

Step 1. Define a hitting plane. Consider a codimension one hitting plane in the X−coordinate
space, e.g. X11 = 0.

Step 2. Consider a WKB Schrödinger solution and its initial Lagrangian manifold data. We
seek initial data on the hitting plane X11

= 0 in the form of a (smooth) 3N − 1 dimensional Lagrangian
manifold L, satisfying the two constraints H(X,P ) = E & X11

= 0 for (X,P ) ∈ L. For instance any smooth
function G : R3N → R generates a local subset of a Lagrangian manifold

L ⊇ {(X,P (X)) | for all X such that H(X,P (X)) = E,& X11
= 0, P (X) = ∇XG}

and one can permute the role of X and P to obtain other parts of the set. Section 3.1.1 shows, in the
case of piecewise constant potentials, that the solution to the Schrödinger equation is of the form Φ(X) =∑
j e
iM1/2P j ·Xφj(X), where H(X,P j) = E. Assume that a solution to the Schrödinger equation has the

asymptotic WKB-form in the hitting plane

(5.1) Φ(X) =
K∑

ν=1

φν(X,x)eiM
1/2θν(X) +O(M−n), for X11

= 0 and for all n ∈ N,

where φν and θν are smooth functions, based on a finite sum of WKB-solutions (3.1) (or the caustic ansatz
(4.10)).

Step 3. Use paths to extend the initial Lagrangian manifold. Use the characteristics paths in
Theorem 3.1 for the WKB-functions φν(Xt) and θν(Xt) (or (4.13) and (4.16) for the caustic case θν(X) =

X̌ · P̌ − θ∗(X̂, P̌ )) to locally extend the guessed initial 3N − 1 dimensional Lagrangian manifold, in the
hitting plane X11

= 0, to dimension 3N outside X11
= 0, by starting a path from each point on the initial

Lagrangian manifold; change coordinates in a neighborhood of a caustic and apply the stationary phase
method in Step 4 to continue the solutions until the first hitting time τ , for all possible initial φν and θν .
Here τ is the first time the path (Xt, Pt) leaves the set X11

< 0 if it initially went into the set X11
> 0 (i.e.

if limt→0+ sign(X11(t)) = 1), and similarly the first time it leaves X11 > 0 if limt→0+ sign(X11(t)) = −1. For
all initial φν and θν this yields an asymptotic Schrödinger solution

(5.2) Φ(X) '
∑

ν

φν(X,x)eiM
1/2θν(X)

for all X11
6= 0, since by construction the WKB integral is an asymptotic solution

(H− E)
∑

ν

φν(X,x)eiM
1/2θν(X) = O(M−n)

in the domain X11
6= 0 and we assume there exists a stable global solution Φ (including X11

= 0) to the
Schrödinger equation (2.2), for E chosen to be an eigenvalue with a distance bigger than O(M−n) to other
eigenvalues. The particular φν and θν that gives the asymptotic eigensolution satisfies

(5.3) lim
X11
→0+

Φ(X) = lim
X11
→0−

Φ(X).
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We have used the WKB-method to characterize the global solution. In particular the initial Lagrangian
manifold, given by {θν | ∀ν}, is by the characteristics mapped to the same manifold at the hitting surface
X11

= 0, since otherwise (5.3) and limX11
→0+ θν(X) = limX11

→0− θν(X) cannot hold. The obtained fixed
point initial data Φ is smooth, since it is a solution of the Schrödinger eigenvalue problem. We assume that
also the amplitudes φν and the phases θν are smooth functions and that there are only finitely many of
them. The construction of WKB solutions makes it possible to compare their Lagrangian manifolds by their
Hamiltonians. We interpret the molecular dynamics as the formal limit M →∞ of the WKB system.

Step 4. Apply Maslov’s matching around caustics. We see that the weight function G, in (3.13),
based on a single WKB-mode (3.1) blows up at caustics, where det(∂(X̌)/∂(P̌ )) = 0, and that the weight
function G in (4.17) for the Fourier integral (4.10) blows up at points where det(∂(P̌ )/∂(X̌)) vanishes. There-

fore, in neighborhoods around caustic points we need to use the representation θ∗(X̂, P̌ ) of the phase based
on the Fourier integrals, while around points where det(∂(P̌ )/∂(X̌)) vanishes we apply the representation

θ(X̂, X̌) based on the Legendre transform, as pointed out by Maslov in [25] and described in the simplifying
setting of the harmonic oscillator in [11].

One way to make a global construction of a WKB solution, in the spirit of [25], is to use the characteristics
and a partition of the phase-space as follows, also explained constructively by the numerical algorithm 9.2 in
the next section. Start with a Fourier integral representation in a neighborhood U of a caustic point, which
gives a representation of the Schrödinger solution Φ in U . Then we use the stationary phase expansion, see
Section 10, to find an asymptotic approximation Φ̃ (accurate to any order n ∈ N) at the boundary points X̌
of U as a sum of single WKB-modes with phase functions θj

∫

Rd
χ(P̌ )e−iM

1/2(X̌·P̌−θ∗(X̂,P̌ )) dP̌ =
∑

j

e−iM
1/2θj(X)φj(X) +O(M−n)

where each phase function θj(X) := X̌ · P̌X,j − θ∗(X̂, P̌X,j) corresponds to a branch of the boundary and

the index j corresponds to different solutions P̌X,j of the stationary phase equation X̌ = ∇P̌ θ∗(X̂, P̌X).

The single WKB-modes φ(x,X)eiM
1/2θ(X) are then constructed along the characteristics to be Schrödinger

solutions in a domain around the point where det(∂(P̌ )/∂(X̌)) vanishes, following the construction in The-

orem 3.1 using the initial data of Φ̃ at ∂U . We note that the tiny error of size O(M−n) that we make in
the initial data for φ also yields a tiny perturbation error in φ of size O(M−n) along the path, due to the
assumption of the O(1) bounded hitting times. A small error we make in the expansion therefore leads to a
negligible error in the Schrödinger solution and the corresponding density.

When a characteristic leaves the domain and enters another region around a caustic we again use the
stationary phase method at the boundary to give initial data for (X,P, φ,G). When the characteristic
finally returns to the first boundary ∂U , there is a compatibility condition to have a global solution, by
having the incoming final phase equal to the initial phase function in C1. We can think of this as trying to
find a co-dimension one surface I in R3N where the incoming and outgoing phases are equal. First to have
one point where they agree is possible if we restrict the possible solutions to a discrete set of energies E, i.e.,
the eigenvalues, and therefore the compatibility condition is called a quantization condition. Then, having
one point where the difference of the two phase function is zero, we can combine this with the assumption
that the Lagrangian manifold generated by the characteristics path (Xt, Pt) is continuous: the two phases

have the same gradient on I, since (X,P ) = (X,∇Xθ(X)) =
((
X̂,∇P̌ θ∗(X̂, P̌ )

)
,
(
∇X̂θ∗(X̂, P̌ ), P̌

))
so the

phases are C1. If the Lagrangian manifold would be simple connected, the compatibility condition is always
satisfied by the construction of the Lagrangian manifold; here we assume that one parameter is enough to
describe the non simple connectedness. In this way we define the (X,P, φ,G) globally, for the eigenvalue
energies E. To evaluate observables we use a partition of unity to restrict the observable to a domain with
a single representation, either a Fourier integral representation for a caustic or a single WKB-mode when
det(∂(P̌ )/∂(X̌)) = 0.

5.1. Lagrangian manifolds. This section presents some basic properties of Lagrangian manifolds. Given
the 3N − 1 dimensional Lagrangian manifold L on the hitting surface X11

= 0, the solution paths

{(Xt, Pt) ∈ R6N | 0 ≤ t <∞, ∀(X0, P0) ∈ L}
23



of the Hamiltonian system

Ẋt = ∇PH(Pt, Xt)

Ṗt = −∇XH(Pt, Xt)

with a smooth and bounded Hamiltonian H(P,X) generate a 3N -dimensional manifold called Lagrangian
manifold. The fact that the Lagrangian manifold has dimension 3N implies that it can locally be described
by (X,P ) with P as a function of X or with X as a function of P and in general 3N coordinates are functions
of the other 3N coordinates.

The Lagrangian manifold generated by the tube of trajectories is defined by the phase function θ(X) that
plays the role of a generating function of the Lagrangian manifold. Thus we seek a function θ : U ⊂ R3N → R
such that Pt = ∇Xθ(Xt). We show that there exists a potential function θ by determining an equation that

preserves the symmetry for the matrix Qt, defined as Qij(X) := ∂XjP
i(X) and Qijt := Qij(Xt). The

relations P it = P i(Xt) and Qijt := ∂XjP
i(Xt) imply

Ṗ it =
d

dt
P i(Xt) =

∑

j

Ẋj
t ∂XjP

i
t =

∑

j

Ẋj
tQ

ij
t =

∑

j

∂P jH
(
P (Xt), Xt

)
Qijt ,

so that

∂Xk Ṗ
i
t = ∂Xk

(∑

j

∂P jH
(
P (Xt), Xt

)
Qijt

)

=
∑

j

Ẋj
t ∂XkQ

ij
t

︸ ︷︷ ︸
=
∑
j Ẋ

j
t ∂XkXjP

i
t=

∑
j Ẋ

j
t ∂XjXkP

i
t=Q̇ikt

+
∑

j

∂P jP lH
(
P (Xt), Xt

)
∂XkP

l

︸ ︷︷ ︸
=Qlk

Qij

+
∑

j

∂P jXkH
(
P (Xt), Xt

)
Qijt

and

∂Xk Ṗ
i
t = −∂Xk

(
∂XiH

(
P (Xt), Xt

))
= −∂XiXkH

(
P (Xt), Xt

))
−
∑

j

∂XiP jH
(
P (Xt), Xt

)
∂XkP

j

︸ ︷︷ ︸
=Qjkt

together with the symmetry of Qt show that

Q̇ikt = −∂XiXkH(Pt, Xt)−
∑

j,l

∂P jP lH(Pt, Xt)Q
kl
t Q

ij
t

−
∑

j

∂P jXkH(Pt, Xt)Q
ij
t −

∑

j

∂P jXiH(Pt, Xt)Q
kj
t .

(5.4)

Since the Hamiltonian is assumed to be smooth it follows that the right hand side in (5.4) is symmetric and
thus the matrix Qt remains symmetric since it is initially symmetric. Hence there exists a potential function
θ(X) such that P (X) = ∇Xθ(X) in simple connected domains where Q is smooth. The function Q may
become unbounded due to the term ∂P jP lH QklQij , even though H has bounded third derivatives. Points

Xt at which |Tr (Qt)| =∞ satisfy, by Liouville’s theorem (see Section 3.1.4),
∣∣∣det ∂X0

∂Xt

∣∣∣ =∞ and such points

are called caustic points.
The same construction of a potential works for the local chart expressed as X = X(P ) instead of P =

P (X). In fact any new variable X̂ (not including both Xi and P i for any i), based on 3N of the 6N

variables (X,P ), and the remaining variables 3N variables, P̂ , represent the same Hamiltonian system with

the Hamiltonian Ĥ(P̂ , X̂) := H(P,X). The Lagrangian manifold is defined by P̂ = ∇X̂ θ̂(X̂) in the local

chart of P̂ -coordinates with the generating (potential) function θ̂(X̂) defined in domains excluding caustics,

i.e., where det
∣∣∣∂X̂0

∂X̂t

∣∣∣ <∞. Maslov, [25], realized that a Lagrangian manifold can be partitioned, by changing

coordinates in the neighborhood of a caustic, into domains where P̂ = ∇X̂ θ̂(X̂) is smooth. He used the

generating (potential) functions θ̂ to construct asymptotic WKB solutions of Fourier integral type. A sketch
of this general situation is depicted in Figure 4. In previous sections we have described construction of
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solutions in a simpler case without caustics, i.e., Pt = ∇Xθ(Xt) holds everywhere. In this section we
described the global construction of WKB solutions in the general case when caustics are present.
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Figure 4. The left figure depicts a graph of the molecular dynamics potential λ(X) in the
case which exhibits caustics at X = a and X = b for a given energy E. The right figure
shows a general case of the Lagrangian manifold with two caustic points X = a and b and its
covering with charts Ui. In the charts Ui, i = 2, 4 the manifold is defined by P = ∇Xθi(X)
and the solution to Schrödinger equation is constructed by simple WKB modes. The caustics
belong to the charts Ui, i = 1, 3 and in this case the manifold is defined by X = ∇Xθi(P )
and the solutions are given by the Fourier integrals.

6. Computation of observables

Suppose the goal is to compute a real-valued observable
∫

T3N

〈Φ, AΦ〉 dX

for a given bounded linear multiplication operator A = A(X) on L2(T3N ) and a solution Φ =
∑
k φke

iM1/2θk

of (2.2). We have

(6.1)

∫
T3N 〈Φ, AΦ〉dX =

∑
k,l

∫
T3N 〈AφkeiM

1/2θk(X), φle
iM1/2θl(X)〉 dX

=
∑
k,l

∫
T3N Ae

iM1/2(θl(X)−θk(X))〈φk, φl〉 dX .

The integrand is oscillatory for k 6= l, hence critical points (or near critical points) of the phase difference
give the main contribution. The stationary phase method, see [10, 25] and Section 10, shows that these
integrals are small, bounded by O(M−3N/4), in the case when the phase difference has non degenerate
critical points, or no critical point, and the functions A〈φk, φl〉 and θl are sufficiently smooth. A critical
point Xc ∈ R3N satisfies ∇Xθl(Xc) −∇Xθk(Xc) = 0, which means that the two different paths, generated
by θl and θk, passing through X = Xc also have the same momentum P at this point. That the critical
point is degenerate means that the Hessian matrix ∂XiXj (θk−θl)(Xc) is singular (or asymptotically singular
for M →∞ as for avoided crossings when the electron eigenvalues have a vanishing spectral gap depending
on M). Therefore caustics, crossing or avoided crossing electron eigenvalues may generate coupling between
the WKB terms. On the other hand, without such coupling the density of a linear combination of WKB
terms separates asymptotically to a sum of densities of the individual WKB terms

(6.2)

∫

T3N

〈Φ, AΦ〉dX =

∫

T3N

A

k̄∑

k=1

〈φk, φk〉︸ ︷︷ ︸
=ρk︸ ︷︷ ︸

=ρ

dX +O(M−1) ,

25



in the case of multiple WKB-functions, k̄ > 1, and
∫

T3N

〈Φ, AΦ〉 dX =

∫

T3N

A〈φ1, φ1〉 dX

for a single WKB-function and we have seen in (4.24) that the Fourier integral WKB-solutions around
caustics yields the same density as a single WKB mode.

In the presence of a caustic, the WKB terms can be asymptotically non orthogonal, since their coefficients
and phases typically are not smooth enough to allow the integration by parts to gain powers of M−1/2.
Non-orthogonal WKB functions tell how the caustic couples the WKB modes.

Regarding the inflow density ρk
∣∣
I

there are two situations: either the characteristics return often to the
inflow domain or not. If they do not return we have a scattering problem and it is reasonable to define the
inflow-density ρk

∣∣
I

as an initial condition. If characteristics return, the dynamics can be used to estimate

the return-density ρk
∣∣
I

as follows: Assume that the following limits exist

(6.3) lim
T→∞

1

T

∫ T

0

A(Xt) dt =

∫

T3N

A(X)ρk(X) dX

which bypasses the need to find ρk
∣∣
I

and the quadrature in the number of characteristics. When there are
multiple amplitudes φk in (6.2) we can, away from caustics, obtain the sum of the densities

∑
k ρk from the

time average split into the time the dynamics spends in each phase θk. A way to think about the time average
(6.3) is to sample the return points Xt ∈ I and from these samples construct an empirical return-density,
converging to ρk

∣∣
I

as the number of return iterations tends to infinity. We shall use this perspective to view
the eikonal equation (3.8) as a hitting problem on I, with hitting times τ (i.e., return times). The stronger
property having ρk constant as a function of (X0, P0) for H(X0, P0) = E is called ergodicity, see [30]. We
allow the density ρk|I to depend on the initial position X0 and momentum P0 and then our observables are
conditional expected values. An example of a hitting surface is the co-dimension one surface where the first
component X11 in X1 = (X11 , X12 , X13) is equal to its initial value X11(0). The dynamics does not always
have such a hitting surface: for instance if all particles are close initially and then are scattered away from
each other, as in an explosion, no co-dimension one hitting surface exists.

7. Molecular dynamics approximation of Schrödinger observables

A numerical computation of an approximation to
∑
k

∫
T3N 〈φk, Aφk〉 dX has the main ingredients:

(1) to approximate the exact characteristics by molecular dynamics characteristics (3.10),
(2) to discretize the molecular dynamics equations, and

(3a) if ρ
∣∣
I

is an inflow-density, to introduce quadrature in the number of characteristics, or

(3b) if ρ
∣∣
I

is a return-density, to replace the ensemble average by a time average using the property (6.3).

This section presents a derivation of the approximation error in the step (1) in the case of a return density and
comments on the time-discretization of step (2) treated in Section 7.2. The third and fourth discretization
steps, which are not described here, are studied, for instance, in [8, 7, 21].

7.1. The Born-Oppenheimer approximation error. This section states our main result of molecular
dynamics approximating Schrödinger observables based on hitting time and spectral gap assumptions. We
formulate it using the assumption of the Born-Oppenheimer property

(7.1) ‖ψt −ΨBO(Xt)‖L2(dx) = O(M−1/2) , uniformly in t.

This assumption is then proved in Lemma 8.2 based on a setting with a spectral gap.
The spectral gap condition. The electron eigenvalues {λk} satisfy, for some positive c, the spectral gap
condition

(7.2) inf
k 6=0, Y ∈D

|λk(Y )− λ0(Y )| > c ,

where D := {XS(t) | t ≥ 0} ∪ {XBO(t) | t ≥ 0} is the set of all nuclei positions obtained from the Schrödinger
characteristics X = XS in Theorem 3.1 and from the Born-Oppenheimer dynamics X = XBO in (3.16), for
all considered initial data.
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The hitting time assumption. In the case of quasiperiodic dynamics, the points (Xtk , Ptk) in a codimension
one hitting plane, e.g. X1

1 ≡ X11 = 0, accumulate on a set of dimension 3N−1, see Figure 5, while for ergodic
dynamics the hitting points are distributed in the phase-space set {(X,P ) ∈ R6N |H(X,P ) = E & X11

= 0}
of dimension 6N − 2 with positive density, see Figure 6.
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Figure 5. Left plot: The hitting points (X2, P1) in the plane X1 = 0 that accu-
mulate on a curve of dimension one, for the Hamiltonian H = |P |2/2 + |X1|2/2 +
|X2|2/21/2 + 0.3 sin(X1X2) = 1.0001. Right plot: The Husimi transform, M1/2|

∫
R Φ(0 −

y,X2)e−iM
1/2yP1e−M

1/2|y|2/2dy|2, of the Schrödinger solution, Φ(X), as a function of X2 and
P1 in the plane X1 = 0, with the potential V (X) = |X1|2/2 + |X2|2/21/2 + 0.3 sin(X1X2)
and the eigenvalue E = 1.0001 for mass M = 8000. The Husimi transform measures the
density in X2 and P1 and equals the absolute value squared of the FBI transform, which
here is integrated in the P2 direction.
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Figure 6. Left: The hitting points (X2, P1) in the plane X1 = 0 that become dens i set of
dimension two, for the Hamiltonian H = |P |2/2 + |X1|2/2 + |X2|2/21/2 + 2 sin(X1X2) = 1.
Right: The Husimi transform of the Schrödinger solution in the plane X1 = 0 for the same
potential and eigenvalue E = 0.99998.

In the quasiperiodic setting it is therefore reasonable to assume that the hitting time (i.e. the return
time) is finite, since only a uniformly bounded set of phases in the hitting plane is visited.

Theorem 7.1. Assume that there is an asymptotic solution to the Schrödinger equation (2.2) that can
be written as a finite sum of WKB-modes (5.1) (as for caustics (4.10)) and that all phase functions θS

and θBO are smooth solutions to the Schrödinger eikonal equation (written as (3.8) or (4.13)) and the
molecular dynamics eikonal equation (3.17), respectively, satisfying the Born-Oppenheimer property (7.1)
and the limit (6.3), with uniformly bounded hitting times τ , in (8.12), (8.16), and (8.20), then the zero-order

27



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7. Left: the path (X1(t), X2(t)) for β = 0.3 and β = 2. Right: the Schrödinger
density |Φ(X)|2 for β = 0.3 and β = 2.

Born-Oppenheimer dynamics (3.16), with initial data generated by the construction in Steps 1-4 in Section
5, approximates time-independent Schrödinger observables, with error bounded by O(M−1+δ), i.e.

(7.3)

∫

T3N

g(X)ρBO(X) dX =

∫

T3N

g(X)ρS(X) dX +O(M−1+δ) , for any δ > 0 and g ∈ C3(R3N ).
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The proof is given in Section 8.

7.2. Why do symplectic numerical simulations of molecular dynamics work? The derivation of the
approximation error for the Born-Oppenheimer dynamics, in Theorem 7.1, also allows to study perturbed
systems. For instance, the perturbed Born-Oppenheimer dynamics

Ẋt = Pt +∇PHε(Xt, Pt)

Ṗt = −∇Xλ0(Xt)−∇XHε(Xt, Pt) ,

generated from a perturbed Hamiltonian HBO(X,P ) +Hε(X,P ) = E, with the perturbation satisfying

(7.4) ‖Hε‖L∞ ≤ ε for some ε ∈ (0,∞)

yields through (8.14) and (8.21) an additional error term O(ε) to the approximation of observables in (7.3).
So called symplectic numerical methods are precisely those that can be written as perturbed Hamiltonian
systems, see [31], and consequently we have a method to precisely analyze their numerical error by combin-
ing an explicit construction of Hε with the stability condition (7.4) to obtain O

(
(M−1 + ε)1−δ) accurate

approximations, provided the corresponding phase function has bounded second difference quotients. The
popular Störmer-Verlet method is symplectic and the positions X coincides with those of the symplectic
Euler method, for which Hε is explicitly constructed in [31] with ε proportional to the time step. The
construction in [31] is not using the modified equation and formal asymptotics, instead a piecewise linear
extension of the solution generates Hε.

8. Analysis of the molecular dynamics approximation

Before we proceed with the analysis of the approximation error we motivate our results by a significantly
simpler case of a system without electrons. We use the densities (3.18) and (3.19) and we show heuristically
how the characteristics can be used to estimate the difference ρS − ρBO, leading to O(M−1) accurate Born-
Oppenheimer approximations of Schrödinger observables

∫
g(X) ρS(X)︸ ︷︷ ︸

〈Φ,Φ〉

dX =

∫
g(X)ρBO(X) dX +O(M−1) .

In the special case of no electrons, the dynamics of X does not depend on ψ and therefore XBO = XS = X
and consequently GBO = GS. The difference ψS − ψBO can be understood from iterative approximations of
(3.12)

(8.1)
i

M1/2
ψ̇k+1 − (V − V0)ψk+1 =

1

2M
G∆X(G−1ψk)

with ψ0 = 0. Then ψBO = ψ1 is the Born-Oppenheimer approximation and formally we have the iterations
approaching the full Schrödinger solution as k →∞.

In the special case of no electrons, there holds V = V0, thus the transport equation iψ̇1 = 0 has constant
solutions. We let ψ1 = 1 and then ψ2 − ψ1 is imaginary with its absolute value bounded by O(M−1/2). We
write the iterations of ψk by integrating (8.1) as the linear mapping

ψk+1 = 1 + iM−1/2Ŝ(ψk) =

k∑

l=0

ilM−l/2Ŝl(ψ1) ,

which formally shows that

|ψS|2 = |ψ1|2 + 2Re 〈ψS − ψ1, ψ1〉+ |ψS − ψ1|2 = 1 +O(M−1) .

Consequently this special Born-Oppenheimer density satisfies

(8.2) ρBO = G−2
S 〈ψS, ψS〉︸ ︷︷ ︸

=ρS

+O(M−1) ,

since GBO = GS and X do not depend on ψ.
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In the general case with electrons and a spectral gap, we show in Lemma 8.2 that there is a solution ψS

satisfying

(8.3) ‖ψS −ΨBO‖L2(dx) = O(M−1/2) ,

for the electron eigenfunction ΨBO, satisfying

V(·, X)ΨBO(·, X) = λ0(X)ΨBO(·, X)

and the eigenvalue λ0(X) ∈ R with a (fixed) nuclei position X. Then the state ψ1 equal to a constant, in
the case of no electrons, corresponds to the electron eigenfunction ΨBO in the case with electrons present.
In the general case the X dynamics for the Schrödinger and the Born-Oppenheimer dynamics are not the
same, but we will show that (8.3) implies that the Hamiltonians HS and HBO are O(M−1) close. Using
stability of Hamilton-Jacobi equations, the phase functions θS and θBO are then also close in the maximum
norm, which, combined with an assumption of smooth phase functions, show that |GS−GBO| = O(M−1+δ)
for any δ > 0. Lemma 8.2 also shows that |〈ψS, ψS〉 − 1| = O(M−1) and consequently the density bound
|ρS − ρBO| = O(M−1+δ) holds. To obtain the estimate (8.3) the important new property, compared to no
electrons, is to use oscillatory cancellation in directions orthogonal to ΨBO.

8.1. Continuation of the construction of the solution operator. This section continues the construc-
tion of the solution operator started in Section 3.4. Assume for a moment that Ṽ is independent of τ . Then
the solution to (3.23) can be written as a linear combination of the two exponentials

aeiτA+ + beiτA−

where the two characteristic roots are the operators

A± = (P 1
1 )2

(
−1± (1− 2(P 1

1 )−2Ṽ)1/2
)
.

We see that eiτA− is a highly oscillatory solution on the fast τ -scale with

lim
P 1

1→∞

1

(P 1
1 )2
A− = −2Id ,

while

(8.4) lim
P 1

1→∞
A+ = −Ṽ ,

in distribution sense. Therefore we chose initial data

(8.5) iψ̇|τ=0 = −A+ψ|τ=0

to have b = 0, which eliminates the fast scale, and the limit P 1
1 → ∞ determines the solution by the

Schrödinger equation

iψ̇ = Ṽψ .
The next section presents an analogous construction for the slowly, in τ , varying operator Ṽ.

8.1.1. Spectral decomposition. Write (3.23) as the first order system

iψ̇ = π

iπ̇ = −2(P 1
1 )2(Ṽψ − π) ,

which for ψ̄ := (ψ, π) takes the form

˙̄ψ = iBψ̄ , B :=

(
0 −1

2(P 1
1 )2Ṽ −2(P 1

1 )2

)
,
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where the eigenvalues Λ± , right eigenvectors Q± and left eigenvectors Q−1
± of the real “matrix” operator B

are

Λ± := (P 1
1 )2

(
−Id±

(
Id− 2(P 1

1 )−2Ṽ
)1/2

)
,

Q+ :=

(
Id
−Λ+

)
, Q− :=

(
−Λ−1
−

Id

)
,

Q−1
+ := (Id− Λ+Λ−1

− )−1

(
Id

Λ−1
−

)
, Q−1

− := (Id− Λ+(Λ−)−1)−1

(
Λ+

Id

)
.

We see that limP 1
1→∞ Λ+ = −Ṽ and limP 1

1→∞(P 1
1 )−2Λ− = −2Id. The important property here is that

the left eigenvector limit limP 1
1→∞Q

−1
+ = (Id, 0) is constant, independent of τ , which implies that the Q+

component Q−1
+ ψ̄ = ψ decouples. We obtain in the limit P 1

1 →∞ the time-dependent Schrödinger equation

iψ̇(τ) = i
d

dτ
(Q−1

+ ψ̄τ ) = iQ−1
+

d

dτ
ψ̄τ = −Q−1

+ Bτ ψ̄τ
= − Λ+(τ)Q−1

+ ψ̄τ = − Λ+(τ)ψ(τ) = Ṽτψ(τ) ,

where the operator Ṽτ depends on τ and (x,X0), and we define the solution operator S
(8.6) ψ(τ) = Sτ,0ψ(0) .

As in (8.5) we can view this as choosing special initial data for ψ(0). From now on we only consider such
data.

The operator Ṽ can be symmetrized

(8.7) V̄τ := G−1
τ ṼτGτ = (V − V0)τ −

1

2M

∑

j

∆Xj∗
,

with real eigenvalues {λ̌m} and orthonormal eigenvectors {ζm} in L2(dx dX∗), satisfying

V̄τζm(τ) = λ̌m(τ)ζm(τ) .

Therefore Ṽτ has the same eigenvalues and the eigenvectors ζ̄m := Gτζ
m, which establishes the spectral

representation

(8.8) Ṽτψ(·, τ, ·) =
∑

m

λ̌m(τ)

∫

T3N−1

〈ψ(·, τ, ·), ζ̄m〉G−2
τ dX∗ ζ̄

m(τ) .

We note that the weight G−2 on the co-dimension one surface T3N−1 appears precisely because the operator
Ṽ is symmetrized by G−2 and the weight G−2 corresponds to the Eulerian-Lagrangian change of coordinates
(3.13)

(8.9)

∫

T3N−1

〈ψ, ζ̄m〉G−2
τ dX∗ =

∫

T3N−1

〈ψ, ζ̄m〉 dX0 .

The existence of the orthonormal set of eigenvectors and real eigenvalues makes the operator Ṽ self-adjoint in
the Lagrangian coordinates and hence the solution operator S becomes unitary in the Lagrangian coordinates.

8.2. Stability from perturbed Hamiltonians. In this section we derive error estimates of the weight
functions G when the corresponding Hamiltonian system is perturbed. To derive the stability estimate we
consider the Hamilton-Jacobi equation

(8.10) H(∇Xθ(X), X) = 0

in an optimal control perspective with the corresponding Hamiltonian system

Ẋt = ∇PH(Pt, Xt)

Ṗt = −∇XH(Pt, Xt) .

We define the “value” function

θ(X0) = θ(Xt)−
∫ t

0

h(Ps, Xs) ds ,
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where the “cost” function defined by

h(P,X) := P · ∇PH(P,X)−H(P,X)

satisfies the Pontryagin principle (related to the Legendre transform)

(8.11) H(P,X) = sup
Q

(
P · ∇QH(Q,X)− h(Q,X)

)
.

Let θ
∣∣∣
I

be defined by the hitting problem

θ(X0) = θ(Xτ )−
∫ τ

0

h(Ps, Xs) ds

using the hitting time τ on the return surface I

(8.12) τ := inf{t |X0 ∈ I, Xt ∈ I & t > 0} .
For a perturbed Hamiltonian H̃ and its dynamics (X̃t, P̃t) we define analogously the value function θ̃ and

the cost function h̃.

8.2.1. Estimates of the phase functions. We can think of the difference θ− θ̃ as composed by a perturbation
of the boundary data (on the return surface I) and perturbations of the Hamiltonians. The difference of the
value functions due to the perturbed Hamiltonian satisfies the stability estimate

θ(X0)− θ̃(X0) ≥ θ(X̃τ̃ )− θ̃(X̃τ̃ ) +

∫ τ̃

0

(H − H̃)
(
∇Xθ(X̃t), X̃t

)
dt

θ(X0)− θ̃(X0) ≤ θ(Xτ )− θ̃(Xτ ) +

∫ τ

0

(H − H̃)
(
∇X θ̃(Xt), Xt

)
dt

(8.13)

with a difference of the Hamiltonians evaluated along the same solution path. This result follows by differ-
entiating the value function along a path and using the Hamilton-Jacobi equations, see Remark 8.1 and [9].

The global construction of a Hamilton-Jacobi equation in Section 5 shows that the Hamiltonian H(X,P )

remains the same while the parametrization (X,P ) = (X̂, X̌, P̂ , P̌ ) of the Lagrangian manifold may vary

in different domains - e.g. P = P (X) = ∇Xθ(X) or (P̂ , X̌) =
(
∇X̂θ∗(X̂, P̌ ),∇P̌ θ∗(X̂, P̌ )

)
- due to the

effect of caustics. At the interface to such domains the phase function satisfies a boundary condition, which
determines the phase function with an asymptotically vanishing error of size O(M−n) for any natural number
n. This small error in the initial data of the phase function is negligible compared to other sources of error.

We assume that

(8.14) sup
(P,X)∈L(H)∪L(H̃)

|(H − H̃)(P,X)| = O(M−1) ,

which is verified in (8.15) for Schrödinger and Born-Oppenheimer Hamiltonians; here L(H) is the Lagrangian
manifold for the Hamiltonian H. We consider the case when the return time is uniformly bounded, related
to quasiperiodic dynamics.

The Hamiltonians we use are

HS =
|P |2

2
+
〈ψ(X),V(X)ψ(X)〉
〈ψ(X), ψ(X)〉 − E ,

HBO =
|P |2

2
+ λ0(X)− E ,

based on the cost functions

hS = E +
|P |2

2
− 〈ψ(X),V(X)ψ(X)〉

〈ψ(X), ψ(X)〉 ,

hBO = E +
|P |2

2
− λ0(X) .

For the Born-Oppenheimer case the electron wave function is the eigenstate ΨBO. The Born-Oppenheimer
approximation (7.1), proved in Lemma 8.2, implies that

(8.15) ‖HS −HBO‖L∞ = O(M−1) ,
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which verifies (8.14).
Uniformly bounded hitting times. We choose the 3N − 1 dimensional hitting set as

(8.16) I := {X ∈ T3N | θ(X) = θ̃(X)}

on which the two phases coincide. If θ(X) is a solution also θ(X) + C is a solution to the Hamilton-Jacobi

equation (8.10), for any constant C; therefore we can choose θ such that θ(X0) = θ̃(X0) for any X0. Now
assume that I forms a codimension one set in T3N and that the maximal hitting time τ for characteristics
starting on I is bounded; the fact that I is a codimension one set holds, for instance, locally if |∇X(θ− θ̃)| is
nonzero. In fact, it is sufficient to assume that there exists a function γ : T3N → R, satisfying γ = O(M−1),

such that the set I := {X ∈ T3N | θ(X) − θ̃(X) = γ(X)} is a codimension one set with bounded hitting
times. We also define the 3N − 1 dimensional hitting sets in phase space

Iθ := {(X,P ) | X ∈ I, P = ∇θ(X)},
Iθ̃ := {(X,P ) | X ∈ I, P = ∇θ̃(X)}.

Then the representation (8.13), for any time t replacing τ and τ̃ , together with the stability of the Hamilto-

nians (8.14) and the initial data (θ − θ̃)|I = 0 obtained from (8.16) imply that

(8.17) ‖θ − θ̃‖L∞ = O(M−1) ,

provided the maximal hitting time τ is bounded: we assume the hitting time is uniformly bounded in the
case when the Lagrangian manifold L for the Schrödinger Hamiltonian system in Section 5 has a smooth
limit, as M tends to infinity, and the hitting points on a codimension one plane in phase space accumulate
on a 3N − 1 dimensional subset of phase space; this case is related to quasiperiodic molecular dynamics
systems.

8.2.2. Estimates of the densities. To estimate the density, we will use the characteristic paths. When the
value functions θ and θ̃ are smoothly differentiable in X, with derivatives bounded uniformly in M , the
stability estimate (8.13) implies that also the difference of the second derivatives has the bound

(8.18) ‖∆Xθ −∆X θ̃‖L∞ = O(M−1+δ) , for any δ > 0.

Our goal is to analyze the density function ρ = |G|−2〈ψ,ψ〉 with G defined in (3.11). The Born-
Oppenheimer approximation (7.1) yields 〈ψ,ψ〉 = 1 + O(M−1) thus it remains to estimate the weight
function |G|−2. This weight function satisfies the Hamilton-Jacobi equation

(8.19) HG(∇X log |G|−2, X) := ∇Xθ(X) · ∇X log |G|−2 + ∆Xθ(X) = 0 .

The stability of Hamilton-Jacobi equations can then be applied to (8.19), as in (8.13), using now the hitting
set

(8.20) I := {X ∈ T3N
∣∣ log |G(X)|−2 = log |G̃(X)|−2}

and the assumption of bounded hitting times τ in the hitting problem, and we obtain

(8.21) ‖ log |G|−2 − log |G̃|−2‖L∞ ≤ C‖HG −HG̃‖L∞ = O(M−1+δ) .

In this sense we will use that an O(M−1) perturbation of the Hamiltonian yields an error estimate of almost
the same order for the difference of the corresponding densities ρ− ρ̃.
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Remark 8.1. This remark derives the stability estimate (8.13). The definitions of the value functions imply

θ̃(X̃τ̃ )−
∫ τ̃

0

h̃(P̃t, X̃t) dt

︸ ︷︷ ︸
θ̃(X̃0)

−
(
θ(Xτ )−

∫ τ

0

h(Pt, Xt) dt

)

︸ ︷︷ ︸
θ(X0)

= −
∫ τ̃

0

h̃(P̃t, X̃t) dt+ θ(X̃τ̃ )− θ(X0)︸ ︷︷ ︸
θ(X̃0)

+θ̃(X̃τ̃ )− θ(X̃τ̃ )

= −
∫ τ̃

0

h̃(P̃t, X̃t) dt+

∫ τ̃

0

dθ(X̃t) + θ̃(X̃τ̃ )− θ(X̃τ̃ )

=

∫ τ̃

0

−h̃(P̃t, X̃t) +∇Xθ(X̃t) · ∇P H̃(P̃t, X̃t)︸ ︷︷ ︸
≤H̃(∇Xθ(X̃t),X̃t)

dt+ θ̃(X̃τ̃ )− θ(X̃τ̃ )

≤
∫ τ̃

0

(H̃ −H)
(
∇Xθ(X̃t), X̃t

)
dt+ θ̃(X̃τ̃ )− θ(X̃τ̃ ) ,

(8.22)

where the Pontryagin principle (8.11) yields the inequality and we use the Hamilton-Jacobi equation

H(∇Xθ(X̃t), X̃t) = 0 .

To establish the lower bound we replace θ along with X̃t by θ̃ and Xt and repeat the derivation above.

8.3. The Born-Oppenheimer approximation. The purpose of this section is to present a case when the
Born-Oppenheimer approximation holds in the sense that ‖ψ −ΨBO‖L2(dx) is small.

We know from Section 8.1.1 that the solution ψt = St,0ψ0 is bounded in L2(dx dX), since S is unitary
in the Lagrangian coordinates. This unitary S implies that the integral in the Lagrangian coordinates∫
T3N−1〈ψt, ψt〉 dX0 is constant in time. We consider the co-dimension one set

Iψ := {X ∈ R3N | 〈ψ(X), ψ(X)〉 =

∫

T3N−1

〈ψ(t,X0), ψ(t,X0)〉 dX0/

∫

T3N−1

dX0} ,

where the point values of 〈ψ(X), ψ(X)〉 coincides with its L2 average. We choose a time t such that Xt ∈ Iψ
and assume that the time τ∗ it takes to hit Iψ the next time is bounded, i.e.,

τ∗ := inf{τ |Xt ∈ Iψ, τ > 0 & Xt+τ ∈ Iψ} = O(1) .

We also assume that all functions of X are smooth.

Lemma 8.2. Assume that iψ̇ = M1/2Ṽψ holds, then there exists initial data for ψ such that the L2(dx)
orthogonal decomposition ψ = ψ̄0 ⊕ ψ⊥0 , where ψ̄0 = αΨBO for some α ∈ C satisfies

‖ψ⊥0 (t)‖L2(dx)

‖ψ̄0(t)‖L2(dx)

= O(M−1/2)

|〈ψt, ψt〉 − 1| = O(M−1)

‖ψt −ΨBO(Xt)‖L2(dx) = O(M−1/2)

(8.23)

uniformly in time t, provided the spectral gap condition (7.2) holds, the smoothness estimate (8.30) is satisfied
and the hitting time τ∗ is bounded.

Proof. We consider the decomposition ψ = ψ̄0 ⊕ ψ⊥0 , where ψ̄0(τ) is an eigenfunction of V(Xτ ) in L2(dx),
satisfying V(Xτ )ψ̄0(τ) = λ0(τ)ψ̄0(τ) for the eigenvalue λ0(τ) ∈ R. This ansatz is motivated by the zero
residual

(8.24) Rψ := ψ̇ + iM1/2Ṽψ = 0

and the small residual for the eigenfunction

〈Π( ˙̄ψ0), ψ̄0〉 = 0

M1/2Ṽψ̄0 = O(M−1/2) ,
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where

(8.25) w(X) = 〈ΨBO(X), w(X)〉ΨBO(X)⊕Πw(X)

denotes the orthogonal decomposition in the eigenfunction direction ΨBO and its orthogonal complement
in L2(dx). We consider first the linear operator R in (8.24) with a given function V0 and then we use a
contraction setting to show that V0 = 〈ψ,Vψ〉/〈ψ,ψ〉 also works since ‖ψ̄⊥0 ‖L2(dx) is small. The orthogonal

splitting ψ = ψ̄0 ⊕ ψ⊥0 and the projection Π(·) in (8.25) imply

0 = Π
(
R(ψ̄0 + ψ⊥0 )

)

= Π
(
R(ψ̄0)

)
+ Π

(
R(ψ⊥0 )

)

= Π(Rψ̄0) + ψ̇0
⊥

+ iM1/2(V − V0)ψ⊥0 + iΠ

(
GM−1/2

2
∆X(G−1ψ⊥0 )

)
,

where the last step follows from the orthogonal splitting

Π
(
(V − V0)ψ⊥0

)
= (V − V0)ψ⊥0

together with the second order change in the subspace projection

ψ⊥0 (τ + ∆τ) = Π(τ + ∆τ)
(
ψ⊥0 (τ + ∆τ)

)
= Π(τ)

(
ψ⊥0 (τ + ∆τ)

)
+O(∆τ2)

which yields Π(ψ̇⊥0 ) = ψ̇⊥0 ; here Π(τ)· denotes the projection on the orthogonal complement to the eigen-
vector ψ̄0(τ). To explain the second order change start with a function v satisfying 〈v,ΨBO(Xτ )〉 = 0 and
ΨBO(Xσ) = ΨBO(Xτ ) +O(∆τ) for σ ∈ [τ, τ + ∆τ ] to obtain

Π(σ)
(
Π(τ + ∆τ)v −Π(τ)v

)
= Π(σ)

(
〈v,ΨBO(Xτ )〉ΨBO(Xτ )− 〈v,ΨBO(Xτ+∆τ )〉ΨBO(Xτ+∆τ )

)

= Π(σ)O(∆τ2) + Π(σ)
(
〈v,O(∆τ)〉ΨBO(Xτ )

)

= O(∆τ2) +O(∆τ)
(

ΨBO(Xτ )− 〈ΨBO(Xτ ),ΨBO(Xσ)〉ΨBO(Xσ)
)

= O(∆τ2).

Let S̃τ,σ be the solution operator from time σ to τ for the generator

v 7→ iM1/2(V − V0)v + iΠ

(
GM−1/2

2
∆X(G−1v)

)
=: iM1/2V̂v .

Consequently, the perturbation ψ⊥0 can be determined from the projected residual

ψ̇⊥0 = −iM1/2V̂ψ⊥0 −Π(Rψ̄0)

and we have the solution representation

(8.26) ψ⊥0 (τ) = S̃τ,0ψ⊥0 (0)−
∫ τ

0

S̃τ,σΠ
(
Rψ̄0(σ)

)
dσ .

Integration by parts introduces the factor M−1/2 we seek
∫ τ

0

S̃τ,σΠRψ̄0(σ) dσ =

∫ τ

0

iM−1/2 d

dσ
(S̃τ,σ)V̂−1ΠRψ̄0(σ) dσ

=

∫ τ

0

iM−1/2 d

dσ

(
S̃τ,σV̂−1ΠRψ̄0(σ)

)
dσ

−
∫ τ

0

iM−1/2S̃τ,σ
d

dσ

(
V̂−1(Xσ)ΠRψ̄0(σ)

)
dσ

= iM−1/2V̂−1ΠRψ̄0(τ)− iM−1/2S̃τ,0V̂−1ΠRψ̄0(0)

−
∫ t

0

iM−1/2S̃τ,σ
d

dσ

(
V̂−1(Xσ)ΠRψ̄0(σ)

)
dσ .

(8.27)
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To analyze the integral in the right hand side we will use the fact

V̂−1 =
(
I + (V − V0)−1

[
V̂ − (V − V0)

])−1

(V − V0)−1,

which can be verified by multiplying both sides from the left by I + (V − V0)−1
[
V̂ − (V − V0)

]
. A spectral

decomposition in L2(dx), based on the electron eigenpairs {λk, ψ̄k}∞k=1 and satisfying Vψ̄k = λkψ̄k, then
implies

V̂−1Π(Rψ̄0) =
(
I + (V − V0)−1

[
V̂ − (V − V0)

])−1

(V − V0)−1Π(Rψ̄0)

=
∑

k 6=0

(
I + (V − V0)−1

[
V̂ − (V − V0)

])−1

(λk − V0)−1ψk〈Π(Rψ̄0), ψk〉

=
∑

k 6=0

(λk − V0)−1ψk〈Π(Rψ̄0), ψk〉+O(M−1)

(8.28)

which applied to the integral in the right hand side of (8.27) shows that ‖ψ̄⊥0 ‖L2(dx) = O(M−1/2) on a
bounded time interval, when the spectral gap condition holds and ψk are smooth.

The evolution on longer times requires an additional idea: one can integrate by parts recursively in (8.27)
to obtain

∫ τ

0

S̃τ,σΠRψ̄0(σ) dσ =

[
S̃τ,σ

(
B̃R̃ − B̃ d

dσ
(B̃R̃) + B̃ d

dσ

(
B̃ d

dσ
(B̃R̃)

)
− . . .

)]σ=τ

σ=0

,

B̃ := iM−1/2V̂−1 , R̃ := ΠRψ̄0(σ) ,

so that by (8.26) we have

ψ⊥0 (τ) = S̃τ,0ψ⊥0 (0)−
[
S̃τ,σ

(
B̃R̃ − B̃ d

dσ
(B̃R̃) + B̃ d

dσ

(
B̃ d

dσ
(B̃R̃)

)
− . . .

)]σ=τ

σ=0

.

By choosing

ψ̄⊥0 (σ)
∣∣∣
σ=0

= −
(
B̃R̃(σ)− B̃ d

dσ
(B̃R̃)(σ) + B̃ d

dσ

(
B̃ d

dσ
(B̃R̃)

)
(σ)− . . .

)∣∣∣
σ=0

we get

(8.29) ψ̄⊥0 (τ) = −
∞∑

n=0

B̃n0R0(τ) ,

where B̃0 := −iM−1/2V̂−1 d
dτ and R0 := iM−1/2V̂−1R̃. We assume this expansion (8.29) is convergent in

L2(dx) for each τ , which follows from the smoothness estimate

(8.30) ‖B̃n0R0(τ)‖L2(dx) → 0 as n→∞
and (8.28).

The next step, verifying that also the non linear problem for V0 works, is based on the contraction obtained
from

V0 − λ0 =
〈ψ, (V − λ0)ψ〉
〈ψ,ψ〉 = O(‖ψ⊥0 ‖L2(dx))

and that ψ⊥0 depends on V0 in (8.26), (8.27) and (8.28) with a multiplicative factor O(M−1/2).
Finally, to conclude that |〈ψ,ψ〉 − 1| = O(M−1), we use the evolution equation

d

dt
〈ψ,ψ〉 = M−1/2|G|2Im 〈∆ψ

G
,
ψ

G
〉 = O(M−1)

where the last equality uses the obtained bound of ψ⊥0 in the first part of (8.23). The assumption of a finite
hitting time τ∗ then implies that |〈ψ,ψ〉−1| = O(τ∗M−1) = O(M−1), since we may assume that 〈ψ,ψ〉 = 1
on Iψ. �
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Remark 8.3 (Error estimates for the densities). We have the densities

ρS = G−2
S 〈ψ,ψ〉 for the Schrödinger equation,(8.31)

ρBO = G−2
BO for the Born-Oppenheimer dynamics.(8.32)

From the stability of the Hamilton-Jacobi equation for log(|G|−2) and the estimate ‖∂XiXj (θ − θ̃)‖L∞ =
O(M−1+δ) in (8.18) we have

G−2
S = G−2

BO +O(M−1+δ) ,

and Lemma 8.2 implies

(8.33) 〈ψ,ψ〉 = 1 +O(M−1) ,

which proves
ρS = ρBO +O(M−1+δ) .

9. Numerical examples

In order to demonstrate the presented theory we consider two different low dimensional Schrödinger
problems. For both of these problems we show that there exists a Schrödinger eigenfunction density which
converges weakly to the corresponding molecular dynamics density as M → ∞ with a convergence rate
within the upper bound predicted in the theoretical part of this paper.

9.1. Example 1: A single WKB state. The first problem we consider is the time-independent Schrödinger
equation

(9.1) HΦ :=

(
− 1

2M
∂XX + V

)
Φ = EΦ

with heavy coordinate X ∈ (−π, π] and two-state light coordinate x ∈ {x−, x+}. Periodicity is assumed over
the heavy coordinate, Φ(X,x) = Φ(X + 2π, x), and the potential operator V is defined by the matrix

(9.2) V(X) =

[
V (X) 1

2V (X)e(X) + c
1
2V (X)e(X) + c 0

]
,

where we have chosen V (X) = −2 cos(X) + cos(4X), e(X) = 1 + X2 and c to be a non-negative constant
relating to the size of the spectral gap of V. The action VΦ is thus defined by

(VΦ)(X, ·) ≡ V(X)

(
Φ(X,x−)
Φ(X,x+)

)
.

For each X the potential matrix (9.2) gives rise to the eigenvalue problem

V(X)υ = λ±(X)υ

with the eigenvalues

λ±(X) =
1

2

(
V (X)± Sgn(X)

√
V (X)2 + 4

(
V (X)e(X)/2 + c

)2
)
,

where Sgn(X) = ±1 as defined below. When constructing the molecular dynamics density for this problem

ρMD(X) =
C√

2(E − λ(X))
,

one has to determine on which of the two eigenfunctions λ± to base this density. When c = 0 the difficulty
that the eigenvalue functions λ+ and λ− can cross is added to the problem. In order to determine the
continuation of eigenvalue functions at the crossings we introduce a function Sgn(X) which is a sign function
with Sgn(−π) = 1 that changes sign at points where

V (X)2 + 4

(
1

2
V (X)e(X) + c

)2

= 0 .

Since this situation can only occur when c = 0, it is possible to set

Sgn(X) := sgn(V (−π))sgn(V (X)) .
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See Figure 8 for a typical eigenvalue function crossing, which makes the function λ± : R → R smooth (in
contrast to the choice Sgn ≡ 1).

To solve (9.1) numerically, we use the finite difference method to discretise the operator H on a grid
{Xj}Nj=1 × {x−, x+} with the step-size h = 2π/N and Xj = jh. The discrete eigenvalue problem

H(h)Υj = EjΥj

is solved for the 10 eigenvalues being closest to the fixed energy E and a molecular dynamics approximation
of the eigensolution is constructed by

ΦMD(X,x) :=
√
ρMD(X) eiM

1/2Θ(X)υ(X,x) ,

where υ(X, ·) is one of the eigenvectors of V(X) and

(9.3) Θ(X) :=

∫ X

0

√
2(E1 − λ(s)) ds

is approximated by a trapezoidal quadrature yielding Θ(h). Thereafter a Schrödinger eigensolution Φ(h) which
is close to the molecular dynamics eigensolution is obtained by projecting ΦMD onto the subspace spanned
by {Υ}J̄j=1 as described in Algorithm 2. By denoting ρΦ(h)(X) = 〈Φ(h),Φ(h)〉 and ρMD(X) = 〈ΦMD,ΦMD〉,
the observables g1(X) = X2 and g2(X) = V (X) are used to compute the convergence rate of

(9.4)

∣∣∣∣∣

∫ π
−π gi(X)ρMD(X) dX −

∫ π
−π gi(X)ρΦ(h)(X) dX

∫ π
−π gi(X)ρMD(X) dX

∣∣∣∣∣ ,

as M increases. Further details of the numerical solution idea are described in Algorithm 1.
Plots of the results for the test case with the spectral gap c = 5 and E = 0, and for the test case with

crossing eigenvalue functions when c = 0 and E = 1.2 are given below. Most noteworthy is Figure 11, which
demonstrates that the obtained convergence rate for (9.4) is O(M−1) for both scenarios.
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Figure 8. Left plot: Eigenvalue functions when c = 5. There is a spectral gap which
makes the sign function constant S = 1. Right plot: Eigenvalue functions when c = 0. The
eigenvalue functions exhibit crossing, consequently the function S changes its sign from ±1
to ∓1 at the crossing points.

9.2. Example 2: A caustic state. Next, we consider the one dimensional, time independent, periodic
Schrödinger equation

(9.7)

(
− 1

2M
∂XX + V

)
Φ = EΦ , X ∈ (−2

√
E, 2
√
E)
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Algorithm 1 Algorithm for problems in Example 1

Input: Energy E; potential functions V , e and c; mass M ; number of grid points N and grid {Xi}Ni=1.
Output: Schrödinger projection density ρΦ(h) .

1. Construct the discrete operator H(h) from (9.1) using finite differences and solve the eigenvalue problem

H(h)Υi = EiΥi

for the 10 eigenvalues being closest to E by using MATLAB eigs(H,10,E).

2. Sort the eigenvalues and eigenvectors by distance from E and keep only the Eis which are less than
M−1/2 away from E. Let J̄ be the number of kept eigenvalues and E0 the eigenvalue closest to E.

3.
for i = 1 to N do

Solve the eigenvalue problem

V(Xi, ·)υ±(Xi, ·) = λ±(Xi)υ±(Xi, ·) ,
where V is the matrix defined in (9.2).

end for

4. Construct the molecular dynamics density according to the formula

ρMD(X) =
(E0 − λ(X))

−1/2

∫
[0,2π]

(E0 − λ(X))
−1/2

dX
,

where we choose λ(X) above from the two eigenvalues λ±(X) by the criterion that the eigenvalue chosen
must fulfil ‖λ‖∞ < E0.

5. Construct a discrete molecular dynamics approximation to the eigenfunction

(9.5) ΦMD(X,x) =
√
ρMD(X)eiM

1/2Θ(X)υ(X,x) ,

where υ(X,x) is one of the eigenvectors υ±,

(9.6) Θ(X) :=

∫ X

0

√
2(E1 − λ(s)) ds ,

and we approximate Θ by a trapezoidal quadrature Θ(h).

6. Project the molecular dynamics solution ΦMD onto the eigenspace {Υi}J̄i=1, J̄ ≤ 10 by Algorithm 2 to
obtain a projection solution Φ(h).

7. Derive the Schrödinger projection density by
for i = 1 to N do

ρΦ(h)(Xi) = |Φ(h)(Xi, x−)|2 + |Φ(h)(Xi, x+)|2 ,
end for
and scaling ρΦ(h) = ρΦ(h)/‖ρΦ(h)‖.

with V (X) = X2 and E = 1. The eikonal equation corresponding to (9.7) is

(9.8)
1

2
P 2 + V (X) = E .

As in Example 1, we would like to use the eikonal equation to construct a numerical approximate solution
of (9.7) whose density converges weakly as M → ∞ to the density generated from a solution of (9.7).
The molecular dynamics density corresponding to this eikonal equation becomes by (3.19) ρBO = C(E −
V (X))−1/2. The density ρBO goes to infinity at the caustics X = V −1(E) = ±

√
E and the approach in

Example 1 does not work directly. We will instead construct the numerical approximate solution using the
stationary phase method as outlined below based on the WKB Fourier integral ansatz.
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Algorithm 2 Projection algorithm

Input: Mass M ; wave solution Φ; eigenvalues {Ei}J̄i=1 and corresponding eigenvectors {Υi}J̄i=1.
Output: Schrödinger projection wave solution Φ(h).

1. Organize eigenvalues by multiplicity by a numerical approximation. Construct a J̄ × J̄ , zero matrix A
which keeps track of multiplicity relations as follows:
for i = 1 to J̄ do

for j = i to J̄ do
if |Ei − Ej | < M−3/4 then

Consider eigenvalues equal since the expected spectral gap is O(M−1/2), and store this relation by
if Akj = 0 for all k < i then

Set Aij = 1.
end if

end if
end for

end for

2. For vectors b ∈ {0, 1}J̄ , define the projection

Φ(h,b) :=
J̄∑

j,k=1

bkAk,j〈〈Φ,Υj〉〉Υj

and, letting ρ and ρΦ(h,b) denote the densities generated by Φ and Φ(h,b) respectively, set

b∗ = arg min
b∈{0,1}J̄

‖ρ− ρΦ(h,b)‖.

3. Return the projection Φ(h) := Φ(h,b∗).
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Figure 9. Plot of the MD density ρMD and the Schrödinger projection density ρΦ(h) in the
case c = 5 and E = 0 for the two different masses M = 90 (left plot) and M = 724 (right
plot) illustrating the convergence of the densities.

By the Legendre transform

θ∗(P ) = min
X

(
XP − θ(X)

)

an invertible mapping between the momentum and position coordinates fulfilling X = ∇P θ∗(P ) is con-
structed. Using equation (9.8), one sees that ∇P θ∗(P ) = V −1(E − P 2/2). Since θ∗(0) = 0, one can derive
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Figure 10. Plot of the MD density ρMD and Schrödinger projection density ρΦ(h) in the
case c = 0 and E = 1.2 for the two different masses M = 724 (left plot) and M = 5792
(right plot).
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Figure 11. Left plot: Plot of the observable density errors given in (9.4) with an eigenvalue
gap, when c = 5 and E = 0. Right plot: Plot of the observable density errors given in (9.4)
with an eigenvalue crossing, when c = 0 and E = 1.2.

that for this particular choice of V

θ∗(P ) =

∫ P

0

√
E − s2/2 ds =

E√
2

[
sin−1

(
P√
2E

)
+

P√
2E

√
1− P 2

2E

]
.

In neighbourhoods of the caustics [−2E1/2,−X0) and (X0, 2E
1/2], we construct the approximate solution

by

Φ(X) =
u(X)√
|∇XV (X)|

where u is the inverse Fourier transform

u(X) :=

∫ 2
√
E

−2
√
E

eiM
1/2(−XP+θ∗(P )) dP
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and X0 ∈ (−V −1(E), V −1(E)) is a value yet to be chosen. In the region (−X0, X0) the approximate solution
is constructed by

(9.9) Φ(X) = C
u(X)

(E − V (X))1/4
.

Here

(9.10) u(X) := e−iM
1/2θ(X)ψ+ + eiM

1/2θ(X)ψ− ,

with, according to the Legendre transform, θ(X) := X
√

2(E − V (X)) − θ∗
(√

2(E − V (X))
)

and ψ± de-

termined by the stationary phase method:

1. Set P (p) = P0 + p with P0 =
√

2(E − V (X0)) and let

Y (p) := sgn(p)

√
2
−X(P0 + p) + θ∗(P0 + p) + θ(X0)

∂PP θ∗(P0)
,

using

(9.11) θ(X) := X
√

2(E0 − V (X))− θ∗
(√

2(E0 − V (X))
)
,

and determine its inverse p(Y ) in a neighbourhood of Y = 0 by computing (pi, Y (pi)) on a grid
around p = 0 and, for k ≥ 3, fit a 3k + 1th degree polynomial to the values (Y (pi), pi) using the
method of least squares.

2. Evaluate the stationary phase expansion

u(X0) =
∑

p0=±
√

2(E−V (X0))

eiπsgn(∂PP θ
∗(P0))/4

[∣∣∣∣
1

2
∂PP θ

∗(P0)

∣∣∣∣
−1/2

e−iM
1/2θ(X0)

×
k∑

j=0

M−j/2

j!

(
i

(
1

2
∂PP θ

∗(P0)

)−1

∂Y Y

)j
|∂Y p|

∣∣∣∣∣∣
Y=0

+O(M−j/2)

](9.12)

to obtain

u(X−0 ) = eiM
1/2θ(X0)(ψ+ +O(M−k/2)) + e−iM

1/2θ(X0)(ψ− +O(M−k/2)) ,

where

ψ± := eiπsgn(∂PP θ
∗(±P0))/4

∣∣∣∣
1

2
∂PP θ

∗(±P0)

∣∣∣∣
−1/2 3∑

k=0

M−k/2

k!

(
i

(
∂PP θ

∗(±p0)

2

)−1

∂Y Y

)k
|∂Y p|

∣∣∣
Y=0

.

The constant C in (9.9) is chosen so that the wave solution parts are continuous at the gluing point,
Φ(±X−0 ) = Φ(±X+

0 ). It is most easy to determine C when X0 is chosen so that |u(X0)| is at a local
maximum; see Figure 12 for an illustration of the gluing procedure.

At the end a Schrödinger eigenfunction solution Φ(h) is obtained by projecting Φ onto the space spanned
by a set of eigensolutions to the discretized version of the Schrödinger problem, {Υj}J̄j=1, as is described in
Algorithm 2.

Two convergence results are needed to make the method work. First, the density generated from the
stationary phase based on the approxmiate solution ρ(X) := |Φ|2(X)/‖Φ‖22 must converge weakly to the
Schrödinger projection based density ρΦ(h)(X) := |Φ(h)|2(X)/‖Φ(h)‖22 as M → ∞; see Figure 13 for an
illustration of how these functions converge. Second, ρΦ(h) must converge to the molecular dynamics density
ρMD(X) := C(E − V (X))−1/2 as M increases; see Figure 14.

A numerical test of the convergence rate of

(9.13)

∣∣∣∣∣∣

∫ 2
√
E0

−2
√
E0
g1(X)ρMD(X) dX

∫ 2
√
E0

−2
√
E0
g2(X)ρMD(X) dX

−
∫ 2
√
E0

−2
√
E0
g1(X)ρΦ(h)(X) dX

∫ 2
√
E0

−2
√
E0
g2(X)ρΦ(h)(X) dX

∣∣∣∣∣∣
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Figure 13. Comparison of the approximate solution based density ρ and the Schrödinger
projection based solution ρΦ(h) for M = 200 (left plot) and M = 800 (right plot).

as M increases is illustrated in Figure 15 for the observables

(9.14) g1(X) =
(1.5−X)6(1.5 +X)6(1 + e−X

2

)

1.512
and g2(X) =

(1.5−X)6(1.5 +X)6(1−X2 +X4)

1.512
.

Further details of the solution procedure in Exampe 2 are given in Algorithm 3.

10. The stationary phase expansion

Consider the phase function X̌ · P̌ − θ∗(X̂, P̌ ) and let P̌0(X̂) be any solution to the stationary phase

equation X̌ = ∇P̌ θ∗(X̂, P̌0). We rewrite the phase function

X̌ · P̌ − θ∗(X̌, P̌ ) = X̌ · P̌0 − θ∗(X̌, P̌0)︸ ︷︷ ︸
=θ(X̂,X̌)

+(P̌ − P̌0) ·
∫ 1

0

(1− t)∂PP θ∗
(
P̌0 + t[P̌ − P̌0]

)
dt [P̌ − P̌0] .
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Figure 15. Convergence rate of (9.13) for the observables g1 and g2 as defined in (9.14).

The relation

1

2
Y · ∂PP θ̄(P̌0)Y = (P̌ − P̌0) ·

∫ 1

0

(1− t)∂PP θ̄
(
P̌0 + t[P̌ − P̌0]

)
dt [P̌ − P̌0]

defines the function Y (P̌ ), and its inverse P̌ (Y ), so that the phase is a quadratic function in Y . The
stationary phase expansion of an integral takes the form, see [10],

∫

Rd
w(P̌ ) e−iM

1/2(X̌·P̌−θ∗(X̂,P̌ )) dP̌

'
∑

∇P θ∗(P̌0)=X̌

(2πM−1/2)d/2
∣∣∣∣det

∂(P̌ )

∂(X̌)

∣∣∣∣
1/2

ei
π
4 sgn(∂PP θ

∗(P̌0)) e−iM
1/2θ(X̂,X̌)

×
∞∑

k=0

M−k/2

k!


∑

l,j

i(∂P lP jθ
∗)−1(P̌0)∂Y lY j



k (

w(P̌ (Y ))

∣∣∣∣det
∂(P̌ )

∂(Y )

∣∣∣∣
) ∣∣∣

Y=0
.

(10.1)
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Algorithm 3 Algorithm for Example 2

Input: An energy E, an one-dimensional potential function V , mass M , Schrödinger equation (9.7).
Output: The Schrödinger projection density ρΦ(h) .

1. Identify the right caustic point X+ > 0 satisfying X+ = V −1(E). For a fixed E ∈ R, consider the
periodic eigenvalue problem. Solve (9.7) numerically by constructing the discretised operator form of
−(2M)−1∂XX + V using finite differences and denoted H(h), and solve the eigenvalue problem

(9.15) H(h)Pi = EiPi

for the 10 eigenvalues closest to E using the Matlab eigenvalue solver eigs(H,10,E). Let E0 denote the
eigenvalue closest to E and consider from now on solving (9.7) for the energy E0 and its corresponding
eikonal equation 1

2P
2 + V (X) = E0.

2. Determine θ∗(P ) by

θ∗(P ) =

∫ P

0

∇P θ∗(p) dp

3. Evaluate the Fourier integral

(9.16) u(X) :=

∫ 2
√
E

−2
√
E

eiM
1/2(−XP+θ∗(P )) dP , |X| > X0 ,

where X0 is chosen as the smallest value X > X+/2 such that |u(X)| is at a local maximum, and for
|X| ≤ X0 compute u by (9.10) using the stationary phase method.

4. Construct the approximate solution

Φ(X) :=

{
Cu(X)(E0 − V (X))−1/4 |X| ≤ X0 ,

u(X)/
√
|∇XV (X)| |X| ≥ X0 ,

with

C =
u(X0)(E0 − V (X0))1/4

√
|∇XV (X0)|u(X0)

.

5.
Project Φ onto the eigenspace {Υi}J̄i=1, J̄ ≤ 10 by Algorithm 2 to obtain a projection solution Φ(h) and
compute its corresponding approximate density

ρΦ(h) =
|Φ(h)|2(X)

‖Φ(h)‖22
.
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[11] J.-P. Eckmann and R. Sénéor, The Maslov-WKB Method for the (an-)harmonic oscillator, Arch. Rat. Mech. Anal. 61

(1976), 153–173.
[12] L.C. Evans, Partial differential equation, American Mathematical Society, Providence, RI, 1998.

[13] C. Fefferman and L. Seco, Eigenvalues and eigenfunctions of ordinary differential operators, Adv. Math. 95 (1992), 145–

305.
[14] D. Frenkel and B. Smith, Understanding molecular simulation, Academic Press, 2002.

[15] G.A. Hagedorn, High order corrections to the time-independent Born-Oppenheimer approximation II: diatomic Coulomb

systems, Comm. Math. Phys. 116 (1988), 23–44.
[16] B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336,

Springer Verlag, 1988.

[17] H. Jeffreys, On certain approximate solutions of linear differential equations of the second order, Proc. London Math. Soc.
23 (1924), 428–436.

[18] J. B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Phys. 4 (1958), 180–188.

[19] M. Klein, A. Martinez, R. Seiler, and X. P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules, Comm.
Math. Phys. 143 (1992), 607–639.
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