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Preface

This thesis studies solutions of the nonlinear Degasperis-Procesi equation. In particular, it
explores which Degasperis-Procesi solutions are constructible by a set of elementary solu-
tions called multi-shockpeakons. The prerequisites needed for reading this text are few; all
results are achieved by basic measure theory and functional analysis. Although I am satis-
fied with my achievements, does it seem likely that it is possible to prove constructibility
for a larger set of DP solutions than I have been able to.

I would like to thank everyone who has helped me writing this thesis, especially my
supervisor, Nils Henrik Risebro.
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Chapter 1

Introduction

Degasperis and Procesi showed that the Degasperis-Procesi and Cammassa-Holm equa-
tion are the only two completely in’fegrable1 equations in the following family of third
order nonlinear dispersive PDEs

Up — Uyyt + (b4 1)Uty = buytiyy + Ullyyy, (x,t) € R x [0, 00), (1.1)

running over b € R.

The dispersionless Cammassa-Holm equation (b = 2) is

Up — Uyt +3UUy = 2Uylyy + Ullyyy, (x,t) € R x[0,00),

u(x,0) = up(x), x€R. (1.2)

In one interpretation, it describes finite length, small amplitude radial deformation waves
in cylindrical compressible hyperelastic rods.

Constantin, Escher and Molinet [1, 2] proved that if ug € HY(R) and ug — ugy is
a positive Radon measure, then equation (1.2) has a unique global weak solution u &€
C([0,T); H (R)) for any positive T. But it was also shown that solutions with odd initial
data ug in H3(R) such that ug, < 0 do blow up in finite time [1].
Functions of the form

u(x, t) = imi(t)e"x’x"(t)‘, (1.3)
i—1

called multi-peakons, are weak solutions to the CH equation with well described evolu-
tion. Holden and Raynaud [3] proved that if uy € H'((R)) and mg := ug — Ugy is a
positive Radon measure, then one can construct a sequence of multipeakons which con-

verges in L{> (R; H'(R)) to the unique solution u.

The Degasperis-Procesi equation (b = 3)

Up — Upyy +4UUy = BlUyUyy + Ullyyy, (x,t) € R x [0, 00),

u(x,0) = up(x), xeR (14)

can be regarded as a model for nonlinear shallow water dynamics. Many existence, stabil-
ity and uniqueness results have been proved for this equation. For example:

!Complete integrability means that there exist a Lax pair formulation of the equation. This means in par-
ticular that solutions of such equations satisfy infinitely many conservation laws.



e In [4], Yin proved that if uy € H*(R) with s > 3, and uy € L3(R) is such that
mo = Ug — Ugxx € Ll(]R) is non-negative, then equation (1.4) possesses a unique
global solution in C([0, o); H*(IR)) N C}([0, 00); H*~}(R)).

e In [5], Yin showed that if ug € H!(R) N L3(R) and ug — Uy is a nonnegative
bounded Radon measure on R, then (1.4) has a unique weak solution in W"®(RR x
R.)NL® (R; H'(R)).

loc

e Extending the definition of weak solution to entropy weak solution, Coclite and
Karlsen [6] showed that if uy € L'(R) N BV(RR), then there exists a unique entropy
weak solution to (1.4) satisfying u € L*([0, T); L>(R)) N L®([0, T); BV(R)) for any
positive T.

Multi-shockpeakons, functions of the form

n

W (x, ) = Y (—sign (x — xi(8)) si(t) + my(£))e” 0, (15)
i=1

s;>0 Vie{l,2,...,n} (1.6)

are weak entropy solutions of the DP equation. As we mentioned above, Holden and Ray-
naud showed that some solutions of the CH equation are multi-peakon constructible. This
thesis aims to explore if something similar is possible for entropy weak solutions of the DP
equation. That is; which entropy weak solutions of the DP equation are constructible by
multi-shockpeakons.



Chapter 2

Classical weak solution and peakons

u(x)

Figure 2.1: Tllustration of a peakon (x(0) = 0,m(0) = 1)

A peakon (peaked soliton) is a wave function of the form u = m(t)G(x — x(t)), where
G(x — x(t)) = e **"l and m(t) > 0. Anti-peakons are defined similarly, the only differ-
ence is that its momentum is negative; m(t) < 0. The peakon momentum, m(t), describes
the peakon’s strength /height at a given time. x(¢) describes its position. The derivatives of
m(t) and x(t) are determined by the differential equation the peakon solves. For example,
if u is a single peakon solving the Degasperis-Procesi equation and we are given initial
values (x1(0),m1(0)), then

ﬁﬁ = 0, 3'(1 = ml(t) = M1(0) (2.1)
In this case u(x,t) = u(x — mq(0)t,0) is a travelling wave function.

Multi-peakons are weak solutions of the family of equations (1.1) defined the following
way:



Definition 2.1 (Multi-peakon). A sum of peakons and anti-peakons of the form
n
) =) mi(t)G(x —x;(t)), ueL®Rx[0,T)), (2.2)

is called a multi-peakon. By convention, the sum is always sorted position-wisely
—o00 < x1(0) < x2(0) < ... < x,-1(0) < x,(0) < 00, (2.3)
all momenta are initially bounded
|m;(0)| < oo, Vie{l,2,..,n}, (2.4)
and all positions and momenta are differentiable on [0, T):

m;(t),x;(t) € CY([0,T)), i€ {1,2,..n}. (2.5)

2.1 Classical weak solution

Rewrite equation (1.1)

b+1 3-b 1
ut Mxxt + 2 (u )x + (u%)x - E(uz)xxx — 0. (2.6)

Definition 2.2. u € L*([0, T); H}

loc

(R)) is weak solution of (2.6) if

b+1 1 3—-b
/ / Dt xxt ( ) Dy ZD?cxx) + TD ( ))(P dxdt =0, (2.7)
Vp € CC(Rx[0,T)). (2.8)
Here D is the distributional derivative operator, and we assume that

u(—oo,t) = u(co,t) =0, Vt>0.

Inspired by Holden and Raynaud [3] and Lundmark [7], I will show that the momenta,
my(t), and positions, xi(t), of multi-peakon weak solutions of (2.6) have to satisfy spesific
ODEs.

Theorem 2.3. The multi-peakon

) = Y m(HG( - x (1), 29)
i=1

is a weak solution (up to peakon anti-peakon collision (neglect at first read)) of the family of equa-
tions (2.6) if and only if

X = i m;()G(xx — x;), (2.10)
i=1
my = (b —1)my isign(xk — x;)m;G(x; — x;) (2.11)
i=1
where sign(0) := 0. (2.12)
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Proof. The boundedness criterion u € L®([0, T); H}, .(R)) is most easily proven after hav-
ing built up notation. So we start by doing that while proving that u satisfies the weak
solution criterion (2.7).

To do this we need to compute distributional derivatives Dyu2, Dsu, Dy, Dyu? and
D.xu?. That means we have to differentiate functions of the form mq(t)f(x — x1(t)). It
is proven in Appendix A that general functions of the type f(x — x1(t)) where x1(t) € C!,

satisfy these chain rules in distributional sense

Dif (x —x1(t)) = =%1(£) Dy—x, (1) f (x — x1(1))
= —x1f',
(2.13)
Dyf(x —x1(t)) = Dyx_y, (1 f(x — x1(t))
f/
Furthermore, if mq(t) € C!, then D;(my(t)f(x — x1(t))) = fmiq + x1f'.

Studying Dxu the first problem we encounter is that u, and hence u2

where defined. Differentiating a peakon u = m;(t)G(x — x1(t))

| —sign(x —xq(t))my(t)G(x — x1(t)), if x # x1(t)
ux(xt) = { not defined, 1 1 1 if x = xi(t) 214

is not every-

we see that u,(x, t), for a given t, has x-discontinuities at the x;(¢). Apart from those points
uy(x,t) is smooth. Since u,(-, t) is not defined everywhere, D,u2 does not, in a sense, make
sense. But u,(-,t) is defined everywhere except a set of measure zero, so we can assign
finite values to this set without affecting the distributional derivative. We normalize u, by
taking the average of left and right limits

Uy (x77) + ux(x7)

5 ,
By proposition A.5 we know that if g is another function that is smooth almost every-
where and normalized like u,, then the partial distribution derivative D, satisfies Leibniz
rule Dy (uyg) = §Dxuy + 1D, g.

uy(x;) := (2.15)

The normalized u, reads

Uy

i — sign(x — x;)m;G(x — x;)

Il
-

2.16)
m;G'(x — x;)

I
™=

Il
—_

Here G'(x — x;) is the normalized derivative of G(x — x;)

—e%iY ifx > x;
G'(x — x;) := —sign(x — x;))G(x —x;) =< 0 if x = x; (2.17)
eX ¥ if x < x;

Now, u, satisfies the Lebniz rule, so we have that Dy (u2) = 2uyDyuy. Dyuy is given by
n
Dyuy = Dx(z m;G'(x — x;))

= (2.18)
m;DyG'(x — x;)

|

Il
—_
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The function G'(x — x;) consists of two Leibniz functions, — sign(x — x;) and G(x — x;).

The distributional chain rule holds for both. Thus

DyG'(x — x;) = G(x — x;) Dy (—sign(x — x;)) — sign(x — x;) D, G(x — x;)

= G(x — x;)(—26(x — x7) + (— sign(x — x1))?)
= _2(5951‘ + G(x — xi).

Using this in (2.18) we end up with
Dy, = Zm, —20y,),

and thereof

Dxu2 = 2u,Du,
ZmJ (x — x)) (

=2 E mim;G'(x — x;)(G(x — x;) — 26y,)

&M=
=
—
Q
~—~~
=

|
=
N
(o %Y
=

=2 Z m m]( x —xj)G(x —x;) —2G(x; — xj)(Sxi).

We differentiate the other distributional components in the same fashion

-

Diu = Di()_ m;G(x — x;))

n

Dyyiu = Dxxt(z miG(x - xi))
i=1

= Dxt(zn: m;G'(x — x;))

i=1

Dt<imi<c<x x) - 26,)

i1 (G (x — x;) — 20y,) — x;m;(G' (x — x;)

I
™= N

Il
—_

Dxu2 =2uD,u

n
=2 Y mimiG'(x — x;)G(x — x}),
=1

12
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(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



Dyxxtt? = 2Dy (uDy1t)
= 2D, (uDyeu 4 (Dyu)?)

= 2D, 'i1 mim; (G(x —xj)(G(x — x;) — 265,) + G'(x — x;)G' (x — xj)>
ij=

n
= 2Dy Y mm; (G(x —xj)G(x — x;) —2G(x; — xj)0x, + G'(x — x;) G’ (x — x]-))
ij=1

n
=2 ) mimi(4G'(x — x;)G(x — x;) — 4G(x; — x})6x, — 2G(x; — x})J}. ).
ij=1
(2.25)

Having all the distributional components needed, we insert them into equation (2.6)

b+1 3—-b 1
0 = Diu — Dyyiu + TDX(MZ) + TDx(”?c) - EDxxx(“z)

1 G(x — x;) — mixG' (x — x;)

1=

|
— =
1=

Sy
I
—_ =

1t (G(x — x7) — 20y,) — i (G (x — x7) — 25;1_))

mim;G'(x — x;)G(x — x]-)>

‘ﬁi
-

+
(O8]

\
oy

_+_
)
N
™=

mim;(G'(x — x;)G(x — x;) — 2G'(x; — x]-)éxi))

:M§

(2.26)

N‘
<

[

-

1 n
-3 <2 'Zl mim; (4G’ (x — x;)G(x — xj) — 4G (x; — x})dx; — 2G(x; — xj)éjci))
ij=

= Z2mi§xi — Zmixiééi

+ E mim; (2(b - 1)G’(xi - x]-)(Sxi + 2G(xl- — x])é;l)

Il
e
-

((b— 1)mim]-G'(xi — x]') + m,)) + iZ(S;Ci (mi i ij(xi — x]') — xl)
i=1 j=1

Assuming x; are distinct, the set (U ;dy,) U (U;4}.) is linearly independent. Thus for
(2.26) to be true, all factors of Jy, and &}, terms have to be zero. This yields exactly what the
theorem states:

1
5({ = Zm]G(XZ - x])
j=1
n
mi = —(b — 1)7711' Z ij'(xl- — .’X]) fori = {1, 2,...,71}. (2.27)
j=1
n
= (b - 1)7111' Zm] sign(xi - xj)G(xi - x])
j=1

13



When proving the boundedness criterion u € L*([0, T); H.,_(R)), equations will get
ugly unless we compress notation. Introduce

Gi:=G(x —x;), Gl :=G'(x —xj). (2.28)

1

(-, / (Dyu)?dx

, (2.29)
- Z {(GiGj + GIGl)dx
Calculating integrands gives
min(x;,x;) max(x;,x;) .
/ Gidox — / erfx,-fx]-dx + / emm(x,-,x/-)fmax(x,-,xj)dx
R —o00 min(x;,x;)
+/ exi+Xj72de (230)
max(x;,x;)
= pMin(xixj) —max(xixj) (1 + (max(x;, xj) — min(x;, xj)))
=e Ml (14 | - x]),
min(x;,x;) max(x;,x;) .
GfG’.dx — / XXXy / emzn(x,-,xj)fmax(x,-,xj)dx
R J — min(x;,x;)
+ / Nt T2 dx (2.31)
max(x;,x;)
=e M1~ |x; — x5)).
Inserting this into (2.29) yields
(O gy < 2 2mmje” ¥ ldx < oo (2.32)

Lj=

Our conclusive bound was based on the assumption that for any given T' > 0 all m;
functions are bounded. An assumption that is valid because all m; are C! functions and
initially bounded. U

Remark 2.4. The ODEs in (2.10) are obviously valid as long as

xi(t) < xip1(t), Vi € {1,2,.,n}. Peakons can however collide. What happens when
peakons collide dependens on the value of b in the PDE (2.6). Restricting ourselves to
b € [2,3] we can say a few things. As will be proved, if the multi-peakon only contains
peakons or anti-peakons, collisions will not occur. But if the multi-peakon contains both
anti-peakons and peakons, at least one peakon collision will occur if and only if the left-
most peakon lies to the left of the rightmost antipeakon. What happens at and after a
collision is an area of research, but for b € {2,3}, much is known for simple peakon anti-
peakon cases.

14



"u(x,t)"
o

2t

-4+ N

X—axis

Figure 2.2: Matlab simulation of a peakon anti-peakon collision for the DP equation based
on the ODEs (2.37) with inital values (x1(0) = —5,m1(0) = 4), (x2(0) = 5,my(0) = —3).
The function u(x,t) is shown at uniformly sampled times with dotted lines being inter-
mediate samples, and complete lines being first and last time sample. As indicated by the
arrows does the anti-peakon move leftward and the peakon rightward until they meet at
a space-time point (z, f) where u,(z, ) = —oco. Continuation of u after collision for the DP
equation is studied in chapter 4.

2.2 Conservation properties

By equation (2.10) we see that CH multi-peakons (b = 2) have to satisfy the system

n
xi =) me
j=1

; (2.33)
Hy; = m; Z mj sign(xi — xj)e*‘xi*xJ".
j=1
(2.33) is a Hamiltonian system
1 n
H= 5 Z mimje_‘xi_xf‘. (2.34)
iji=1
It means that (2.33) can be written as
oH oH
- Lt = —— 2.35

This gives the CH equation a lot of nice conservation properties. For example, for multi-
peakons the H!(RR) norm is conserved w.rt. time. We see this by first showing that

15



"u(x)"
o

-10 -5 0 5 10
X—axis

Figure 2.3: Matlab simulation of a peakon anti-peakon collision for the CH equation based
on the ODEs (2.33) with inital values (x1(0) = —5,m1(0) = 4), (x2(0) = 5,mp(0) = —3).
The skew arrows indicate a dampening of u before collision which we did not see equally
strong in the DP case, figure 2.2. This dampening makes u converge into one peakon/anti-
peakon with momentum m; + my.

U||Zn my 1S @ inear tunction of H, and then showing that 1 =0.
t11 () 1s a linear function of H, and then showing that H = 0
u(x) =Y me il —
lulBp gy = @ )= T 2mu(x)
= 2% mimje M4l = 4H, (2.36)
- Vi Xt — i =0
= alll e w) = 0.
The DP multi-peakons have to satisfy the system
n
xi = ije—\x,-—xj\’
=1
! (2.37)

n
n; = 2m; Zm] sign(xl- — xj)e_‘xi_xf‘.

j=1
The DP and the CH equation have many conservation properties in common. The spesifics
proven here are done for the more general familiy of equations (2.6) with b € [2,3] orb € R.
Lemma 2.5. For multi-peakon weak solutions of (2.6) the following properties are fulfilled
(i)
n
Y =0, VbeR.
i=1

16
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\
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X—axis

Figure 2.4: Continuation of u after collision for the CH equation example in figure 2.3. This
continuation is not unique, but corresponds nicely with the conservation of H! norm men-
tioned in (2.36). It also gives the peakon and anti-peakon the soliton property of emerging
from collisions unchanged. Another way to continue u after the collision is to “melt” the
peakon and the anti-peakon into one peakon/anti-peakon with momentum m; + m,.

(i) If m;(0) > O,then m;(t) >0, Vte Ry, Vb e R. Theanalogue situation
m;(0) <0 = m;(t) < 0isalso true.

(iii) Foramulti-peakon u = Y', m;e~*=%il consisting only of peakons/anti-peakons, all peakons/anti-
peakons are uniformly bounded in absolute value by | Y1 | m;|.

(iv) Ifb € [2,3] and the multi-peakon u = Y, m;e~ ¥l is of such a nature that all its momenta
are uniformly bounded in absolute value

m;(t)] <M  VteRy, Vie{l2 .., n}, (2.38)
then no collisions, either peakon/peakon or peakon/anti-peakon, will occur.
Proof.
(i)
3 3 . e
Y ity = (b—1) Y mym;sign(x; — x)e ¥ 239)

i,j—1

I
—_

=0
(ii) This follows directly from (2.10) since if for given time m;(t) = 0, then ri1;(t) = 0.

(iii) Observe that by (i) and (if)

mi(£)] <



(iv) Given the function

fO) = [Tm) [T ey, (2.40)

then x;(t) = x;,.1(t) if and only if f(t) = 0. So if we can prove that f = 0, then
f(t) = f(0) # 0 and we have almost completed the proof.

Xi—Xi41

— —Xji1)e
Z 1 — eXi—Xit1 f(t)

=1
— (u(x;) — u(xjyq))eri—%irt

—
Il
FF
\..,

i
—_
= N

= Ll - -1 I R
n :
m;
=Y Dig
30
n—1
(Zm] Xj—Xi __ Z mexH—l x]) eti— xz+1f()
i=1 "j=1 j=i+1

(2.41)

— b—1) Z Zmexf Tirl Zme"' x])) (t)

j=i+1

NN Z mjexf*xf)>f(t)

j=1 j=it1

-
23

0
IR

1=
F3F
|
=
|
N
g

Il
-

i
N
i
N
T
N

I
VR /N /N /N
1= I[1=
3F 3|3
| |
o =
|
J I AN
= .2 -
= 7
I 1= :
o T3
(6)°]
2
=
|
=
=
=
=
=
g

Il
-

Here we have used that

u(xi) - xl+l (Zm N I Z m i1 x]) _ el x,qu).

j=i+1

Algebraically, equation (2.41) is valid even if momenta are not bounded. In par-
ticular, if a collision occurs in a multi-peakon between, say, the peakon (xy, my)
and the anti-peakon (xi,1,7y,1) at a given time f, then f = 0 for t < f. Since
lim, - (xx(£) — Xp41(f)) =0 and

fO = [Tm) TTQ = e, (242)

is constant, its product term [T} ; m; must go to plus/minus infinity, meaning that
some of its momenta must go to plus/minus infinity. Consequently, combining equa-
tion (2.41) with the assumption that all momenta are uniformly bounded in absolute
value, proves that collisions will not occur.

O

18



—x— X‘l(t)
- %,(1)

20

15

10

S\

X—axis

30

35

40

Figure 2.5: A two peakon DP multi-peakon simulation with initial conditions (x;(0) =
0,m1(0) = 3.5), (x2(0) = 6,m(0) = 1.5). The multi-peakon u(x,t) is shown at evenly
sampled times. Time is illustrated by translation of u(x, t;) along the y-axis; u(x,t;) =
u(x, ty) + k, where t; is the (k + 1)th time sample. In the beginning, the strong peakon
to the left is moving faster than the weaker peakon to the right. However, as claimed in
Lemma 2.5, they do not collide. As the leftmost peakon moves towards the rightmost,
momentum strength is transfered from the leftmost to the rightmost peakon. After some
time the rightmost peakon has stronger momentum than the leftmost. Then, they move

apart.
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—— Xl(t)
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20
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¥

0 5 10 15 20 25
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40

Figure 2.6: The analogue of the simulation in figure 2.5 for the CH multi-peakon, i.e. iden-
tical peakon inital conditions. This time the peakons come closer to each other before
separation, and separation takes longer time than in the DP case. This is so because the
m; ODEs in (2.10) are smaller in absolute value in the CH case (b = 2) than in the DP case

b = 3).
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Chapter 3

Entropy weak solution

According to definition 2.2 a weak solution u of the family of equations (2.6) has the prop-
erty that u(-,t) belongs to Hllo .~ This restriction is natural to impose on u to make dis-
tributional sense of the %u% integrand term in (2.7). For the DP case (b = 3) the term

disappears. It turns out that the H} = restriction on weak DP solutions is stronger than

necessary to achieve well-posedness. This chapter defines the DP entropy weak solution,
a less restricted weak solution of the DP equation.

3.1 General weak solution

We consider the Dirichlet problem
(1-)o(x) = f(x), xER, o)
o(—c0) = v(c0) =0,

Its Green’s function, denoted F(x, y) here (to avoid confusion since G is already taken),
is defined as the solution of (3.1) with f(x) = é(x —y). Thatis
1 ey
F(x,y) = 5¢ Yl (3.2)

Let * be the convolution operator in Lebesgue sense, then

Fa(1=R)o(x) = [ 5o 1= R)otx - ) dy

_ /00 (1= ) (e o(z)) dz

—0o0

— /o:o (exz _ a%%oc_z)exd)) v(z)dz

- (G @)

(sign(xt —z) —sign(x™ —2)) |, ,
2 —x) e |>v(z)dz

:/R((S(xz)+x{%(z))v(z)dz:v(x)

And likewise (1 — 92)F * v(x) = v(x). Hence (1 — 9%) and Fx are formal inverse operators.
This property will be used to reformulate what a weak solution of the PDE (2.6) is. We
start by rewriting (2.6) as

(3.3)

21



b+1 3—-b 1
T(”z)x + > (u?c)x - E(”Z)xxx

1 3-b, ,

0= 1y — Uyt +

= (= )i () = () + 5 005+ 252 (), (4)
Loy b 3-b

= (1= &)+ (552)) + 5 (62)s + = (),
Applying the operator Fx on both sides of (3.4) gives us a conservation law

3-b
2
)

0= F (1= 22) (e + (1)) + 2 () +

1 b 3-b
= (ur+ (50)x) + F o (5 (1) + = (1)
b 2 b 2
2 2 x)

(12)s)
(3.5)

= U; + 0y [1 —I—3—

ol +Fx*(zu

Based on the conservation law (3.5) we reformulate definition 2.2 for b € R\ {3}.

Definition 3.1 (Reformulation of weak solution). u € L*([0, T); H}

1oc(R)) is a weak solu-
tion of

up — tyyt + (b4 Dunty = buythyy + Utiyyy, b e R\ {3},
if it satisfies

T J—
/ / ¢Du + ¢D, [luz + F (éu2 3 bui) dxdt =0,
0 Jr 2 2 2

Ve € C°(R x [0, T)).

(3.6)

For the DP case (b = 3) the integrand Sasl) 5" 242 in (3.6) disappears. The remaining terms
in the integral makes it natural to weaken the weak solution restriction from H! to L2
Furthermore Coclite and Karlsen [6] showed, by using a conservation law, that if the initial
function is in L?, then its solution u(-,t) is in L? for all t where it is defined. With this in
mind, the DP weak solution is redefined.

Definition 3.2 ((Redefined DP weak solution)). A functionu € L®([0,T); L?(R)) is a weak
solution of the Cauchy problem

Up — Uyxt + 4uux = 3uxuxx + Ullyxy,

3.7
u(x,0) = up(x), (37)
if it satisfies
T 1
/ / ¢Diu + ¢D, [—uz + P“} dxdt = 0,
o Jr 2
vp € C(R x [0,T)), 68)

with P%:= gF U,
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3.2 DP entropy weak solution

To achieve well-posedness Coclite and Karlsen extended the DP weak solution by requir-
ing solutions to be of bounded variation and fulfil a Kruzkov-type entropy condition.

Definition 3.3 (Entropy weak solution). A function u € L®([0,T); L>(R)) is an entropy
weak solution of the Cauchy problem (3.7) if

(i) uis a weak solution in the sense of Definition 3.2.
(ii)) u € L*([0,T); BV(R)).

(iii) For any convex C? entropy 77 : R — R with corresponding entropy flux g : R — R
defined by ¢'(u) = 1'(u)u, there holds

T
/0 /]R <Dt;7(u) + Dyq(u) + ﬁ’(u)DxP”)(pdxdt <0,
V¢ € C°(R x [0,T)), such that ¢ > 0.

(3.9)

This can also be written
T
/ / 17(1)0rp + q(u)dxp — 17’ () Dy P* dxdt —I—/ ¢(x,0)n(uo(x))dx > 0. (3.10)
0o JR R

In (3.10), we can replace the distributional derivative operator D with the normal
derivative operator d when operating on ¢ since it is a smooth function.

Remark 3.4. The bounded variation is imposed to ensure strong compactness for a sequence
of solutions, i.e. existence.

Uniqueness of a weak solution would be true if we knew that the chain rule holds on our
weak solutions. However, our weak solutions include discontinuous solutions for which
the chain rule does not hold. Therefore the Kruzkov entropy condition is imposed to give
stability, and thereby uniqueness. This will be further investigated in chapter 5.

Remark 3.5. By considering the case
nu) = (u—k?+06)2 keR, 6>0, (3.11)

and letting & — 0, we can reduce the analysis to the case where

e(u) = |u — ki, (3.12)
with corresponding
. uz K2
qgx(u) = sign(u — k) (7 - E> (3.13)

It is shown by Holden and Risebro [9] (page 26 & 27) that if ||u|| ~®rx[,1)) < M, then for
any convex function 7(u) there exists a sequence of functions

gn=p+ f (1) + o (3.14)
k=1

such that g, — 7 in L*(—M, M). From this they conclude that for all u € L*(R x [0, T))
it suffices to verify the entropy condition (3.10) for the set of functions (3.12) and (3.13),
which is called the Kruzkov entropies.
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3.3 Shockpeakons

DP entropy weak solutions can be discontinuous. Examples of such are shockpeakons. A
shockpeakon is a function of the form

u(x,t) = mi(t)G(x — x1(t)) +s1()G' (x — x21(t)), (3.15)

where G and G’ are defined as in chapter 2:

(3.16)

u(x)
o

-2+ 4

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3.1: Illustration of a multi-shockpeakon (¥ = (-5,0,5), m = (2,1,0), s = (1,1,1))

Shockpeakons occur naturally as the limit function of a DP peakon anti-peakon col-
lision. They consist of two parts, one peakon/anti-peakon part m;G and one shock part
s1G’. From (3.16) we see that the shockpeakon 1 = m1G + 571G’ has a jump discontinuity of
—2s7 at xq1 since

(mq +51)G(x —x1), x < xq
u(x, t) = my, xX=x (3.17)
(m1 —s1)G(x — x7), x> xq.

Multi-shockpeakons, which can be weak solutions of the DP equation, are defined the

following way

Definition 3.6 (Multi-shockpeakon). A sum of shockpeakons

u= m;G; +Sl'Gl/-, u e Loo(]R x [0,T)), (3.18)

M-

Il
-

where G; := G(x —x;) and G} := G'(x — x;), is called a multi-shockpeakon. Multi-
shockpeakons are by convention sorted position-wisely;

—00 < x1(0) < x2(0) < ... < x,-1(0) < x,(0) < 00, (3.19)
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and all peakons, anti-peakons and shocks are bounded and differentiable on [0, T)
‘ml(0)|l |Sl(0)| < oo, Vi e {1/ 2,...,7”1}, (320)
si(t), m(t),x;(t) € CY([0,T)), ie{1,2,..,n} (3.21)

Theorem 3.7. If u = Y.’  m;G; + ;G| then it satisfies the weak solution condition (3.8) if and
only if

e = u(xy),
titg = 2spu(xy) — 2m{uy(xx) }, (3.22)
Sk = —sp{ux(xx)},
where ;
u(xe) =Y mi(H)G(xx — x;) +5i(H)G' (x — x7), (3.23)

i=1
and the curly brackets denote the nonsingular part

{0} = Y mi(B)G (e — x1) + si(DG(xe — ;). (3.24)
i=1

Proof. We prove this, inspired by Lundmark’s proof in [7], by calculating the distributional
derivatives of u in (3.7). The proof is similar to the proof of theorem 2.3 involving some
algebra on distributional derivatives.

Note from appendix A and the calculations in theorem 2.3 that

Di(m;G;) = 1i1;G; — %im;G;j,

Dt(SiGZ{) = SiGz{ + Si(t)Dt(f sign(x - xi)Gi)
= SlGll — Si(t)xl’(G,’ — 259‘1‘)’

Dy(G;G;) = GjD:G; + GiD«G;j (3.25)
= G]'GZ{ + GiG;.

— GJ(G; —25y,) + G/(G} — 25

Now, compute the distributional derivative terms Dyu and D, (u?/2) of (3.7).

n
Dtl/l = Dt(z miGi + SZ'GZ{)
i=1

i;G; + m;DG; + S'iGg + SiDtcg

I
™=

I
—_

(3.26)
miGi — mia'ciGz{ + slGZ' + si(inéxi - XiGi)

I

I
—_

|

Il
—

(ml‘ — Sl‘xi)Gi + (éi — m,-xl-)G§ + ZSZ'.’)'Ci(Sxi
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Since u is a finite sum of normalized functions, it is a normalized function. So, by
proposition A.5, Dy operated on u? satisfies the Leibniz rule Dyu? = 2uD.u.

N|§
VN
M:

N
L

m;Gj + s; ]) (EmG +SG>

m;G; + sj ]) (Zm Gi +5i(Gi — 25x,.)) (3.27)

m=

X

= Z miijl{Gj + mistfG]" + Sim]'(Gi — 25,(1.)(3]' + SZ'S]'G;(GZ' — 25x,-)-
i1

The next step is to compute Dy P* = DX%F * u2, which is a bit more laborious. Recalling
that F(x,y) = %e*‘x*y‘ = %G(x —y) gives us

Dy P¥(x,t) = 3/ DyG(x — y)u?(y, t)dy

/Gx y)u*(y, t)dy

/G x—y) me]GG +2ms]GG’+ss]GG>dy (3.28)
i,j=1 )
== E mm]/ G’(x—y)Gidoy+2mis]-/ G'(x —y)G;Gjdy
z] 1 R

+5;5 / G'(x — y)Gl{G]‘ dy.
R

To find G * (G;G;j), G’ * (GiG]’.) and G’ % (GZ’G]’) we split R into at most three intervals.
Presuming x; < x; yields the splitting I; = (o0, x;), I = [x;,,xj) and I3 = [x}, ®).

'+ (GiGy) = /I G'(x )Gy x)Gly — x)dy + /I G'(x — )Gy — x)G(y — x))dy
" /ISG (x— )Gy — x)Gly — x))dy

= / —sign(x—y)ezy(xf“/')xy'dy+/ —sign(x — y)e¥ %Yy

Il IZ
+ / —sign(x — y)eNi TN vlgy
I
=A+B+C.
(3.29)
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We look at the integrals separately.

. .4 , .
X% (exfx, . _€2x72x,) if x < X;,
A= 3
- | .
——eiTNe Y ifx > x;,
3

TN (e — ) ifx <,

B= e ti(e"r =) ifxy < x < uj,

TN (e — YY) if x>

1. . o
—ei NN if x < xj,
3 ]

C: 4
e (S ) ifx > x;
Hence
4 2
e (267N — 2eMTR - 26T ifx <
2 2
G (GiG)) = (e ) <<y

2 4
exi—x/-(gexl——x B Pei i + geZ;vc]-—Zx) if X; <x< xj
which compactly looks like

2
- 5(GiGj + GiG).

2
G/ * (GZG]) = gexl Y (ZGZ' — ZGJ + Gzl + G]I)
And if we remove the a priori condition x; < xj, we get

2 _y—x . 2
G« (GZG]) = ég |xi—x;] (2 s1gn(xl- - x])(G] - Gz) + G: + G]I) - g(G;G] + GZG]/)

Computing G’ * (GiG]’-) and G' * (G] G]’) in the same manner yields

2 xilm
G*@ﬁﬂzyﬂnm@m@QﬁJMQfGJ+G+GD—(G@+G@L

WIN WIN

G'* (GiG}) = %e*\xi*le (sign(x; — x)(Gj — G)) +2G; - G;) — (G;G; + G|G)),

2 el 2
G’ % (GZ/G]/) = ge |xi x]'( — sign(x; — x]')(Gj - Gj) + Gl{ + G],) — §(G§Gj + GiG]I').

We insert these values into (3.28)
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D,P" = = Z mjm; (e xi— x]‘(ZSlgn( — xj)(Gj —Gi) + Gl{ +G]/')
z] 1

— (G/G; + GiG]’-)>
n

+ Z m;s; (e*\x,-ij‘ ( sign(x,' — x]')(G],' — Gz/) +2G; — Gj)

=1

- (GZ-G- + ch’-)>

+ 5 Z 5iS] (e il sign(x; — x;)(Gj — G;) + G} + G))
z] 1

~ (GIGj + GiG]’-))

n
= — Z (miijl{Gj + ml'S]'(Gl'G]' + GZ{G]/') + Sl'S]'GZ{G]')
=1

+ 2 e —|xi— /( mm]<251gn( _x])(G]_ GZ) +G1/+G],)

ij=1
+ mis]-<sign(xi —xj)(Gj — Gj) +2G; — G]->

1 .
+ Esisj( —sign(x; — xj)(Gj — G;) + G} + G]/) )

(3.35)

When adding (3.27) and (3.35) all G;G;, GiG]’- and G{G]’- terms cancel out. We add on
(3.26) and sort the terms by the linearly independent functions G;, G; and d,,. As remarked
theorem 2.3, we use that G;dy, = G(x — x;)é(x — x;) = G(x; — xj)Jy;. The result is

1
0= Dyu+ Dx§u2 + D, P*

n

n
=2 <mi — si%; +2m; Y _(s; — m;sign(x; — x;))e” |

i=1 j=1
n
j=1
n n
+ 2 (Sl mix; + m; 2(771] —sj sign(x; — xj))g*\xi*xj\
i=1 =1

n

51 Y (sj — mysign(x; — x;))e” ) 6

j=1
n
+ Z (25 X; — 2si E — s;sign(x; x]-))e"xi’xf‘>(5xi
i=1 j=

m; —siX; + 2mi{ux(xi)} — SZ'M(XZ')> Gz'

I

+i($’i—mi5ﬂ+mu( x;) + si{ux(x ))G§+i(2s,-xi—2s,-u(xi))5xi.

i=1 i=1
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Since we assume the positions x; are distinct, the set (U ;G;) U (U, G}) U (U 4,) is
linearly independent. Hence for (3.36) to be true, all factors of the G;, G} and dy, terms have
to be zero. In other words/symbols:

;= u(x;)
niyy = 2s;u(x;) —2mi{ux(x;)} p i={1,2,.,n}. (3.37)
si = —sifux(x;)}

0

Remark 3.8. We see that in the shockless case, s; = 0Vi, the ODEs (4.16) are equal to the
multi-peakon ODEs obtained in chapter 2 for DP multi-peakons (2.37). Thus the conserva-
tion properties explored in chapter 2 are still valid for this case. Furthermore, observe that
if s;(tg) = 0, then its derivative will be zero, so it will remain zero.

The second restriction on DP multi-shockpeakon solutions is imposed by the entropy
condition. It forces all shocks to be positive.

Theorem 3.9. Multi-shockpeakon weak solutions (definition 3.2) satisfy the entropy condition
(3.10) if and only if s; > O for all i. That is, all shocks must satisfy u(x; ) > u(x;").

\

X

Figure 3.2: Isolated discontinuity curve I' with an open divided neigbourhood around a
point on the curve.

Proof. A multi-shockpeakon, u = YI' ; m;G; + s;G}, is a piecewise strong solution. Its dis-
continuities with respect to x lies at the x;(t)s. Up to shockpeakon collisions such dis-
continuities are isolated. Consider such an isolated discontinuity moving along a curve
I = (x¢(t),t), with left and right limits u; := u(x, ) and u, := u(x}"). Choose an open
neighbourhood D around a point (x¢(to), to) on the curve (xx(t), t) so small that u is smooth
in D except on I', and a test function ¢ > 0 whose support lies inside D. Then the entropy
condition requires that

29



0< // 17(u)Dip + q(u) Dy — 17" (u)p Dy P* dxdt. (3.38)
D
Let D and D; be the parts to the left and right of D, respectively. Then

/ / Di((1)9) + Dx(q(u)) dxdt — / (Di(u) + Daqu) + 1y () Dy P*) p dxdt
(3.39)
/ 1n(u 471/ +q( )cpv lds — // Dyt + uDyu + D P*) 1y’ (u) ¢ duxdt.

Where

vi(x, t) = (v, v?) =

(\/1+x1 \/1+x1>

is the outward pointing unit normal to dD;. Since ¢’s support is contained inside D, we
know that it is zero on the set dD; N dD. Continuing on (3.39) we have

- el .
”_/aa-\apﬂ( v + g(u)pids — // (D + uDyu + DyP*)ny' (u)¢ dxdt

= (=1) — — —=dS
( )'/aDi\aDﬂ(u)ebm q(u)qu (3.40)

— // (Dyu 4+ uDyu + Dy P*) ' (1) dxdt,
D;

Noting that D = D; U D, in Lebesgue measure, we split the integral (3.38) into two
pieces and use (3.40) to achieve

0 [[ | WD+ gD w)pDP dxit
/ / #) + Da(q(u)p) dxdt — / / (D (1) + Dyq(ut) + 17 () DxP*)p dxdlt
DyUD» DyuUDy

[ e gt s [ g g s
9D;\0D \/ 1+ 32 1+ 42 9D;\9D \/1+ i3 \/1+ 12

+ // (Dyu 4+ uDxu + Dy P*) 1’ (1) dxdt,
D1UD,

% 1
— ) — - r) — ds +0.
/- (0ntae) = ) ey e e mﬁ»
(3.41)
This inequality is valid for all non-negative ¢ € C°(D). Thus
q(ur) —q(u) < 2(p(uy) —n(w))  onT (3.42)

Observe two things.

First, since x; is a peakon position, we have from (3.22) that %} = u(xy). Furthermore, a DP
weak solution multi-shockpeakon is a sum of normalized functions and thereby a normal-
ized function itself, giving X = @
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Second, by remark 3.5 we know that u satisfies the entropy condition (3.10) if it satisfies
it for all Kruzkov entropies

uZ _kz
n(u):=|u—k|, g(u):=sign(u—k) 5 k € R. (3.43)

Combining this with inequality (3.42) implies

sign(u, — k) (u? — k*) — sign(u; — k) (u? —k*) < (u; +u,)(Ju, —k| — |u; —k|), onT, Vk € R.

(3.44)
Noticing that sign(u — k)(u; — k) = |u — k|, we remove redundant terms in (3.44) and get
the inequality

0<(u;—k)|u, —k| — (ur —k)|u; —k|), onT, Vk € R. (3.45)
By

— ((ul k) (uy — k) — (uty — k) (g — k)) —0, k> max(u,u,)

_ <0, u, >k > u
(1= )y = | = (s, = ) g = kl) = {5 e
((ul )y — k) — (uy — k) (g — k)) —0 k< min(u,u),
(3.46)

we conclude that multi-shockpeakons satisfy the entropy condition (3.10) if and only if
Uy > Uy.
O

3.4 Conservation property

Although most conservation properties of DP-peakon solutions no longer are valid when
looking at shockpeakon solutions, the sum of momenta is conserved.

Y ity = 0 (3.47)

i=1

This is proven algebraically by looking at the 7iz; ODE in (3.22).

n n

Zmi =2 Z <s]-u(x]-) — mj{ux(x]-)}>

=1
n 3.48
=2 Z (S]'(miGl’ +SiG§) — mj(SiGi - miGz{)) ( )
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Chapter 4

Various DP entropy solutions

One of the difficulties of describing multi-shockpeakon solutions explicitly is collisions.
When a multi-peakon consists of many peakons and anti-peakons close to each other, it is,
because of the forces involved, difficult to analyze what happens at a peakon anti-peakon
collision and how to continue the solution beyond a collision. Therefore we begin our
analysis on single- and dual-shockpeakons (multi-shockpeakons consisting of one or two
components, respectively), and move on to various multi-shockpeakon scenarios.

We state the dual-shockpeakon ODEs (3.22) here for convenience (x1(0) < x2(0))

X’l = mq + (mz + Sz)exlixz

Xo = mp + (my —s1)e ™2

rity = 2(s1 —my)(my 4 sp)e™ 2

iy = 2(my — s1)(ma + sp)e™ 2 (4.1)
§1 = —s5 — 51(ma + 59)e™ 2

o = —s3 +sp(my —s1)eM 22

4.1 Shockpeakon peakon scenarios

Having already described single peakon anti-peakons as travelling waves in chapter 2
(2.1), we look at the behavior of a single shockpeakon. That is, the function

u(x,t) = my(£)G(x — x1(t)) +s1(£)G' (x — x1(1)), (4.2)

with initial conditions x1(0),m1(0) € R and s1(0) € R;.
Solving the ODEs of (3.22), we get

M = 2517111 —2771151 =0 = ml(t) = ml(O),
X1 (t) = u(x1(t)) = m(t) = m(0) = x1(t) = x1(0) +m1(0)¢,

61(6) = —2(H) = si(t) = %

(4.3)

So shockpeakons moves at the constant speed m;(0), has the same constant momentum
value (corresponding nicely to (3.47)) and a decreasing shock converging to zero;

51(0)

u(,t) = m(0)G(x — m(O)f) + 1 o

G'(x — my(0)t). (4.4)

33



From (2.5)(iii) we know that in the pure peakon case collisions do not occur. For shock-
peakons consisting exclusively of peakons and shocks, however, collisions can occur. Here,
we will prove the existence of collisions for some scenarios and investigate how to continue
solutions beyond collisions.

Theorem 4.1. Given a dual-shockpeakon of the type u = Y2 m;G; + ;G where m1(0), mz(0) >
0and s;(0) < m;(0), i € {1,2}, then one shockpeakon collision can occur.

Proof. To show existence of such a collision, we look at the n = 2 ODEs in (4.1) for the
scenario

my,mp >0, my > s and s(0) = 0. (4.5)

X1 =my + (mp)et ™2
Xp = my + (ml — Sl)exl_XZ
i = 2mo(sp — myq)e

( ) (4.6)

tity = 2my(my — sq)e* Y

§1 = —s7 — sympe™ 2

$p =0

Now, setting M = m4(0) + m»(0) we know that M = 0. Given the scenario (4.5), deduce
a few things

1. Tnz(t) > 0.
Pf. Assume my(f) = 0. Then riz; = 0.

2.m1 (t) > 0.
Pf. We know that sy (), ma(t) > 0. This implies that if m;(¢) = 0 then 1y > 0.

3.mq (0) > 51(0) - ml(t) > Sl(t).

Pf. Assume that at a given time f, my (f) = s1(f). Then

iy (F) — $1(F) = s7 + mp(3s1 — 2my)e™1 ™
= 52 + mympe 2 4.7)
> 0.

4.1’I11 (0) > 51 (0) = —ritp =g <O0.
Pf. Using from 3 that my(t) > s1(t) and from 2 that my(t) > 0, this is clear from looking at
(4.6). Hence 0 < my(t) < my(0) and < mp(0) < my(t).
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5.m (0) > 51 (O) _— mz(t) < 7712(0)62"‘1 (0)t
Pf. Prove this by using 3 and the inequality

Tflz(t) = 27712(7711 — Sl)€x17x2 < 2my (O)mz(t) (4.8)

Similarly we have that

tig () > —2my (H)my(t) > —2Mmy(t), = my(t) > mq(0)e M, 49)
§1(8) > —s1 ()M, = s1(t) > s1(0)e M '
6. If m1(0) —51(0) — ma(0) < 0 then my(t) —s1(t) —ma(t) <O.
Pf. Computing that 11y — 112 < 0, we see this straight away.
If m1(0) > s1(0) and 6 above is satisfied, we see that
Xy — Xy = my —my + (Mg — 51— mp)et T (4.10)

< my (0)62m1 o) my (0)672Mt

Choosing the intial function X¥(0) = (0,0.01), 7(0) = (2,1) and 5(0) = (1,0), it complies
with scenario (4.5), which means conditions 1-6 above are satisfied. Hence

Xo(t) — %1 () <eV? =293 < 02, te]0,0.05]. (4.11)

A collision must occur because

0.05
XZ(0.05) — X1 (005) = XQ(O) — X1 (0) +/ 5(2(’() — X1 (T)dT
oo (4.12)
0.01 —0.2 dt = 0.
<oor-02 [

0

Having shown the existence of certain dual-shockpeakon collisions we move on to
multi-shockpeakon scenarios. Our wish is to find multi-shockpeakons behaving nicely
even if collisions occur. In particular, we would like the components {x;}, {m;} and {s;}
not to jump in value at collisions.

Theorem 4.2. Given a multi-shockpeakon of the type u = Y\, m;G; + s;G; where m;(0) > 0 and
si(0) < m;(0) Vi € {1,2,..,n}, then shockpeakon collisions can occur. At collisiqns, which might
be between more than two shockpeakons, the colliding shockpeakons {(x;, m;,s;)}

i, ‘melt” intoa
single shockpeakon with

X = Xip = Xjj41 = oo = Xiy,

ip 2
m= Zmi and § = Zsi.

i=i i=i,

(4.13)
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Proof. Existence of collisions for n > 2 follows easily from proving the collision behaviour
(4.13), so we prove this first.

We begin by registering a semi-conservational property; if m;(0) > s;(0), Vi then
mi(t) > Si(t), Vi.

Assume 11;(0) > 5;(0), and that there is a time f such that m;() = s;(f) for one or more
j € {1,2,...,n}. Using the ODEs in (3.22) we see that

Tfl]' — S']' = ZSju(xj) — 2mj{ux(xj)} + Sj{ux(x]')}
= 5j(2u(x;) — {ux(x)})
=5 iZmiG(xj =) +25G'(xj — x1) — 5iG(xj — x) — miG (x5 xi))
i=1

(
2 5 ( imiG(xj —x;) + 285G (x; — x;) — mG(x; — xi)) (4.14)
(

((mi — Si)G(x]' - xi)) + m] + i; 2SiG(x]' — xi)>
i=1 i=j+1

So at the time f we have 11;(f) — ;(f) > 0, which implies that s; always will be less or
equal to m;.

Writing M = YI' ; m; we see from the result above that S = }}' ; s; < M. Furthermore,

0<u(x,t) <M+S<2M,
{ia(x, 0} < M+S <2M, } V(x,t) € Rx R (4.15)
We use this result to bound the ODEs in (3.22):
%] = |u(x)| <2M
rit;| = [2s;u(x;) — 2mi{uy(x;)} < 8M? % i={1,2,.,n} (4.16)

8il = | = si{ux(x;)}| < 2M?
This means the x;, m; and s; components are Lipschitz contiuous. So if a collision occurs
between shockpeakons { (x;, m;, ;) } 2 ;, at time equals f, then none of the involved compo-
nents will jump in value. Thus the continuation of the solution beyond a collision consists

of the shockpeakons not involved in the collision, and the shockpeakon created by the
collision, which is described described by the components

£(F) = im x;, (£) = im x; 41 (f) = ... = lim x;,(f),
t—t— t—t— t—f—

m(f) = lim Y m(t), (4.17)

We conclude that given

u(x,t) = imi(t)G(x —xi(t) +5;(t)G' (x —x;(t)), 0<t<} (4.18)
i=1
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the continuation beyond a collision described in (4.17) becomes

i1

u(x,t) = ¥ (mi(HG(x = xi(1) + (G (x = x:(1))

(4.19)

To prove the existence of collisions in the n > 2 shockpeakon setting, choose the fol-
lowing shockpeakons shock and momentum values

m;(0) =m >0, Vie{l,2,..,n},

s1(0) =s,(0) =0,

si(0)=m, i€{2,3,.,n—1}, (4.20)
= M= im,(O) =nm(0), S= is,(o) =(n-2)m

Il
—
Il
—

For t < 551> we see from (4.16) that

sit) Zmo S =5 e 3,0, 1)
si(t) < my(t) <
Restrict the shockpeakon positions in the following manner
0=x1(0) < x2(0) < ... < x,-1(0) < x,(0) < In(2). (4.22)
Assume t < ﬁ, then
Xn () = X1(8) = u(xn) —u(x1)
= (my, —mq)(1 — G(x1 — xy))
n—1
+Y (m,-(t) —si(1))G(x; — xn) — (mi(t) +5:(£))G(x1 — xi))
i=2
m ! 5m o 30m (4.23)
< (1 — _ - _
<5 (1=Gln =) + ¥, (3¢~ FeCxi—x)
m 5m  15m
< _ - =
S T T
3m
< ——.
- 8

This means that if (4.22) is satisfied, then the distance between shockpeakon number 1 and

. . m
n will decrease while t < 377

37



Choosing x,(0) < =L

e — s < [1(2) we get

m

m m 2, .
Xn(m) - xl(w) = x,(0) — x1(0) + /OSZM Xp — X1dT
4.24)
< ™ m 3m g,
— 128M2  32M2 8
Which means that at least one shockpeakon collision occurs before t = 32% O

Remark 4.3. To show the existence of collisions in our multi-shockpeakon subspace, we
have looked at examples where the peakons initialy are perversely close to each other. As
shown in figure 4.1, initial shockpeakon closeness is not that important for collisions to
occur.

Remark 4.4. As will be shown in the next section, in spaces with peakons and anti-peakons
the momentum components m; can jump in value at collisions. This makes functions in
that space hard to analyse because it is hard, if at all possible, to simulate such solutions
numerically. The space of shockpeakons where we have only positive shocks and mo-
menta, s;, m; > 0, and allow the shocks to be bigger than momenta, s; > m;, can probably
experience the same problem. What makes this space hard to study is that the peakon part
of a shockpeakon can be turned into an anti-peakon.

12

"u(x,t)"

Figure 4.1: Shockpeakons with initial values ¥ = (0,1), 7 = (5,1) and § = (5,0) colliding.

4.2 Peakon anti-peakon scenarios

Lundmark and Szmigielski have done a lot of work on explicit multi-shockpeakon entropy
solutions before and after shockpeakon collisions. In this section I will describe some of
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their results from [7] and [8]. The theory is somewhat peripheral to what we are working
on in later chapters, but it is included because it probably holds information on where to
go next.

Looking at pure peakon multi-peakons, that is the set of functions

n
{u = Z miG,-
i=1

explicit solutions were found using inverse scattering theory. For n = 2 the solution reads

m; >0 Vi } (4.25)

A—A2)2
(/\11+/\22) b1b2
Aby + Agby’

x2(t) = log(by + ba),

x1(t) = log

_ (A1by + Agb2)? (4.26)
ma(t) = 2 2 4MA !
Az (MB2 + Agb3 + $432bnb,
(b] + b2)2
mz(t) = .
Mb3 + Agb3 + 1452 b by

Here we presume initial values x1(0), x2(0),m1(0) and m>(0) are given. Ay and A, are
distinct eigenvalues (constants) of a spectral problem, and determined through the relation
1 -2 —a-E)p-2 4.27
_(m1+m2)z+m1m2< —672)2 = ( _)\_1)( _)L_z) (4.27)
The residues b;(t) = b;(0)e!/* are functions whose initial values are determined through
the relation

by 4+ by = €2,
b b 4.28
A_ll + A_Z = mye™t + mpe™. (425)

For n > 2 similar equations give the solution in the pure peakon case. Quoting Lund-
mark : “The general solution for n > 2 is given in terms of eigenvalues and Weyl func-
tion residues {A;, b;}} | of the “discrete cubic string”, a third order nonselfadjoint spectral
problem related to the Lax pair of the DP equation [8]. The eigenvalues A are positive
and distinct, the residues by are positive, the peakons behave like free particles with dis-
tinct speeds A, ! < ... < A;!ast — o0, and no collisions will occur.”

Looking at the peakon anti-peakon case n = 2 we see from (4.27) that there are as
many positive/negative eigenvalues as there are positive/negative momenta. In general,
distinct eigenvalues in the sense

Ai #EAj,  wheni #j, (4.29)

is necessary for these solutions to be valid. For example, in the case n = 2 we see that
if Ay = —A, the solution does not make sense (we will look at this special case in theo-
rem 4.5). For general multi-peakon solutions n > 2, not much is known. One suspects that
the solution dynamics represented by n = 2 might be extendable to the general case. That
is, solutions are locally valid if eigenvalues are real and distinct, and there are as many
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positive/negative eigenvalues as there are positive/negative momenta.

Here we leave the general case and give a summary of Lundmark’s results in peakon
anti-peakon dynamics for n = 2.

Theorem 4.5 (Genesis of shockpeakons). The solution of the n = 2 DP peakon ODEs (3.22)
in the symmetric peakon anti-peakon case my + mp = 0 with —x1(0) = x2(0) > 0 is given by

—x1(t) = x2(t) = 22(0) —
(4.30)

where A = (ml(O)(l - 672x2(0)>

(i) If m(0) < 0 < my(0), then A < 0 and the solution (4.30) is valid for t > t,,,, where
tmin = Ax2(0) < 0. In particular, u = 2%21 mye~ 1=l provides a solution of the initial
value problem which is valid for all t > 0.

(i) If m1(0) > 0 > mo(0), then A > 0 and a collision occurs at x = 0 for t =ty = Axp(0) >
0. The function u = Y 2_, mye~ ¥~ only satisfies the DP entropy solution criterions 3.3
for t < to. The unique entropy solution continuation of u(x,t) is given by the stationary

decaying shockpeakon
— sign(x)e ¥
t) = —2——"——— t > tp. 431
u(x,t) Attt fort > to (4.31)
Proof. By the ODEs in (4.1) we have
f=m(l e ey, o= 2 (4.32)

(1 — e*2x2(f)) ’

ml(—29€2€72x2(t))
(1 _ 672x2(t))

1y = 2(7711)26729(2(1‘) =

(4.33)
0)(1 — —2x,(0)
— my(t) = ml((l)(_ eziz(t)> )
Thus
i1 =m(0)(1—e 220) =1 = x(t) = x1(0) + AL. (4.34)

This proves equation (4.30). Moving on, observe that

u(xy(8),t) = my(£) (1 — e 220y = —mp(£) (1 — e 22y = —u(xy(t), 1), Vte[0,ty).
(4.35)
Hence unlike the Camassa-Holm case where u — 0 uniformly at a collision, the peakon
and the anti-peakon do not cancel completely out at a collision. Instead u(x, t) converges
as t — t to the discontinuous function

u(x, tg) = —% sign(x)e ¥l = %G’(x) (4.36)
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with the convergence uniform on the interval not containing x = 0. A shock is formed at
x = 0 with shock strength s(tp) = A. The unique entropy solution continuation of such a
shock, described in (4.4), is the decreasing function

1

M) = i )

G'(x). (4.37)

0

Interestingly, the b value in the family of equation (2.6) is determining collision be-
haviour. Considering the problem in theorem 4.5 for general b values, using the ODEs in
(2.10) we get

. L n( B —X
X1 =m(1—e 20y >0, m = 7(1 e 2m)
(b=1) _ 2% —2xp(t)
g = (b — 1)(my)2e 2020 = Mz (“20e ) @38)

(1 — e*zxz(t))
my(0)(1 — e~ 22(0)(0-1)/2
(1 _ 672x2(t))(1771)/2

— M1(t) =

By the same reasoning as in the theorem we have
u(xi (1), £) = my (0)(1 — ¢ 220) /21 — ¢ 2l E072 = —u(xy(1), 1) (4.39)

for all times before collision. Thus if b < 3, then u — 0 at collision time (for example in the
Camassa-Holm case b = 2), and if b > 3, then u — oo at collision time. Only for the DP
equation, b = 3, do shocks form at collisions.

In the general n = 2 peakon anti-peakon scenarios we also see that a collision forms a
shockpeakon.

Theorem 4.6. The solution of the n = 2 DP peakon ODEs (4.1) with x1(0) < x2(0) and mq +
my # 0 is given by (4.26), where Ay and by (0) are determined from the initial conditions.

e If my(0) and my(0) have the same sign, then u = Y2, mye~ % together with (4.26)
defines a global solution of the DP equation. In particular, as a solution of the initial value
problem it is valid for all t > Q.

e Ifm1(0) < 0 < my(0), then (4.26) gives a valid solution of the DP equation for t > t,y,
where

by = —— 1 g<K1_K bl(o)) <0 (k= /MM (4.40)

o
A=At (1+x) b2(0)
In particular, as a solution of the initial value problem it is valid for all t > 0.

e Ifmy(0) > 0 > my(0), then (4.26) gives a valid solution of the DP equation for t < to,
where the time of collision t is

o= —  log (K(" — 1) bZ(O)) >0 (k= Ma/A2). (4.41)

AT AT 1+« bi(0)
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The continuation of u(x, t) into the unique entropy solution of the initial value problem is for
t > to given by the moving shockpeakon

u(x, t) = (m1 — sign(x — % (t))3 (t))e*\x%(f)\, (4.42)

where 11 = mq + my = /\1’1 + /\El (constant), %, (t) = (t — to)riy + X1 (ko) with %1 (ty) =
x1(to) = xa(to) as the point of collision, and 5 (t) = (t —to + 81(to)~1) ™ with 51 (ty) =

\/ AL AL >0
Proof. See Lundmark’s proof of theorem 3.5 in [7]. O

Knowing the solution to peakon anti-peakon scenarios, we would like to extend this
knowledge to multi-peakon scenarios. One thing makes these peakon anti-peakon scenar-
ios more difficult than the ones investigated in theorem 4.2; apart from ), riz; = 0 they do
not possess any conservational properties on momenta. This can be seen from theorem 4.5
and 4.6, which indicates that at a collision, the momentum of the peakon and the anti-
peakon goes to plus and minus infinity, respectively. Without conservational properties
we are not guaranteed Lipschitz continuity on positions, momenta and shocks of the form
in (4.16). Therefore, the argument in theorem 4.2 is not applicable for showing continua-
bility past collisions for general multi-peakons. The multi-peakon dynamics is also very
complex, questions we have to answer are:

e Do there exist collisions which involve more than one peakon and one anti-peakon,
and if so, how do they behave?

e Can we after a while experience shockpeakon collisions. If so, how do they behave?
I have not been able to answer these questions, so I leave the problem of general multi-
peakon solutions open. However, for a small subset of multi-peakons in which collisions
do not occur, some rather obvious results have been achieved.
Theorem 4.7. Assume u =Y.\ m;G; is a multi-peakon fulfilling the following initial conditions
o The leftmost peakon lies to the right of the rightmost anti-peakon.

o Y |mi(0)] < oo.

Then collisions never occur, and the conservation property Y1 1 |m;(t)| < Y1 1 |m;(0)| is true.
Furthermore, the components {m;}, {s;} and {x;} are Lipschitz continuous.

Proof. Since the multi-peakon is sorted position-wisely; x;(0) < x;41(0), Vi, there is an
ni € {2,...,n— 1} such that

m;(0) <0, Vie{l,...,m} (4.43)

and m;(0) >0, Vie{m+1,...,n}. (4.44)

Furthermore, from lemma 2.5(ii) we deduce that all anti-peakons will remain anti-peakons
or vanish and all peakons will remain peakons or vanish. Hence it is valid to rewrite

u =YY" m G +Yl, .ym’G where mj < 0and m/ > 0. Let M~ := ¥, m; and
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M=y mj’ Then we see, using the ODEs in (3.22), that

i=ni+
ni
M = Zﬂ’lii
i=1
n

ny ny

=Y 2m; sign(x; — x;)m; G(x; — x;) — m G(x; — x;)
Z_; z(]; gNX; — Xj)m; i A j=§+1 i i ]) (4.45)
n n

— Z; —2m; <]~§+l m; G(x; — x]-)>

1=

>0,
and similarly M* < 0. Hence, all momenta are uniformly bounded in absolute value since

imi (D] < |MT()] < [MT(0)] Viedl,...,m}

mi (D] < [M*(8)] < [MF(0)] Vi€ {m+1,...,n}. (4.46)

By lemma 2.5(iv) we know that if all momenta of u are uniformly bounded in absolute
value then no collisions will occur. Lipschitz continuity follows from (4.16). 0
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Chapter 5

Constructible DP solutions

In [6] Coclite and Karlsen proved the following for the DP equation

Theorem 5.1. Suppose ug € L'(R) N BV (R). Then there exists an entropy weak solution to the
Cauchy problem

Up — Uyyt + 4Ully = SUylyy + Ullyyy,

u(x,0) = up(x). G

Fixany T > 0,and let u,v : R x Ry — IR be two entropy weak solutions of (5.1) with initial data
uo,vo € LY(R) N BV (R), respectively. Then for almost all t € (0,T)

- t) = vC )y < e lluo = vollw) (52)
where
3
Mr := E(HMHL“(IRX(O,T)) + HUHLw(le(o,T))) < co. (5.3)
Consequently, there exists at most one entropy weak solution to (5.1).

Although every ug € L'(R) N BV(R) has a unique weak entropy solution, finding it is
not easy. Often one has to settle with approximating solutions numerically. Here multi-
shockpeakons are interesting because we can base numerical schemes on their ODEs (3.22).
But, as described in chapter 4, these schemes suffers at peakon collisions:

e We do not generally know how to continue solutions past collisions.

e Moment components {m;}, or shock components {s;} can blow up in value at colli-
sions.

However, if we restrict ourselves to the set of multi-shockpeakons with initial conditions

n
F = {u = EmiGi—FSiGZ{
i=1

m;(0) > 5;(0) >0 and M(0) = fmi(O) < oo}, (5.4)
i=1

we know how to explicitly continue the ODEs past collisions, and we know that all com-
ponents are everywhere Lipschitz continuous. This is shown in theorem 4.2.

In this chapter we will show that functions in .% are weak entropy solutions in R x [0, T)
for any T > 0. And, following that chain of thought, find the class of DP weak entropy
solutions constructible by multi-shockpeakons from .%.
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5.1 Properties of .7

Theorem 5.2. If

n
ZmG +sGi=ueF, M:= Zm, , S=) si(t)

i=1 i=1 i=1

,then

(i) mi(t) > si(t), Vt >0
(i) u >0
(iii) u € L®(R x R,)
(iv) u € L°(Ry;LP(R)), Vp € [1,00).
(v) u € L°(R.; BV (R))
(vi) [[u(:,£) =, 0)l| 1y < 2M(2(SMH] — 1) 4 5(1 — ¢ 2Mew)),
Proof. (i) This s proved in (4.14).
(ii)

n n
= ZmiGi +SiGZ{ > Z(ml —5:)G; >0
i=1 i=1

(iii) Equation (3.47) shows that M = 0. This implies that

n
X t) = ZmiGi—l-SiGZ{
i=1
<2M =2M(0) V(x,t) e RxRy

(iv) We prove this in two turns. First p = 1, then the rest.

a8l r -/2 (H)Gi +5(H)Gldx
1

n
z +&mxmmw+/
=1

x;(t)

oo

2M<
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(5.5)

(5.6)

(5.7)

(1) = si(£))e"( ) *dx)

(5.8)



For p € (1, 00) we use the L® boundedness from (iii)

p
luC B /(Zm )Gi + s )G) dx

<l Y ( / " ) + s O+ / " (mi(t) - si(£))e %)

i=1 oo xi(t)
= (2M)F < 0
5.9)
(v) Using the definition of bounded variation, definition B.1, yields
) lavimy < [ o]+ Dol
=2M+ Z mlGl’ + 5;G; + Zsi(le. dx
IR .
<2M+Z/mG +5;Gj + 25;0,,dx (5.10)
n
=4 2 m; +S;
i=1
< 4fju(-,0)lx
(vi) Straight forward, but long! See appendix C.
O

Given the mapping Tp : L*(R x [0,T)) — L*(R) defined by To(u) = u(x,0). Set
F(0) := To(.F). That is,

to(x) = Ty mi(0)Gi(x = xi(0) +5i(0)Gi(x —xi(0), (53

uy € 7(0) <~ { ml(O); i(0) Vi, and Y} ; m;(0) < oo.

Theorem 5.3. If ug € .%(0), then its multi-shockpeakon continuation u € R x [0, T) is the
unique weak DP entropy solution to the Cauchy problem

Up — Uyyt + Uy = SUyUyy + Ullyyy,

u(x,0) = up(x), (512

forany T > 0.
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Proof. By definition, u is an element of .#. The boundedness criterion
ue L*(R x[0,T)) NL®([0, T);LZ(IR)) NL®((0,T); BV(R)) (5.13)

then follows from theorem 5.2(iii),(iv) and (v).

When proving that the weak solution condition (3.8) is fulfilled, collisions are an obstacle.
Theorem 3.7 assures that multi-shockpeakons satisfy this condition, but in its proof, it is
assumed that all shockpeakons are position-wise distinct (x; # x;;1 Vi). At collisions
this is of course not true. However, the way multi-shockpeakon solutions of .% are con-
tinued past collisions (see theorem 4.2) implies that all shockpeakons are locally distinct;
only at collision times are some of the shockpeakons bound to be non-distinct. If a multi-
shockpeakon initially has n shockpeakons, then we know, from the fact that at a collision
two or more shockpeakons “melt” into one shockpeakon, that there are at most n times for
which the entropy condition is not satisfied. And from theorem 5.2 (vi) we know that the
following condition

HM(', ti) - M(-, t+)H1 =0, Vte (0/ T) (514)

holds (also at collision times). The fact that condition (3.8) is satisfied everywhere except
on a set of measure zero in R x [0, T) combined with equation (5.14), proves that condition
(3.8) is fulfilled.

An argument of the same type proves that the entropy condition holds.

By theorem 5.2(iii) and (v) we see that ug € L'(R) N BV(R), and then, by theorem 5.1,
u is the unique weak entropy solution to the Cauchy problem (5.12) O

5.2 .% constructible DP solutions

Based on theorem 5.2 we know that if 11y € .%(0), then its unique weak entropy solution u
lies in .. So it is trivially constructible by multi-shockpeakons in .%. However, the space
of .# constructible solutions is bigger. Here we will study the set of functions

# = {f € LAR)NBV(R)|(f,¢) > 0and (Df ~ f,¢) < 0, ¥¢ € D(R), such that > 0},

(5.15)
where

() = [ foa (5.16)

Theorem 5.4. Suppose ug € L'(R) N BV(R), then ug’s unique entropy solution to the Cauchy
problem (5.1), u, is .% constructible if and only if uy € A

Proof. Proposition 5.5, 5.6 and 5.8. O

The proof of this theorem is divided into four steps. First, examining the sequence
of functions {ug,} going to up. Second, obtaining .# compactness such that the multi-
shockpeakon continuation series of {ug}, {1, }, converges to some u. Third, proving that
u is an entropy solution. And fourth, proving the only if statement; if a DP solution u with
initial function uy € L' N BV is .# constructible, then ug € .
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Proposition 5.5. Suppose ug € F, then there exists a sequence {ug,} C .%(0) such that

Uppy — Ug, In Ll(]R),
[uonlls < [luoll Vn e N (5.17)
and [[ugalsvm) < 4luolly V€ N.

Proof. We begin by mollifying u. Let

1
_ ) cer2, ifx <1
x) = % 4 5.18
P() {o if [x| > 1. (.18)

The constant C is chosen such that
/ p(x)dx =1. (5.19)
R

Then ug is mollified by ufj = p, * ug where p.(x) = (1/¢)p(x/e). The mollified function
converges to ug in L! as € goes to zero. Furthermore, u§ is smooth, non-negative and

(15)x = pe * Dg(x) < pe ¥ uo(x) = u5(x). (5.20)
In particular, (5.20) implies that
uj(x) > uf(y)e* v, Vx<uy. (5.21)

We prove the convergence in two steps. First, we show that for each € > 0 we can find
a sequence of functions {uge,}n C H# converging to ug in L. Second, we pick a sequence
{uox e C {uoenten that converges to ugp in L.

We choose a sequence {ug,,} C .7 (0) with shocks equal to momenta

n?
Ugen = Yy miGi(x — x;) + m;Gj(x — x;), (5.22)
i—1

and determine the shockpeakon values {x;, m;, mi}ﬁl in ug ¢, starting with the nth

27’1(1—1) . 2
xl':ﬁ—n, 16{1,2,...,71 }
€
S0 = My = @ (5.23)
u§(x;) — X0, mi(Gx; — x;) + G (x; — x;
5 = m; — 0( 1) Z]_H-l ]( ( ] z) ( ] z)) ic {1’2,”.,712_1}

2 7
One thing needsjustification in the determination scheme; shocks must be non-negative.

Beginning with the last shock, s,2, we see it is non-negative since u{ is non-negative.
Using (5.21) we find that

ug(x) >0 X > Xy
ug(x) —mp(G(x — x,2) + G'(x — x,2)) = M >0 x=1x,. (5.24)
uf(x) — uf(x,)e" 2 >0 x < x,p
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Hence
28,21 = uy(x,2_1) — M2 (G(x,2_1 — x,2) + G (x,2_1 — x,2)) > 0. (5.25)

Define
U 7= UOX( sy — Mi2(Gr2 + Gja). (5.26)

Then u(l),g,n is non-negative everywhere and smooth on (—oo, x,2). Similarly to (5.24) we
get
u(l),e,n - mnzfl(GnZ—l + G1/12,1) > 0. (5.27)

We see that 5,2, is non-negative by the inequality

n
uy— Y, mi(Gj+Gj) = UK, ) T Uen — My2_1(Gyp_y +Gla ;) > 0. (5.28)
j=n24+1-2

Inductively we construct functions

i i1 4 P 2
Uen 1= UgenX, wrp ) my2 1 i(Gpi1_i + Gn2+17i) i=2,..,n. (5.29)

These functions affirm that shocks are non-negative
n2
25,2 j=ug— Yy, mi(Gj+ Gj)
j=n2+1—i
1 n?-1
/
> Upen — Z mj(Gj + Gj)
jEnt 1 (5.30)

n2—i

i—1 /
= Upen — mnzfi(anfi +G )

u
>0 Vie{1,2,..,n*—1}.

By (5.29) we can also show that (u0¢,)nen is bounded by ug;
Uy — Ugen > U, >0 VneN. (5.31)
Theorem 5.2 and this boundedness implies that all 1 , are uniformly bounded in L'NBV:

uoenllt < [lugllt < [luolli  VneN, (5.32)
uo.enllBvr) < 4lluoenlls < 4lluolli Vn € IN. '

The convergence ug., — ug is proved as follows. Given € > 0 there exists an R €
R such that [[ug(1 — x ), < 5. Let |-] and [-] denote the floor and ceil operation,

respectively. Furthermore, notice that || ||c < % [15]| Bv(R) and

max uy(xj1) — Ugen(X) < uf(xiq) (1 — eririnn), (5.33)
x€(x;,xi+1)
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With this in mind we investigate the L! norm of (u§ — tg ) X rg forn >R

—R,R)

2_
|— (R+n;§111 1)-‘

[ (ug — ”O,S,H)X(,R,m ”Ll = 2 . / ug(x) — uen(x)dx
. (=R)(n2-1) (xixi41)
= ——]+1

|—(R+n)(11271)-‘

2n
< [ sV ) + i) — ()
| R;(nz D |41 (xixi41)
2n 3n _ 2
< [y g + QR+ =) (1= ¢ )

2” 311 2
< ||u8||BV(]R) <1’12 1 + (R + m)(l —e 11271)) — 0

as n — o0,

Therefore, for any R € R and € > 0 there exists an N(R, €) € N such that
€
(1 — Uoen) X g ll,1 < > foralln > N(R,€).
This yields

1(4 — to,en) |1 < 11(#0 = to,e) (1= X gr)ll1 + (40 = toen)X (il 2
< Nup (U = X gw)llo + 1146 — o)X gl s
<eg, foralln > N(R,e)

To prove general convergence, define the sequence {ug, }, with

Uo,n = UQ,e,,h(n)

1 . 1
where ¢, = . and h(n) := min {m € ]N‘ ug" — uo,e,mll1 < E}
Given € > 0 there exists an Nj, N, € IN such that

€
||u0 — M8"H1 < =, foralln > Ny,

o N

lug" — uonlls < > forall n > Np.

Thus,

[0 — vonull1 < lluo —up"[l1 + llug" — toulls
<eg, for all n > max(Ny, Np).

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

0

Proposition 5.6. Suppose {ug,} C .7 (0) is a sequence converging to ug as described in proposi-
tion 5.5. Then for any T > 0, the corresponding entropy solutions of {ug,}, {u,} C %, converge

to a function u € L*®°(R x [0, T)) in the following sense
u, —u inLP(Rx[0,T)), Vpe][l, ).

Furthermore, u is the unique entropy solution to the Cauchy problem (5.1).
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Figure 5.1: The sequence {u,,} from (5.17) converging to f(x) = 2e*x __ (x) +2x,, (x).

Alternative proof. The Coclite and Karlsen criterion that if u is the unique entropy weak
solution corresponding to uy, then for almostall t € (0, T)

[y t) = un (8| y < eMH 1+, 0) — womllr gy,

where
3
T= 5 (||u||L°°(IR><[0,T)) + Hun||L°°(]R><[O,T))> < C(T), VneNN.
Since 1, — ug in L1, this implies that u, — u in LP(R x [0, T)) Vp € [1,00). O
, p p

Remark 5.7. The alternative proof is much shorter and in most ways better than the original
one, but the interesting property ||u || ~®x[o,r)) < [[u(:,0)[l1, which is shown in the original
proof, is not shown in the alternative one.

Original proof. We start by showing that for each t € [0, T) there exists a sequence {u,(f)}
such that u,,(t) converges to a function u(t) in L!. To do this we use Kolmogorov’s com-
pactness theorem B.3 with () = R and p = 1. For each t € [0, T) we verify that conditions
(i), (ii) and (iii) of Kolmogorov’s theorem are fulfilled.

For a given multi-shockpeakon ug, = Zl"’; m;G; + s;G; define M,, to be the sum of its
momenta:

1’12
My =) m; (5.41)
i=1
From theorem 5.2 and proposition 5.5 we deduce these bounds
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[un (-, )| 0 < 2My < [Jugullpr < [Juollpy  Vn €N, t€[0,T],
un (- t)lpv(r) < 8My < 4luo| 11 VvnelN, te0,T], (5.42)
[t 1o Rx[0,7)) < 2My < ||| 11 Vn € N.

Condition (i) is obviously fulfilled by this.
Using ess V3 (u,) (defined in B.1), and (5.42), we see that

je
/|un (x4 6 £) — i (x, £)] dx = Z/ i (3 + & £) — i (3, )| dx
1)

JEZ (-
le]

Uy(x +ije, t) —uy(x+ (7 —1)g, t)] dx
[ Dl jot) = (=Danldr o

le]
S/ ess Voo (uy,) dx
0

< lefllun (-, D)l By w)

which implies that condition (ii) is fulfilled
lun(- +¢€t) —uu(-, t)]| <4lel|luols, VneN,vtel0,T). (5.44)

Condition (iii)
lim |ty (x,t)| dx = O uniformly for all u,, and t € [0, T}, (5.45)
A= JIxeR||x|>a}

is more difficult to prove than the previous ones. Given ¢ > 0 we know that there exists
an R; € R, such that

HuO(l - X(le,Rl))HLl <& (546)
From (5.31) and the definition of u, in equation (5.37) we deduce that

HuO,ﬂ(l - X(7R171,R1+1 )HL1 < Husn(l - X(le—l,RlJrl)) ||L1
< HMO( - X(*Rl'Kl) ) HLl (547)
<eg Vn € N

This implies that for all ug, the sum of the momenta from shockpeakons outside of
(=R1 —1,R1 +1+1n2) is less than . We set R, = R; + 1+ In2, and phrase this mathe-
matically:

Y. mi<e Vugm, (5.48)
icA(uo,)
where
Alug,) = {i e {1,2,...,n%} | |x;| > Ry} (5.49)

From (3.22) and (5.42) we deduce position movement and momentum growth proper-
ties for all the shockpeakons in all u,, functions

||u;|1, x(0) < x;(t) < x(0) + Hught (5.50)

i < dmilluglly = mi(t) < m;(0)e*lvolht

0<% <
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Giving a growth bound on shockpeakons outside of (—Rj, R»):

Yo omi(t) < el wvne N (5.51)
i€ Augn)

Furthermore, for a given time ¢, shockpeakons of u, initially inside (—Rj, R;) are, because
of the position movement property, inside (—Ry, Ry + (||ug|/1/2)t). Thus, the set of shock-

peakons outside (=R, Rz + ([|luo||1/2)t) must be a subset of {xj, mi, s} 4(s,,)- We set
u u
Rs =Ry + 1 20|1T+1n(—| 2”1), (5.52)
and take the L! norm of u, (-, ¢)(1 — X ryry)):
[[uoll
/ i (x,£)] dx < / luole T dx ¢ Y 2my(h)
{x€R|[x|>Rs} {x€R|[x|>Rs} i€ A(uo)

< / Sefwdx +2534l|u0”1T (553)
{xeR[|x|>R5}

< 2e(1+"hTy " vpe Nand t € [0, T).

Now, given an € > 0 we confirm condition (iii) by following the argument above with
e = e/ (2 + 24Ty,

i (x,1)|dx < €2+ 24Ty — ¢, vneNandt € [0,T], (5.54)

/{xe]Rx>R3(€)}

Consequently, for any T > 0 and each t € [0,T) , {un(t)}» has a convergent subse-
quence (still denoted by n) {u,(t)}, such that u,(t) — u(t) in L}(R).

The next step is to extend convergence to L' (R x [0, T)). Deduce from theorem 5.2(vii)
and (5.42) that

(-, 8) = tn (- w) 1 < 2f|uo]|s (2(68”““”%'*‘@”‘ -1 +5(1 —6‘2””0”1“‘“")), VteR,, VneN

(5.55)

Take a dense countable subset of the interval [0,T), E = [0,T) N Q. By a diagonal
argument on {1, } we obtain a convergent subsequence {1, }:

lu(-,t) —up (- t)1 =0 asng— oo, VteE. (5.56)

Assume ¢ > 01is given. Then by (5.55) there exists a §(¢) > 0 such that
tn, (- t) —un (- w)|l1 <&  Vng, Vt€[0,T), when [t —w| < é(e). (5.57)
Forany tin [0, T) we find a t; € E fulfilling |t — t;| < 6(¢). Thereby

lun (- t) —un (-t <& Vng. (5.58)

We also have that {u,, } is Cauchy on E. Expressed with respect to ¢ as

||un],(-,ti) — Mnk(-, ti)”l <eg Vn]-, ng >N, Vt €E. (559)
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Using these results and the triangle inequality, we can show that {u,, } is Cauchy for
every t € [0,T):

o ) — g )1 < Wit )t o )t o £5) — 2 )
"‘H”ﬂk( ti) — unk( )1 (5.60)
< 3e.

L! is a Banach space, which implies that for each t € [0, T) we have u,, (t) — u(t) in LL.
Define g, (t) := [Ju(-,t) — uy, (-, t)|[1. Then gy, (t) converges point-wise to 0in [0, T) and is
bounded:

8 (D) < 1 8) 1 + [t ()
< suplln, (- £)]1 + o]l 561)

Ny

S 2“”0“1/ vnk/ Vt S [0/ T)

Lebesgue’s dominated convergence theorem then gives g,, — 0 in L!([0, T)), which im-
plies u,, — u in L}(R x [0, T)). The convergence also means that u is bounded in L%

norm
]| (Rx[0,7)) < SUP [[tin; [l Lo(Rx[0,7)) < [[1oll1, (5.62)

03

which makes it easy to show that the convergence is more general

||u — u”k”il’(]RX[O,T)) = // |M — unk|p dx dt
Rx[0,T)

< Null=teom, // | dxdt — 0 (5.63)

— uy, — uin LP(R x [O T)), Vpell, o).

Having proved the convergence part, what is left is proving that u is an entropy solu-
tion. For u to be an entropy solution it has to satisfy conditions in definition 3.3. From the
first part of this proof we see that u € L®(R x [0, T)) N L*([0, T); L>(R)). By theorem B.2
and the BV bound in equation (5.42) we have

IDxu(-, t)||(R) < lgkn_}orgf | Dyt (-, 1)||(R) < 4[[uoll1, a.e. on0,T). (5.64)

Hence u € L*([0,T); BV(RR)), and all boundedness criterions are fulfilled.

What then remains is that u fulfils the weak solution criterion (3.8) and the entropy
criterion (3.10).

Looking at (3.8) we need

! 1 2 u o
/0 /m(ptu + (anu — ¢pD,P" dxdt + /R(p(x,O)u(x,O)dx =0,
V¢ € CC(Rx[0,T)), (5.65)

where P*(x, t) ::/ Ze"x’y‘u(y,t)zdy.
R
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Theorem 5.3 tells us that all u,, functions are entropy solutions, and thereby fulfil (3.8)
and (3.10). Therefore

T 1
/ / $ru + cpx—uz — ¢pDP" dxdt + / ¢(x,0)uodx
R

/ / Pr(u = ttn) + x5 ( 2 —up ) — ¢p(DyP" — D P"v) dxdt + /chlJ(x,O)(uouo,nk)dx.

(5.66)

Strong convergence implies weak convergence, so the first integrand vanishes
/ / ¢r(u —ugpn, ) dxdt — 0 asng — oo, (5.67)

and, likewise, the last integrand, ¢(x,0) (1 — u,,, ), vanishes.
Since all functions are L* bounded, the second integrand also vanishes
T
[ [ ey =i yis < Y0t lun ol [ [ 1yt

0 /R (5.68)

T
SC//|u—unk|dxdt—>O as ny — oo,
0 JRr

Applying Fubini’s theorem and boundedness, the third integrand vanishes

T T
/ / ¢(DyP* — D Pu) dx dt = / / ¢ / E—sign(x—y)e"x’y‘(u(y,t)z—unk(y,t)z)dydxdt
0o Jr 0o JR Jr4
T
< 2|Juol1 ]l / / / e u(y, 1) — 1y, (3, )] dy dxdt
0 R JR

T
:c/ //exy|\u(y,t)unk(y,t)\dxdydt
—ZC/ / lu(y,t) — un (v, t)| dydt

as ng — oo
(5.69)
Hence (3.8) is fulfilled.
The entropy condition (3.10) is:
/ / n(u)pr +q(u 17" (u) Dy P”(pdxdt—k/ 7(u(x,0))¢(x,0)dx >0, (5.70)

Vo € C°(R x [0,T)), such that¢ >0,

for any convex C? entropy 77 : R — R with corresponding entropy flux ¢’ (1) = #'(u)u.
All u,, functions satisfy this condition, therefore

/ /;7 W)y + q(u)x — 17’ (1) Dy PucpdxdtJr/;y u(x,0))¢(x,0) dx
> [0 (0w )+ 0w a6

77( )D Pu_rl (unk)D Pl"k)(P) dx dt

T /}R (17(4(x,0)) = 7 (4, (x,0)) ) 9 (x,0) .

(5.71)
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Since 7 € C? and
supp(u), supp(itn,) < [0, [luoll], (5.72)

we have local Lipschitz continuity for 1, 7’ and g:
Let C; := maxzc(o,|uo|,] (7(¢)) and Cyr := maxgco,u,),] (7' (), then

7(8) = (2| < CylT =7'),
7' (Q) =1’ (T < Cpl =T, for0 < Z,¢" < [Juglh. (5.73)
19(2) = (@) < lluol1 |2 =T,

We look at the integrand terms of (5.71)

//‘ 1 (un, ) dxdt<C/ /|u Uy |dxdt — 0
:>// (1t dx dt — 0

//|q q(up,)| dxdt < |ugl1Cy / /\u Uy, |dxdt — 0
:>/ / q(un,))Pxdxdt — 0

T
/ / 7' () Dx P* — 17’ (14, ) D Pt | dox it
0 R

T

= / / 7' (u)DaP" — i (u)DyP" | + 1y (u) D" — (1) Dy P dx dt
0 R

_ 3Gy

(5.74)

(5.75)

e PV u(y, £ — uy, (y, £)?| dy dx dt

T (5.76)
1D P /0 /IR 7 (1) — 1 (1t )| e

3C,/||lu 2 T
< <3Cwuuoul+w>/ [ 1.6 w01y — 0
0 R

:>// 1) Dy P" — i (11, ) Dy PY)p dx dt — 0

.t 00) (00| < G, 0) — 1y 00y = 0

(5.77)
N /]R (0, 00) = 11t (x,0)) ) p(x,0) dx — 0

Using these results in the inequality (5.71), the right side of the inequality goes to zero
as ny — oo, This implies

/ /17 Y +q(u 17" (u) Dy P“4>dxdt+/17 (x,0))¢p(x,0)dx > 0. (5.78)
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Thus u is an entropy solution.
Combining proposition 5.5 and theorem 5.1 we deduce that u is the unique entropy

1
solutions to the Cauchy problem (5.1) with uy € .# (O)L ®)

in {u, } are entropy solutions satisfying

. Since all multi-shockpeakons

un(-,0) = ugy — ug, ton € L'NBV, Vn €N, (5.79)

inequality (5.2) implies that not only a subsequence of {u,}, but the whole sequence con-
verges touin LP(R x [0, T)) for all p € [1, 00). O

So far we have shown that if an initial function ug is an element of .7#, then its cor-

responding unique DP entropy solution is constructible by multi-shockpeakons from .%.
1

Next we will show that .77 = .% (O)L ™ This implies that a DP entropy solution u with

initial function uy € L' N BV is .% constructible only if ug € J2.

Proposition 5.8. The closure of 7 (0) in L' fulfils the following equality

1
7o) ™~ (5.80)
where,

H = {f e LY(R) N BV(R)|(f,$) > 0and (Df — f,¢) <0, ¥¢p € D(R), such that ¢ > 0}.

(5.81)
Proof. We know from proposition 5.5 that
w c F7o ™. (5.82)
Thus we will confirm the proposition by showing the opposite inclusion
> 70 ® (5.83)

1
Ifuy € # (O)L ) then there exists, by definition, a sequence {ug,}, C .%(0) such that

Uy, converges to ug in L'. We will prove (5.83) by showing that ug satisfies these three
criterions:

(i) uo € BV(R).
Pf.

For any & > 0 there exists an N; € IN such that
[uonllt < lluollr +& Vn > Ni. (5.84)
Theorem B.2 and equation (5.10) give us that
| Dug||(R) < Liminf [|Dutg|(R) < 3]} (5.85)
Using definition B.1, we end up with the proposed norm

luollsv(r) = lluoll + [[Duo|[(R) < 4f|uols- (5.86)
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(ii) (uo,¢) > 0 for all non-negative ¢ € D(RR).
Pf.

Since all functions in .% (0) are non-negative, we get

<u0,<p>:/]Ru0gbdx
> / (110 — tign)p dx (5.87)
R

— 0, as n — oo.

(iii) (Dug — uo, ¢) < 0 for all non-negative ¢ € D(R).
Pf.

Observe first that
Duug — to,n = Y m! (0) (Gi(x = x//(0)) = Gi(x — x/(0)))
+5(0) (Gilx = x7(0)) = Gi(x = 2/(0) ) = 25}(0)d1 0
= Y2 (52(0) — m(©)) (Gux — x7(0)) — Gl — x(0))) ~ 250

<0, VxeR.
(5.88)
Thus for all non-negative ¢ € D(R) we have
(Dug — uo, ¢p) = /]R(Duo — up)¢p dx
< Dug — ug — (Dug,, — u dx
< /]R ( 0 — ug — (Dug, o,n))fP (5.89)

— [ (o~ w0) (9 + )
R

— 0, asn— o

1

Hence up € .# (O)L ®) implies that

1o € {f e L'Y(R) N BV(R)|(f,$) > 0and (Df — f,¢) < 0, V$ € D(R), such that ¢ > o}.
(5.90)

1
ER) . 0

Consequently .7 (0)

5.3 Related constructible solutions

If we look at the space consisting of anti-peakon and shock components

F = {u - ém,ci +s,-cg}m,-(0) < 5;(0) <0 and M = fmi(O) > _oo}, (5.91)

i i=1
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we achieve, by a computation similar to (4.14), that
mi(t) < —Si(t) VvVt e Ry, (592)

And with this key property we achieve similar properties for .7~ to those we have shown
7 has. By defining

H™ = {f e L(R)NBV(R)|(f,$) < 0and (Df + f,$) <0, ¥¢p € D(R), such that ¢ > o},
(5.93)
we can state the following theorem:

Theorem 5.9. Suppose ug € L'(R) N BV (R), then uq’s unique entropy solution to the Cauchy
problem (5.1) is %~ constructible if and only if ug € 4~

Proof. Similar to the proof of theorem 5.4, and therefore omitted. O
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Chapter 6

Numerical examples

In this chapter we will use multi-shockpeakons from .# to approximate entropy solutions
of the DP equation with initial data in

# = {f € L\R)N BV(R)|(f,¢) > 0and (Df - f,¢) <0, ¥¢ € D(R), such that ¢ > 0}

(6.1)
For various initial functions in .# we will use the algorithm of theorem 5.5 (equation (5.23))
to numerically determine the initial momentum and shock values of multi-shockpeakons
uy, (for n = 3,6,12,24,48). Thereafter we use Matlab with the explicit Runge-Kutta solver
ODEH45 to solve the ODEs (3.22) for the u,, functions. Assuming uexact is the exact solution,
error is evaluated by taking the L' norm! of 1, — Ueyact at the following times t = (0,2, 5).
However, except for t = 0 we do not know the exact solution for most of the initial func-
tions we are studying. So, when the exact solution is unknown, we approximate it with a
high resolution u,, function; texact := uag for t > 0, (148 consists of up to 482 shockpeakons).

Example 6.1. In the first example we look at the peakon function
ug(x) = 2¢ ¥, (6.2)
By ODEs(3.22) we find the DP solution to this initial function:
Hexaet (, ) = 262 (6.3)

From the simulations we see that our approximations obtain/maintain a peakon structure just like
the exact solution. But for low n-values the approximate solutions, u,, move at slower speeds
than the exact solution. This is due to the nature of the shockpeakon functions we are using to
approximate the exact solution (all approximations, u,, are initially equal to zero to the right of
their rightmost shockpeakon). We see that the convergence rate is close to linear, and unfortunately,
that errors grow in time. This implies the numerical method is far from perfect.

Iwe compute the L! norm by numerical integration of |uy; — Uexact| restricted to (—100,100) C R. This is
sufficiently correct for the initial functions we are looking at.
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Figure 6.1: Simulation of the solution uexact (in blue) and approximate solutions (in red) for
the initial data (6.2) at times t = (0,1,2,3,4,5).

n-value 3 6 12 24 48

Ity — Uexact|l1 at £ =0 | 1.1023 | 0.6337 | 0.3504 | 0.1637 | 0.0833
Ratio 0| 1.7393 | 1.8087 | 2.1403 | 1.9656

[ty — lieoxact||1 at £t = 2 | 3.4548 | 2.5517 | 1.4555 | 0.7799 | 0.4027
Ratio 0| 1.3539 | 1.7531 | 1.8663 | 1.9368

|ty — Uexact|l1 att =5 | 5.3512 | 4.5350 | 2.8789 | 1.6256 | 0.8637
Ratio 0| 1.1800 | 1.5753 | 1.7710 | 1.8822

Table 6.1: Error estimates for DP solutions of (6.2).

Example 6.2. The second function we look at is

up(x) = 2€XX( oo,O](x) + 2X(o,1] (x)- (6.4)

A multi-shockpeakon approximation to this function is illustrated in figure 5.1. The simulation
in time of Uexact indicates that the shape of this function transforms into a peakon. But this
should not be overemphasized; all our numerical simulations consist of shockpeakons, therefore
it seems highly probable that they in time will transform from whatever initial shape into a set of
peakons/shockpeakons. Furthermore, the error estimates are similar to those in the first example
although this example uses an approximated exact solution.
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Figure 6.2: Simulation of the solution #exact with initial data (6.4) at times t = (0,1,2,3,4,5).

n-value 3 6 12 24 48

|ty — Uexact|1 at £ =0 | 0.94475 | 0.57353 | 0.28181 | 0.15193 | 0.080154
Ratio 1.6473 | 2.0352 | 1.8548
|ty — Uexact|1 at £ =2 3.125 | 21343 | 1.1324 | 0.42804
Ratio 1.4642 | 1.8848 | 2.6455
||ttyy — Uexact||1 at £ =5 4.842 3.679 | 2.0653 | 0.82184
Ratio 1.3161 | 1.7813 2.513

Table 6.2: Error estimates for DP solutions of (6.4).
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Example 6.3. Next we look at an initial function with two plateaus

to(x) = €y (0) + X () + (T e —e Dy, (1) + 2 - Dy (). (65)

From the simulations we see that parts of the leftmost plateau disconnects from the rightmost
plateau and that both parts transform into peakons.

n=6 n=12
3 3
2.5 2.5
2 2
15 / 15 ol
byl ¢
1 O 1 / |
A ‘ ‘ w |
05 : 05 |
\
0 | 0 ‘
-5 0 5 -5 0 5
n=24 n=48
3 3
25 2.5
2 2
1.5 7| ! 1.5
\
1 ; ! 1
\
0.5 ! 0.5
\
0 - 0 -
-5 0 5 -5 0 5

Figure 6.3: Multi-shockpeakons {u, } converging to equation (6.5).

n-value 3 6 12 24 48

|ty — Uexact||1 att =0 | 1.629 | 0.67827 | 0.36158 | 0.1829 | 0.10376
Ratio 24017 | 1.8759 | 1.9769
|ty — tlexact||1 at £ =2 | 3.3686 | 1.8407 | 0.97767 | 0.37869
Ratio 1.8301 | 1.8827 | 2.5817
|ty — thexact||1 at £ =5 | 5.3882 | 3.4566 1.93 | 0.77007
Ratio 1.5588 1.791 | 2.5062

Table 6.3: Error estimates for DP solutions of (6.5).
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Figure 6.4: Simulation of the solution u#eyact with initial data (6.5) at times t = (0,1,2,3,4,5).

Example 6.4. The fourth example is the step-like function

up(x) = 26”1)(( o 1 (0) 2 10 (%) + X gy (%) (6.6)

Because of its shape, collisions occur in this example. In time, most of the function/wave mass
seems to transform into one peakon.

n-value 3 6 12 24 48

|ty — Uexact|l1 at t =0 | 1.1488 | 0.75019 | 0.3927 | 0.20215 | 0.080408
Ratio 1.5313 | 1.9103 1.9426
[ty — tlexact]1 at £ =2 | 3.9329 | 2.8676 | 1.5209 | 0.57511
Ratio 1.3715 | 1.8855 | 2.6445
[ty — tlexact|1 at £ = 5 | 6.3747 | 5.0293 | 2.8614 | 1.1391
Ratio 1.2675 | 1.7576 2.5121

Table 6.4: Error estimates for DP solutions of (6.6).
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n=6 n=12

n=24 n=48

Figure 6.6: Simulation of the solution ueyact With initial data (6.5) at times t = (0,1,2,3,4,5).
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Example 6.5. In the last example we look at the bell shaped function

2

uo(x)
As we see from the error estimates, this function is more difficult to approximate by the numeri-
cal method than the other ones we have studied. The reason is that, compared to the other functions,

it is decaying very slowly as x — oo.

n=6 n=12

0

Figure 6.7: Multi-shockpeakons {1, } converging to equation (6.7).

n-value 3 6 12 24 48

ltty — Uexact|l1 att =0 | 2.5341 | 1.4409 | 0.7559 | 0.39032 | 0.17123
Ratio 1.7588 | 1.9062 | 1.9366
|ty — Uexact|l1 at £ =2 | 5.4777 | 3.3299 | 1.6124 | 0.56651
Ratio 1.645 | 2.0652 | 2.8462
|ty — Uexact||1 att =5 | 7.466 | 5.6873 | 3.212 | 1.2137
Ratio 1.3128 | 1.7706 | 2.6464

Table 6.5: Error estimates for DP solutions of (6.7).
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Figure 6.8: Simulation of the solution ueyact with initial data (6.7) at times t = (0,1,2,3,4,5).
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Appendix A

Distributional partial derivatives

Definition A.1. If u,v € L'(R x R, ) we say that v(x, t) is the distributional partial deriva-
tive of u(x, t) with respect to x, written Dyu = v, if

/ / (x, £)px(x,t) dxdt = / / v(x, t)p(x,t), dxdt A1)

for all test functions ¢ € C2°(R x R.).

The test functions can be nonzero at t = 0. This leads to the following definition of the
D; derivative.

Definition A.2. If u,v € L}(R x R, ) we say that v(x, t) is the distributional partial deriva-
tive of u(x, t) with respect to ¢, written D;u = v, if

// u(x, t)pe(x, t) dxdt = // v(x, t)p(x, t) dxdt

- / u(x,0)¢(x,0) dxdt (A.2)

Ve € C°(R x Ry)

General higher order distributional derivatives, if they exist, are found by operating
step by step by the definitions above. For example, to find Du first calculate Dyu then
calculate D;(Dyu).

The distributional derivative of a differentiable function is its ordinary derivative.

Proposition A.3. If f(x,t) € C'(R x R,), then

(i) Dxf = fx
(i) Dif = fi
Proof. (i)

//Dxfxt (x,t)dxdt = //fxtcpxxt)dxdt
—/0 /oofx(x,t)4>(x,t) dxdt
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(i)

// D f(x, t)p(x, t) dxdt = //fxtcptxtdxdt

—/ f(x,0)¢(x,0) dxdt (A.4)

_ /0oo /_th(x, D (x, £) dxdt

The chain rule does not hold in general in distributional sense. However, for restricted
class of functions it is valid.

Proposition A.4. Functions of the form u(x,t) = my(t)f(x — x1(t)) where x;,m; € C}(R.)
satisfy the partial distributional chain rule and the partial distributional Leibniz rule. That is

() Dy(my(8) f(x — x1(8))) = ma(£) f'(x — x1())
(ii)

Di(mi () f(x —x1(8)) = mi())Def (x — x1(8)) + f(x — x1(8)) Dy ()

OB OF x—a(0) + fa—a®un@

Proof. (i)

_ /Oooo/oo ma to'o (X)(x + x1 (1), £) dxdt e
/

my(t)f' (x — x1(t))Pp(x, t) dxdt
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(ii) By proposition A.3 we see that Dym;(t) = ri11(t) and D;xq(t) = %;(t). Furthermore

/oo /°° Dt(ml(t)f(x — Xl(t)))(i)(x’ t) dxdt
0 J-oo
- / / ma () f(x) e (x + x1(8), 1) dxdt
_ / mq (O)f(x — X (0))¢(x, 0) dx
) / / it t"’@‘”l(f) 1) = 1 (e (x4 x1 (1), 1) ) dxdt
- / m1(0)f (x — x1(0))¢(x,0), dxdt

_ /0 N / i (B F)P(x + 21 (), ) + 1 (O F (X)pa (x + x1(8), ) dxdl
- /Ooo /Z (ml (t)f(x) — X (t)f’(x))4)(x + x1(t), t) dxdt
B /0oo /o; (ﬁ11(t)f(x —x(f) = (0 (x - xl(t)))‘/’(x,t) dxdt
(A.7)
O
A special case of proposition A.4 is when m(t) = 1. Then we deduce that
Dyf(x = x1(t) = f'(x — x1(t)) (A8)

Dif(x —x1(t)) = —%1 (D) (x — x1 (1)

Normalization of a function f : R — R means to give f the average value of left and
- _
right limits in every point x; which is a jump discontinuity of f;f(x;) := w Nor-
malizing a function that is smooth almost everywhere does not change its distributional
derivatives, but the group of such functions has a nice property:

Proposition A.5. Let .% be the set of functions u : R x Ry — R which are smooth almost
everywhere and normalized with respect to x. If f,g € .F, then the distribution derivative Dy
satisfies the Leibniz rule

Dx(fg) :fng+ngf (A.9)

Proof. Except for a countable set of points A = {x1, x2, ....}, the function fg is smooth. At
the points x:. fe has i di d f(x) = LD @) ooy — 8EDH8E)

points x;, f¢ has jump discontinuities and f(x;) = > ,8(x;) = > . We
split the integral over x into two integrals; one integral over the set where the functions
are smooth, R\ A, and another over the set where the functions have jumps, A. From
proposition A.3 we deduce that fg restricted to its smooth part, R \ A, satisfy D,(fg) =
gD f + fD.g. Defining [f], := f(x;") — f(x; ), we prove the theorem by a straightforward
computation.
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/0°°/ +(f8)¢ dxdt = / / +(f9) <pdxdt+/ / +(fQ)p dxdt

/ /]R\ +(f9) gbdxdt—}— ng p(x;,t)

icA

- / /}R | (8Df + fDig)paa
x.+ X.
[y (P Sy B8O

icA

—/ / (gD f + fDxg)¢p dxdt
Z (Fxi) 81, + (x1) [f1x) @l )t

icA

:/0 /IR\A(gDXf"‘fng)q’dth+/000/A(8DXf+fng)‘Pdth

:/oo/(ngf+fDx8)¢dth
0 R
(A.10)

O

A.1 Examples
In this thesis we look at the distributional derivatives of sign(x) and é(x). Let us show that

D, sign(x) and D,d(x) are well defined expressions by studying their integrals.
D, sign(x):

/OOO/Zstign(x)(dedt:—/000/0004>xdxdt+/000/0w¢xdxdt
:/Oooch(o,t)dt

This implies that D, sign(x) = 26(x).

(A.11)

Dyé(x):

/000/0; x)p dxdt = //(5 X)px dxdt
= [ o0

(A.12)

Hence 4’ is a well defined test function.
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Appendix B

Useful definitions and theorems

Definition B.1. A function f € L!(IR) has bounded variation in R if

IDAIR) = sup{ [ foutalo e CUR), lgl <1} <. (B.1)

This might be equivalently stated as the essential variation of IR

essVu(f) = sup Y. | flvinn) = £l 62)

where supremum is taken over all finite partitions {—co < x; < ... < xp,41 < o0} such
that each point is a point of approximate continuity !.
The norm is defined

IfllBvr) = Ifllwy + [ f BV (R), (B.4)

and we write f € BV(R) if || f||gy(r) < o.
The next theorem and its proof is taken from Evans and Gariepy [10] (thm 5.2-1)

Theorem B.2 (Lower semicontinuity of variation measure). Suppose fi € BV(IR)
(k=1,...)and fy — fin Ljyc(R). Then

IDAII(R) < liminf || Dfil|(R). (B.5)
Proof. Let¢ € CL(R), |p| <1,
Df, .
o =4 o EDPF=0, (B.6)
0  ifDf=0

For a given function f, x is a point of approximate continuity if for each € > 0

o = x 0]l = F9) > e}

. B.
r—0 |[[x—r,x471]| 0 (B:3)

([a, b]| denotes the Lebesgue measure of [a, b]).
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(D represents the distributional derivative). Strong convergence of f; implies weak con-

vergence, so

/IR fgrdx = lim /IR fipx dx
:—}3L4¢@HDﬂHM@

=—mh/¢@ﬂWﬂH
k—oo JR
< liminf [ D |(R)

(B.7)

O

Theorem B.3 (Kolmogorov’s compactness theorem). Let M bea subset of LY (Q), p € [1, 0),
for some open set of O C IR". Then M is precompact if and only if the following three conditions

are fulfilled:

(i)M is bounded in LF(Q)), i.e.

sup||u||p < o0
ueM

(ii)We have
lul-+e) —ul < A(fe])
for A < O(|e|) independent of u € M (we let u equal zero outside ().
(iii)
lim lu(x)|Pdx = 0 uniformly for u € M

x=00 JIxeQ||x|>a}

Proof. See Holden and Risebro [9] p. 296-297.
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Appendix C

Proof of theorem 5.2(vii)

A priori we have from (4.16) and (4.14) that

uec.g — u—ZmG + 5G] whereS—Zsz<Zmz—
i=1 i=1 i=1 (Cl)

%] <2M, || < 8M?, |5 <2M?, Vie {1,2,..,n}

We dive right into calculations

1) — )y
= [ E 6t =) + 516 (5= 0

— Y mi(@)Gx — (W) + 5i(w)G (x — xi(w)) | dx 2

< / f(’mi(t)e—\xfxiu)\,mi(w)e—\xfxmw)\’
R

i=1

+ ’si(t) sign(x — x;(t))e %0 _ 5, (w)sign (x — x;(w)) e"x’x"(w)‘Ddx

Using the triangle inequality when looking at these expressions component by compo-
nent, we get

/|m e —|x—2x;( ( )8 [x—x; w\‘dx
< [ im0 pe IO g (ope 0 — o)
= |m;(t) —m;(w |/ e 5Ol gy 4+ my(w /|e i) _ g lrxiw)l| gy (C.3)

< mi(w) (@eMI01 — 2) 41— )

< 2m;(w) ((eSMZ\f—w\ —1) +2(1 - e M)
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and

J

i(t) sign(x — xi(H)e 4Ol g, (w) sign(x — xi(w))e FH@I| gy

s
<

si(t) sign(x — x;(£))e 5O _ g (w) sign(x — xi(t))e*\x*xi(f)\‘ dx
R

s;(w) sign(x — x;(t))e” %O _ 5 (w) sign(x — xi(w))e—\x—xi(t)\‘ dx
si(w) sign(

w) sign(x — x;(w))e” ¥ —5;(w) sign(x — x;(w) e @] dx

“Jy

‘),

< si(t) —si(w)| / e =Dl gy (C.4)
R

+ si(w) / gt N) sign(x — x;(t)) — sign(x — xi(w))‘ dx

/‘e 50 g-loso) | gy

< si(w)( (e 2Mt—w| 1) +2(1 fe_‘xi(w)_xi(t”) L0 7e*|.\‘i(w;—xi(t)\))

< 2si(w) <(62M2\t7W\ o 1) _|_3(1 N efZM\t—w\)).

Using these results in (C.2) we end up with

-

(- 8) — (-, @)l ) < 2 [mi(w) ((esmzu_m ) 4201 e—M\t—w|))

i=1
+ si(w) ((ezMZ\tfw\ ~1)+3(1 — efZM\t—w\) }
n (C.5)
<2 Zmi(w) <2(€8M2‘t*w| _ 1) +5(1 _ 672M\t7w|)>
i=1
<2M (2(68M2\t—w\ —1)+5(1— 672M|t—w\))

78



