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Course information

Course webpage with schedule (alternatively Moodle):

https://haakonahmatata.github.io/courses/data_assimilation/main.html

9 ECTS

Examination: Written 90-120 minutes (early to mid-August).

Student presentation in early July: Bonus points equivalent to
0.1*MaxEamScore is given those making a (roughly) 20 minutes
presentation on important topic/paper in data assimilation.

Übungen: Almost every week. Will consist of sets of exercises to solve.
You can work on the exercises and I/you will solve some of them in plenary.

Note: Please register also for übungen, LV 11.46000
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Course literature

Main literature 1: ”Filtering and Prediction: A
Primer” by Fristedt, B, Jain, N. and Krylov, N., 1st
ed. AMS (2007)
Main literature 2: ”Data assimilation” by Law, K.,
Stuart, A., Zygalakis, K. 1st ed. Springer (2015).

Supplementary literature:

”Probability: Theory and Examples” Durrett,
R, Version 5 January 11, 2019. Downloadable
from:
https://services.math.duke.edu/∼rtd/PTE/PTE5 011119.pdf

”Probabilistic forecasting and Bayesian data
assimilation” by Reich, S. and Cotter, C., 1st
ed. Cambridge University Press (2015).

Data 
Assimilation

Kody Law · Andrew Stuart
Konstantinos Zygalakis

A Mathematical Introduction

Texts in Applied Mathematics   62
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Who, where and when

Name and position: Jr. Prof. Håkon Hoel at the Chair of Numerics for
Uncertainty Quantification.

Research interests: numerical analysis of stochastic differential
equations, nonlinear filtering and Monte Carlo methods

Address: Room C364, Kackertstr. 9,

email: hoel AT uq.rwth-aachen.de

Office hours: Monday 14-15.
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What is data assimilation?

Definition: The combination of dynamical models with measurement
data to estimate the past/current/future state of a system.

Examples

Weather prediction.

Source location of natural resource, contaminant, earthquake etc.

Automated navigation systems.
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Example: weather prediction (E. Kalnay 2003, V. Bjerknes 1904)

Observations 6h window Background or first guess

Inverse problem:Assimilate
observations into current
state estimate

Forward model: Forecast solving system of PDE.

dv

dt
= −α∇p −∇φ+ F− 2Ω× v Cons. momentum

∂ρ

∂t
= −∇ · (ρv) Cons. mass

pα = RT Eq. of state

Q = Cp
dT

dt
− αdp

dt
Cons. energy

∂ρq

∂t
= −∇ · (ρvq) + ρ(E − C ) Cons. water vapor

mixing ratio

Initial condition
6h forecast
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6h observations for weather predictions (E. Kalnay 2003)

How to incorporate/assimilate observation data into present state
predictions?
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Data assimilation is often used in combination with a control to make
decisions:

Space travel, autonomous cars: 1. Self-localization 2. Drive/use
rocket fuel to navigate

Weather: predict wind/solar power production tomorrow (and make
actions)

Oil exploration: 1. drill for oil 2. estimate most likely location for oil
pocket given new info 3. drill for oil there . . .
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Down to earth example (Kalman filtering)

Unobserved dynamics: un+1 = −un, and u0 ∼ N(0, 1)

Noisy observations: yn = un + γn, γn ∼ N(0, 2).

Problem: Determine un|y0:n. (Sequence (yn) is here generated from a
sample of un with u0 = 1.)
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Course content

Bayesian inference

Bayesian filtering for discrete time and space Markov chains (random
walks . . . )

Stochastic processes (Markov processes and stochastic differential
equations).

Linear and nonlinear discrete-time filtering algorithms and smoothing
(Kalman filtering, Ensemble Kalman filtering, Particle filtering)

The Fokker-Planck equation and the Bayes filter for discrete time,
infinite state-space filtering

Filtering in high-dimensional state space

Continuous time filtering methods

Model fitting/parameter fitting and model validation

Student presentations on applications of filtering

Tentative: Multilevel Monte Carlo methods and applications of
control with data assimilation
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Bayesian inference

Given two events C ,D, with P (D) > 0, Bayes’ theorem yields

P(C | D) =
P(C ∩ D)

P (D)

where
P(C | D) := Probability of C given D.

Is useful in filtering

P(X1 = a|Y0 = b0,Y1 = b1) =
P(X1 = a,Y1 = b1|Y0 = b0)

P(Y1 = b1|Y0 = b0)
= . . .

((Xn,Yn) signal-observation pair).

Subtlety: How to treat P (C |D) and conditional expectations when
P (D) = 0?
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Bayesian filtering for discrete time and space Markov
chains

A random walk on Zd is a sequence X0,X1, . . . with independent and
identically distributed (iid) increments.

Example below

P (Xn+1 − Xn = 1) = p and P (Xn+1 − Xn = −1) = 1− p.

−2 −1 0 1 2

p

1− p

Filtering problem: Given X0 = 0 and observations Yk = Xk + Wk

where (W1,W2, . . .) are iid random variables and also independent
from (X1,X2, . . .), determine

P (Xn|Y0 = b0,Y1 = b1, . . . ,Yn = bn) .
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Stochastic processes

A stochastic process on R is a family of random variables
{u(t)}t∈[0,T ] such that u(t) ∈ R is a random variable for each
t ∈ [0,T ].

Examples: Wiener processes:
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Stochastic differential equations
The solution of

du(t) = a(u(t)) dt + b(u(t)) dW (t),

u(0) = u0,

is a stochastic process.

Example: Geometric Brownian Motion

0.0 0.2 0.4 0.6 0.8 1.0
t

0.9

1.0

1.1
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1.3

1.4

u(
t,
ω
)

u(t,ω1)

u(t,ω2)

u(t,ω3)

Solution of du=0.2udt+0.1udWt
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Stochastic differential equations
The solution of

du(t) = a(u(t)) dt + b(u(t)) dW (t),

u(0) = u0,

is a stochastic process.

Example: Density of Geometric Brownian Motion

×
!
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Topics we will treat on stochastic processes
Theory on Markov processes (Poisson, Wiener and Itô stochastic
differential equations)

Numerical methods for sampling realizations of stochastic processes

Discrete time filtering problem: For continuous time process u and
discrete time observations

y(k) = Q(u(k)) + ”noise”

determine

P (u(n) | Y (0) = b0,Y (1) = b1, . . . ,Y (n) = bn) .

Continuous time filtering: Given

u(t) = u0 +

∫ t

0
a(s)u(s)ds + W1(t)

y(t) = H(t)u(t) + W2(t)

estimate P
(
u(t)|{Y (s) = b(s)}s∈[0,t]

)
.
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Fokker-Planck equation

Density ρu(x , t) for the SDE is the solution of a parabolic partial
differential equation called the Fokker-Planck equation.

×
!

In many cases ρu can be used to derive the exact filters (called the Bayes
filter).
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Kalman filtering and nonlinear methods
In linear settings with additive Gaussian noise, Kalman filtering is an exact
filtering method. However, for nonlinear settings:

un+1 = Ψ(un),

yn+1 = Q(un+1) + γn+1,

alternatives are needed. EnKF and particle filters are ensemble/particle
based methods that approximate the filter density by empirical measures:
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Model fitting and validation

The basic filtering setup consists of these fundamental assumptions:

Underlying dynamics Xn+1 = Ψ(Xn, tn) where the mapping Ψ is
known but X0,X1, . . . is only partially observed

by Yk = Q(Xk) + ”noise(k)” for k = 0, 1, . . . where

the mapping Q and the distribution of ”noise(k)” are assumed known.

For real problems, Ψ and ”noise(k)” are of course often not known!

Fitting problem: for a parametrized class of mappings {Ψp}p∈P find the
“best” model given a collection of possibly different kinds of observations
Y1,Y2, . . ..
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Student presentations, example topics
Numerical weather prediction: ”Atmospheric modeling, data assimilation
and predictability” Kalnay.

Oil reservoir state estimation: ”Data Assimilation” Evensen and ”An
Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data
Assimilation” Gu and Oliver.

”Ensemble Kalman methods for inverse problems” Iglesias, Law and Stuart

Data assimilation for the cardiovascular system (Sections 10 and 11 in):
”The cardiovascular system: Mathematical modelling, numerical algorithms
and clinical applications” Quateroni, Manzoni and Vergara.

”On the convergence of the ensemble Kalman filter” Mandel, Cobb and
Beezley.

”On sequential Monte Carlo sampling methods for Bayesian filtering”
Doucet, Godsill and Andrieu.

”Multilevel Ensemble Kalman filtering” Hoel, Law and Tempone.

Infinite dimensional Bayesian inference: ”Inverse problems, a Bayesian
perspective” Stuart.

Data assimilation for virus pandemics.
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Probability space

Definition 1 (Probability space)

A probability space is a triple (Ω,F ,P) consisting of

the sample space Ω (set of outcomes),

the set of events F which is a σ−algebra on Ω,

a probability measure P : F → [0, 1].

Definition 2 (σ−algebra on Ω)

F consists of a collection of subsets of Ω such that

1 Ω ∈ F [contains the full set]

2 if D ∈ F , then DC ∈ F also [closed under complements]

3 if Di ∈ F for i = 1, 2, . . ., then ∪∞i=1Di ∈ F [closed under
countable unions].

Exercise: show that ∅ ∈ F and that F is closed under countable
intersections.
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Measurable spaces and probability measures
Definition 3

The pair (Ω,F) is called a measurable space, and P : F → [0, 1] is a
probability measure on F provided

1 P(D) ≥ 0 for all D ∈ F [measures are non-negative-valued
(obvious from the image I wrote)]

2 if Di ∈ F for i = 1, 2, . . . and the sequence is pairwise disjoint
(meaning that Di ∩ Dj = ∅ for all i 6= j), then

P

( ∞⋃
i=1

Di

)
=
∞∑
i=1

P (Di ) [countable additivity of disjoint sets ]

3 P (Ω) = 1 and P (∅) = 0 [measure of full space is 1!].

Example 4 (Measure on finite-state space)

Ω = {−1, 0, 1}, F = {∅, {−1}, {0, 1},Ω} and

P({−1}) = 1/4, P({0, 1}) = 3/4.

(−1 and {−1} is used to distinguish
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Discrete random variables/vectors

Definition 5

A discrete random variable X defined on (Ω,F ,P) is a mapping
X : Ω→ {a1, a2, . . . , } where

1 A = {a1, a2, . . . , } ⊂ Rd is a finite or at most countable set of
distinct outcomes

2 and it must hold that X−1(ak) = {ω ∈ Ω | X (ω) = ak} ∈ F for all ak .

X is described by the events and their probabilities

X−1(ak) = {X = ak}, PX (ak) := P(X = ak) = P(X−1(ak)) ∀ak ∈ A.

This is because X can be represented by a simple function

X (ω) =
∑
k=1

ak1X=ak (ω). where 1X=ak (ω)

{
1 if X (ω) = ak

0 otherwise

The measure PX is called the distribution of X (it is a probability
measure on the image space of X ).
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Discrete random variables 2

Any function f : Rd → Rk also is a discrete rv, and can be
represented

f (X )(ω) =
∑
k=1

f (ak)1X=ak (ω).

Note! The defintion for continuous random variables is more subtle
for continuous rv, and (image-space) outcomes {a1, a2, . . . , } may not
be associated uniquely to (probability-space) outcomes in Ω.

Example 6 (Coin toss, X ∼ Bernoulli(p))

image-space outcomes A = {0, 1},

Ω = {Heads,Tails}, F = {∅, {Heads}, {Tails},Ω}

X (Heads) = 1 and X (Tails) = 0 and

P(X = 1) = P(X−1(1)) = P(Heads) = p, P(X = 0) = P(Tails) = 1− p.
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Next lecture

Joint distributions

Independence

Expectations and variance

Law of large numbers

Conditional probability and expectation
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