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Summer semester 2020
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Summary of lecture 9
Considered inverse problem

Y = G (U) + η (1)

with assumptions: η ∼ πη, U ∼ πU and η ⊥ U.

and solution:

πU|Y (u|y) =
πη(y − G (u))πU(u)

Z
.

Stability: under some assumptions, small perturbations in input leads to
small perturbations in output:

|Gδ − G | = O(δ) =⇒ d(πδ(·|y), π(·|y)) = O(δp) for some p > 0,

and metrics

dTV (π, π̄) =
1

2
‖π − π̄‖L1(Rd ) and dH(π, π̄) =

1√
2
‖
√
π −
√
π̄‖L2(Rd )
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Inverse problem with random model and exact observations

Let us consider a different type of inverse problem

Y = G (U)

with prior U ∼ U(0, 1) and, for any u ∈ (0, 1), G (u) ∼ Bernoulli(u).

In other words U is a continuous rv, while Y |(U = u) ∼ Bernoulli(u) is
discrete.

Given Y = y , we may formally proceed as before

πU|Y (u|y) =
πY |U(y |u)πU(u)

πY (y)

Problem: Y |(U = u) is a discrete rv!
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Alternative measures-based approach:
For y ∈ {0, 1},

P(Y = y ,U ∈ du) = P(Y = y |U ∈ du)P(U ∈ du)

P(Y = y ,U ∈ du) = P(U ∈ du|Y = y)P(Y = y)

we derive by Bayes’ rule the posterior measure

P(U ∈ du|Y = y) =
P(Y = y |U ∈ du)P(U ∈ du)

P(Y = y)

By Y = y | U = u, it follows that

P(Y = y | U ∈ du) = (1− u)1−yuy

and thus

P(U ∈ du|Y = y) =
(1− u)yuydu

Z
.

With density form

πU|Y (u|y) = =
(1− u)1−yuy

Z
. (2)
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Is the coin fair?
Consider an inverse problem with a sequence of exact observations of
coin tosses

Yk = Gk(U), for k = 1, 2, . . .

with Gk(U)|U = u ∼ Bernoulli(u), where for any fixed ũ ∈ (0, 1)
(G1(ũ),G2(ũ), . . .) is an iid sequence. Hence

(Y1,Y2, . . .)|(U = u) = (G1(u),G2(u), . . .)

is a (conditionally U = u) iid sequence.
Input: Coin-bias prior U ∈ U(0, 1) and flipping coin results
Y = (Y1, . . . ,Yn) = (y1, . . . , yn).

Direct extension of (2) yields

πU|Y (u|y1:n) =

∏n
k=1(1− u)1−ykuyk1(0,1)(u)

Z
=

(1− u)n−ȳnuȳn1(0,1)(u)

Z

where ȳn =
∑n

k=1 yk .
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Computational result given

y = (1, 0, 1, 1, . . .) with ȳ100 = 66, ȳ500 = 341, ȳ2500 = 1730
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Numerical integration gives

P(|U − 0.7| < 0.05|Y1:500 = y1:500) = 0.9320
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Sensitivity to the prior
Computational result given same y measurement sequence but now with
the very poor prior πU(u) ∝ (1− u)50

1[0,1](u).
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Numerical integration gives

P(|U − 0.7| < 0.05|Y1:500 = y1:500) = 0.0695

See [“Data analysis” by D.S. Sivia section 2.1] for more on this example.
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Definition 1 (Weak convergence of probability measures)

A sequence of distributions Pk on (Rd ,Bd) is said to converge weakly
towards P if it holds for any globally bounded and continuous function
g : Rd → R that

lim
k→∞

∫
Rd

g(x)Pk(dx) =

∫
Rd

g(x)P(dx).

We write Pk ⇒ P.

As an extension of the above, a family of distribution {Pγ}γ>0 converges
weakly towards P as γ ↓ 0 provided

lim
γ↓0

∫
Rd

g(x)Pγ(dx) =

∫
Rd

g(x)P(dx).
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Example 2 (Weak convergence of distributions)

For any C ∈ B, let

Pk(C ) =

∫
C

(1− k−1)1(0,1) + k−1
1(1,2)dx

Then it holds Pk ⇒ P = U(0, 1).

Verification: For a given g ∈ Cb(R), we must show that for any ε > 0,
∃K > 0 such that∣∣∣∣∫

Rd

g(x)Pk(dx)−
∫
Rd

g(x)P(dx)

∣∣∣∣ ≤ ε ∀k > K .

Note that Pk = (1− k−1)P + k−1U(1, 2) and let K = 2
⌈

max(‖g‖∞,1)
ε

⌉
.

Then for P̃ := U(1, 2) and k > K ,∣∣∣∣∫
Rd

g(x)Pk(dx)−
∫
Rd

g(x)P(dx)

∣∣∣∣ ≤ k−1

∫
Rd

|g(x)|(P + P̃)(dx)

≤ 2k−1‖g‖∞ ≤ ε.
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Exercise 1: For Pγ = N(µ, γ2), show that Pγ ⇒ δµ as γ ↓ 0.

Exerecise 2: For Pγ = N(µ+ γη0, γ
2Γ0) with fixed µ, η0 ∈ Rd and

positive definite Γ0 ∈ Rd×d show that Pγ ⇒ δµ as γ ↓ 0.
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Linear-Gaussian setting

We consider the inverse problem

Y = G (U) + η (3)

with

Assumption 1

linear forward model G (u) = Au where A ∈ Rk×d

and η ∼ N(0, Γ), U ∼ N(m̂, Ĉ ) where both Γ and Ĉ are positive
definite and η ⊥ U.

Given an observation Y = y , Bayesian inversion yields

π(u|y) = =
πη(y − Au)πU(u)

Z
.
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Recall that for X ∼ N(µ,Σ),

πX (x) =
exp

(
− 1

2 |x − µ|
2
Σ

)
Z

with
|x − µ|Σ := |Σ−1/2(x − µ)|.

So we may write (for a different normalizing constant Z ),

π(u|y) =
πη(y − Au)πU(u)

Z

=
exp

(
− 1

2 |y − Au|2Γ −
1
2 |u − m̂|2

Ĉ

)
Z

=
exp(−J(u))

Z

with

J(u) :=
1

2
|y − Au|2Γ +

1

2
|u − m̂|2

Ĉ
(4)

Objective: Verify that U|Y = y is Gaussian, and find its density.
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On the one hand:

π(u|y) =
exp(−J(u))

Z
.

On the other hand, let us make the ansatz that for some m ∈ Rd and pos.
def. C ,

π(u|y) =
exp

(
− 1

2 |u −m|2C
)

Z

For this to hold, we must find m and C s.t.,

|u −m|2C = 2J(u).

We write out these terms in sums of their polynomial parts:

|u −m|2C = (u −m)TC−1(u −m) = uTC−1u − 2uTC−1m + q

and

2J(u) = |y − Au|2Γ + |u − m̂|2
Ĉ

= (y − Au)TΓ−1(y − Au) + (u − m̂)T Ĉ−1(u − m̂)

= uT (ATΓ−1A + Ĉ−1)u − 2uT (ATΓ−1y + Ĉ−1m̂) + q̂
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Enforcing equality for same-order-term coefficients yields

uTC−1u = uT (ATΓ−1A + Ĉ−1)u ∀u ∈ Rd

=⇒ uT (C−1 − (ATΓ−1A + Ĉ−1))u = 0 ∀u ∈ Rd

=⇒ C = (ATΓ−1A + Ĉ−1)−1

and

uTC−1m = uT (ATΓ−1y + Ĉ−1m̂) ∀u ∈ Rd =⇒ m = C (ATΓ−1y+Ĉ−1m̂).

Theorem 3

If Assumption 1 holds, then

π(u|y) =
exp

(
− 1

2 |u −m|2C
)

Z
(5)

with

C = (ATΓ−1A + Ĉ−1)−1 and m = C (ATΓ−1y + Ĉ−1m̂).
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MAP of a Gaussian posterior vs deterministic inv. methods
Consider initially ill-posed inverse problem: given y and A, find u s.t.

Au = y ,

(assume either no or many solutions).

Form of Tikhonov regularization: For some λ > 0, define solution as

u = arg min
x∈Rd

|y − Ax |2︸ ︷︷ ︸
Loss term

+ λ|x |2︸ ︷︷ ︸
Regularizing term

Bayesian inversion of
Y = AU

for U ∼ N(0, σ2I ) and η ∼ N(0, γ2I ) and Y = y yields, cf (4),

π(u|y) ∝ exp
(
− γ−2|y − Au|2 + σ−2|u|2

2

)
Hence

uMAP [π(·|y)] = arg min
u∈Rd

|y − Au|2 +
γ2

σ2
|u|2.
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Small-noise limit and multivariate normals
We consider the inverse problem

Y = AU + η,

with U ∼ N(m̂, Ĉ ) and η ∼ N(0, γ2Γ0) for some positive definite Γ0 and
parameterized in γ > 0.

Theorem 3 yields that U|(Y = y) ∼ N(m,C ) with

C (γ) = γ2(ATΓ−1
0 A + γ2Ĉ−1)−1

and
m(γ) = (ATΓ−1

0 A + γ2Ĉ−1)−1(ATΓ−1
0 y + γ2Ĉ−1m̂)

Questions:

What happens to the posterior density as γ ↓ 0?

How does limγ→0 π(·|y) depend on the prior, A and y?

If yγ = Au† + γη†, for some deterministic u†, η†, will then
asymptotically π(·|yγ) concentrate around u†?
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Speculations
It seems reasonable to expect that U|Y = y ∼ N(m(γ),C (γ)) will
converge in some sense to N(m∗,C ∗), where

m∗ = lim
γ→0

(ATΓ−1
0 A + γ2Ĉ−1)−1(ATΓ−1

0 y + γ2Ĉ−1m̂)

?
= (ATΓ−1

0 A)−1ATΓ−1
0 y

and
C ∗ = lim

γ→0
C (γ) = lim

γ→0
γ2(ATΓ−1

0 A + γ2Ĉ−1)−1 ?
= 0.

The argument hinges on whether ATΓ−1
0 A is invertible or not.

Need to consider two cases for A ∈ Rk×d :

overdetermined/determined: k ≥ d and Null(A) = {0},

underdetermined: k < d and Rank(A) = k .
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Overdetermined and determined settings
For the case A ∈ Rk×d , k ≥ d and Null(A) = {0}, it is clear that

Ax = 0 ⇐⇒ x = 0

which implies that for all x ∈ Rd \ {0},

xTATΓ−1
0 Ax > 0

so ATΓ−1
0 A is invertible.

For the sequence of distributions U|(Y = y) ∼ N(m(γ),C (γ)) with a
fixed y ∈ Rk , we have that

m∗ = lim
γ→0

m(γ) = (ATΓ−1
0 A)−1ATΓ−1

0 y and C ∗ = lim
γ→0

C (γ) = 0.

This yields the small-noise limit, as γ ↓ 0,

N(m(γ),C (γ))⇒ δm∗ =

{
δA−1y if k = d

δ(AT Γ−1
0 A)−1AT Γ−1

0 y if k > d

Note above: If k = d then A is invertible.
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Interpretation of m∗ and C ∗

From (4) we have

π(u|y ; γ) =
exp(−J(u, γ))

Z (γ)

with

J(u, γ) :=
1

2
γ−2|Γ−1/2

0 (y − Au)|2︸ ︷︷ ︸
log likelihood – loss

+
1

2
|u − m̂|2

Ĉ︸ ︷︷ ︸
log prior – vanishing regularizer

. (6)

Interpretation
m∗ = (ATΓ−1

0 A)−1ATΓ−1
0 y

is mean-square minimizer of the log likelihood term,

m∗ = arg min
u∈Rd

|Γ−1/2
0 (Au − y)|2 = lim

γ→0
arg min

u∈Rd
J(u, γ)

Moreover, influence from prior on π(u|y ; γ) vanishes asymptotically since

C ∗ = lim
γ→0

γ2(ATΓ−1
0 A + γ2Ĉ−1)−1 = 0
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Consistency of the estimator – overdetermined setting
Consider again the inverse problem

Y = AU + η,

with U ∼ N(m̂, Ĉ ) and η ∼ N(0, γ2Γ0), but assume now that

Y = y(γ) = Au† + γη† for fixed u†, η†

This yields the posterior distribution U|Y = y(γ) ∼ N(m(γ),C (γ)) where

m(γ) = (ATΓ−1
0 A + γ2Ĉ−1)−1(ATΓ−1

0 y(γ) + γ2Ĉ−1m̂)

and C (γ) = as earlier. Consequently,

m∗ = lim
γ→0

m(γ) = (ATΓ−1
0 A)−1ATΓ−1

0 Au† = u†

and we obtain the consistency result

N(m(γ),C (γ))⇒ δm∗ = δu† as γ → 0.
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Underdetermined setting
We consider the simplified inverse problem

Y = AU + η = A0U1 + η,

on Rd = Rk × Rd−k where

U =

[
U1

U2

]
∼ N(m̂1, Ik)× N(m̂2, Id−k) with m̂1,U1 ∈ Rk and

m̂2,U2 ∈ Rd−k ,

N(m̂1, Ik)× N(m̂2, Id−k) is a measure on (Rk × Rd−k ,Bk × Bd−k).

A = [A0 0] ∈ Rk×d with non-singular A0 ∈ Rk×k

η ∼ N(0, γ2Γ0) with positive definite Γ0 ∈ Rk×k .

Observations only of the first k components yields

π(u1, u2|y) ∝
exp

(
−1

2γ
−2|y − A0u1|2Γ0

− 1
2 |u1 − m̂1|2−1

2 |u2 − m̂2|2
)

Z
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Equivalently,
U|(Y = y) ∼ N(m1(γ),C1(γ))× N(m̂2, Id−k) with

m1 = (AT
0 Γ−1

0 A0 + γ2Ik)−1(AT
0 Γ−1

0 y + γ2m̂1)

and
C1 = γ2(AT

0 Γ−1
0 A0 + γ2Ik)−1

Restricted to the measure on (Rk ,Bk),

N(m1(γ),C1(γ))⇒ δA−1
0 y as δ → 0,

and thus

N(m1(γ),C1(γ))× N(m̂2, Ik)⇒ δA−1
0 y × N(m̂2, Id−k) as δ → 0.

Observation: Asymptotically perfect “correction” in observed subspace
(prior is near-irrelevant for posterior), no correction in unobserved
subspace (posterior equals prior in these components).
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Summary small-noise limit
For linear-Gaussian inverse problem

Y = AU + η,

with U ∼ N(m̂, Ĉ ) and η ∼ N(0, γ2Γ0) for some positive definite Γ0 and
parameterized in γ > 0.

We obtained U|(Y = y) ∼ N(m(γ),C (γ)), and in the small-noise limit
γ → 0

N(m(γ),C (γ))⇒ δA−1y when A is invertible,

N(m(γ),C (γ))⇒ δ(AT Γ−1
0 A)−1AT Γ−1

0 y in the overdetermined setting

Underdetermined setting, see [SST Theorem 2.12],

N(m(γ),C (γ))⇒ correction in observed-subspace measure

×no correction in unobserved-subspace measure (it remains the prior)
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