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Summary of lecture 9
Considered inverse problem

Y=G(U)+n (1)

with assumptions: 7~ m,, U~ 7y andn L U.

and solution:

Ty = G(u))mu(u)

7TU\Y(UD’) = 7

Stability: under some assumptions, small perturbations in input leads to
small perturbations in output:

G — G| = 0(3) = d(x(ly),7(ly)) = O(5P) for some p >0,
and metrics
_1
V2

1 - _
dT\/(7T,7T) = 5”7‘(‘ — 7T||L1(Rd) and dH(T(',Tr)

IV =Vl 29
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Inverse problem with random model and exact observations

Let us consider a different type of inverse problem
Y =G(U)
with prior U ~ U(0,1) and, for any u € (0,1), G(u) ~ Bernoulli(u).

In other words U is a continuous rv, while Y|(U = u) ~ Bernoulli(u) is
discrete.

Given Y = y, we may formally proceed as before

Ty u(y|u)mu(u)
Ty (y)

7TU|Y(U|)/) =

Problem: Y|(U = u) is a discrete rv!
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Alternative measures-based approach:
For y € {0,1},
P(Y =y,U € du) =P(Y = y|U € du)P(U € du)
P(Y =y,U e du)=P(U € dulY = y)P(Y =y)
we derive by Bayes' rule the posterior measure
P(Y = y|U € du)P(U € du)

P(U € dulY =y) = PY =)

By Y =y | U= u, it follows that
P(Y=y|U€du)=(1-ulYu
and thus
P(U € dulY =y)= (1—u;yuydu

With density form

myly (uly) = =— (2)



Is the coin fair?

Consider an inverse problem with a sequence of exact observations of
coin tosses

Yk:Gk(U) for k:1,2,...
with Gx(U)|U = u ~ Bernoulli(u), where for any fixed i € (0,1)
(G1(@), Go(d), .. .) is an iid sequence. Hence
(Y1, Yo, .. )(U = u) = (G1(v), Ga(u), . ..)

is a (conditionally U = u) iid sequence.
Input: Coin-bias prior U € U(0,1) and flipping coin results
Y = (Yla"'ayn) = ()/17--->Yn)-

Direct extension of (2) yields

[Thoa (1 — u) e dgy(u) (1 —u)" ¥l (gq)(u)

7rU|Y(u’y1:n) = 7 = 7

where 7, = > 71 k.
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Computational result given

y = (1,0, 1,1,.. ) with V100 = 66, ¥s500 = 341, o500 = 1730

—my(w) 40t |—my (u)
257 _ﬂ-guk’/l) | 351 —F(u‘yljmo)
ol 7T6(U|Z/1:2) | 30| |—m (u|y1:500)
— 7" (uly14) 25 | |— (uly1:2500)
15 w0l
1 151
10}
05 ol
0 0 == =
0 02 04 06 08 1 05 055 06 065 07 075 08

Numerical integration gives

IP)(|U — 0.7’ < 0.05|Y1;500 = y1;500) = 0.9320
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Sensitivity to the prior
Computational result given same y measurement sequence but now with
the very poor prior my(u) o< (1 — u)*°L 1j(u).

50

— 7y (u)
wl | 7 (ulyr100)
)
7 (w|y1:500)
a0l | |—7(u|y12500)

20

°l /\
0

0 0.2 0.4 0.6 0.8 1

Numerical integration gives
IP)(|U — 0.7’ < 0.05’Y1;500 = y1;500) = 0.0695

See [“Data analysis” by D.S. Sivia section 2.1] for more on this example.
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Definition 1 (Weak convergence of probability measures)

A sequence of distributions P, on (R9, B9) is said to converge weakly
towards P if it holds for any globally bounded and continuous function

g :R? = R that

lim /R B()Pu(ox) = /R g(B()

k—00

We write Py = P.

As an extension of the above, a family of distribution {P-},~0 converges
weakly towards PP as v | O provided

iy [ £0OP, () = | g(GOP(e).

70 R

11/28



Example 2 (Weak convergence of distributions)
For any C € B, let

= /C(l = k_l)]l(oyl) + k_l]l(Lz)dx

Then it holds Py = P = U(0,1).

Verification: For a given g € Cp(R), we must show that for any € > 0,
3K > 0 such that

[ etorion - [ etar(a0

Note that Py = (1 — k" H)P+ k~1U(1,2) and let K =2 {%W
Then for P := U(1,2) and k > K,

'/ x)Py(dx) — /]Rd g(x)P(dx)

<e Vk>K.

<k y g (x)|(P + P)(dx)

<2k Yglloo < e
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Exercise 1: For P, = N(u,~?), show that P, = &, as v | 0.

Exerecise 2: For P, = N(u + yno,72To) with fixed p,70 € R9 and
positive definite Mg € RY*9 show that Py, =6, as~y 0.
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Linear-Gaussian setting

We consider the inverse problem

Y =G6(U)+n (3)
with
Assumption 1

m linear forward model G(u) = Au where A € Rk*d

m and 5 ~ N(0,T), U~ N(i1, €) where both T and C are positive
definite and n L U.

Given an observation Y = y, Bayesian inversion yields

oy = Au)ry(s)

r(uly) = e
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Recall that for X ~ N(u,X),

with

oo (— 3x )
Z

mx(x) =

x = ulz = 72 (x = ).

So we may write (for a different normalizing constant Z),

with

Objective:

m(y — Au)my(u)

m(uly) =
Z
— Ly —Aul2 — Ly — &2
exp 2‘)’ U|r 2|U m’@
a V4
exp(—J(v))

Z

1 1 .
J(u) = 5\)’ — Aulf + 5\“‘ %

Verify that U|Y = y is Gaussian, and find its density.
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On the one hand: ()
_exp(—J(u
On the other hand, let us make the ansatz that for some m € R? and pos.
def. C,
exp ( — 3u— m\2c>
n(uly) = y

For this to hold, we must find m and C s.t.,
lu—m|% = 2J(u).

We write out these terms in sums of their polynomial parts:
lu—mE=w-mTCYu-—m=u"Clu—2u"Ctm+gq
and
2)(u) = |y — Aulf +|u— ml%
= (v = Au) Ty — Au) + (u— )T C7H(u — )
=uT(ATT A+ C Hu—20T(ATTy + C1m) + g
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Enforcing equality for same-order-term coefficients yields
T Clu=uT(ATT A+ C Yy YueR?
— " (CT—(ATT A+ C Y))u=0 VYueR?
— C=(ATr 1A+ ¢!
and

W Cim=uT(ATT Yy 4+ C ') YueRY = m=CATT 1y+C1m).

Theorem 3

If Assumption 1 holds, then

exp(— %]u— m\%)

r{uly) = : 9

with

C=(ATTTA+C Y and m=CA Ty + C1h).
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MAP of a Gaussian posterior vs deterministic inv. methods
Consider initially ill-posed inverse problem: given y and A, find u s.t.

Au=y,
(assume either no or many solutions).
Form of Tikhonov regularization: For some A > 0, define solution as

u = arg min ly — Ax|2 + A x[?

XERI e —~ S~~~
Loss term Regularizing term
Bayesian inversion of
Y =AU

for U ~ N(0,021) and n ~ N(0,721) and Y =y yields, cf (4),

v 2ly — Au? + 0‘2\U\2)
2

w(uly) ox exp ( -

Hence )
. Yy 2
. = —Aul?+ = .
umap[m(-ly)] = arg min, |y = Aul”+ 5[]
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Small-noise limit and multivariate normals
We consider the inverse problem

Y = AU + 7,

with U ~ N(r, €) and 1 ~ N(0,~2Tg) for some positive definite [y and
parameterized in v > 0.

Theorem 3 yields that U|(Y = y) ~ N(m, C) with
C(v) =(ATT A+ 2 E )
and A A
m(7y) = (ATTg A+ C ) HATT Yy +42C 71 m)

Questions:

m What happens to the posterior density as ~v | 07

m How does lim,_,o 7(-|y) depend on the prior, A and y?

mlfy, = Au® + ynf, for some deterministic u®, nf, will then
asymptotically 7(-|y,) concentrate around uf?
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Speculations

It seems reasonable to expect that U|Y =y ~ N(m(y), C(v)) will
converge in some sense to N(m*, C*), where

m* = 7nqu(ATrglA +2C Y)Y ATy + 4287 m)
; (ATralA)—lATraly

and
,

C* = lim C(7) = lim ¥?(ATT;1A+~2C )t =0
¥—0 v—0

The argument hinges on whether ATrglA is invertible or not.

Need to consider two cases for A € R¥*9:
m overdetermined/determined: k > d and Null(A) = {0},
m underdetermined: k < d and Rank(A) = k.

22/28



Overdetermined and determined settings
For the case A € R**9, k > d and Null(A) = {0}, it is clear that
Ax=0 < x=0
which implies that for all x € RY\ {0},
xTATT 1 Ax >0

so ATFEIA is invertible.
For the sequence of distributions U|(Y = y) ~ N(m(v), C()) with a
fixed y € RX, we have that

* . Tr—1 —1ATr-1 * .
m 7I|£1>10 m(y) = (A'T, A) oy and C Jim, C(y)=0
This yields the small-noise limit, as v | 0,
if k=d

N(m(3), C(7)) = b = 4 A
m 5 m* — .
7 7 6(ATI'0’1A)—1ATI'O’1y if k > d

Note above: If kK = d then A is invertible.
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Interpretation of m* and C*
From (4) we have

exp(—J(u,7))

m(uly;v) =
(uly:7) 7()
with
1 512 1 R
W) = 5770 Ply—An + Slu—ml . (6)
_—
log likelihood — loss log prior — vanishing regularizer

Interpretation
m* = (ATro—lA)flATraly
is mean-square minimizer of the log likelihood term,
. -1/2 2 . .
m* = arg min | Au — = lim arg min J(u
g min |[o " (Au = y)[" = lim arg min J(u,7)
Moreover, influence from prior on 7(u|y;~y) vanishes asymptotically since

C* = lim (AT A+2C ) =0
v—0
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Consistency of the estimator — overdetermined setting
Consider again the inverse problem

Y = AU + 7,
with U ~ N(1, €) and 1 ~ N(0,~7%Tg), but assume now that
Y =y(y) = Au' +n'  for fixed ul, nl
This yields the posterior distribution U|Y = y(vy) ~ N(m(y), C(~)) where
m(y) = (AT A+ C Y M ATy (7) + 2 C )
and C(vy) = as earlier. Consequently,
m* = V|iLnom(fy) = (AT tA) AT St Aut = o

and we obtain the consistency result

N(m(V)a C(FY)) = 5m* = 6qu as vy — 0.
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Underdetermined setting
We consider the simplified inverse problem

Y =AU +n= AU + 1,
on RY = Rk x R9=k where
U= [Zj ~ N(i, ) x N(f, lg_x) with i, Uy € R¥ and
Mn, Uy € Rk,
m N(rn, ) x N(w, Iy_x) is a measure on (RK x RI=k Bk x BI=F).

m A=[Ay 0] € R**9 with non-singular Ag € R¥*k

m 7 ~ N(0,7°To) with positive definite [ € RF>*k,

Observations only of the first k components yields

) exp (*%W_2|y — Aoun|E, — 3lur — P —5|uz — fﬁ2|2>
X

m(u1, up|y Z
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Equivalently,
UI(Y = y) ~ N(m1(7), Ci()) x N(r2, lg—x) with

m1 = (AT Ao + 72 1k) THAJ oty + 42 1in)
and
G =7 (AgTg Ao +7°1)
Restricted to the measure on (Rk, Bk),
N(mi(v), Gi(7)) = 5A51y as 0 —0,
and thus

N(mai(v), (7)) x N(a, i) = 051, x N, la—x) as 6 — 0.

Observation: Asymptotically perfect “correction” in observed subspace
(prior is near-irrelevant for posterior), no correction in unobserved

subspace (posterior equals prior in these components).
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Summary small-noise limit

For linear-Gaussian inverse problem
Y = AU + 1,

with U ~ N(, €) and 1 ~ N(0,~2T) for some positive definite [y and
parameterized in v > 0.

We obtained U|(Y = y) ~ N(m(v), C(v)), and in the small-noise limit
v —=0

m N(m(y), C(v)) = 6a-1, when Ais invertible,

m N(m(y), C(v)) = 5(ATr51A)—1ATr51y in the overdetermined setting

m Underdetermined setting, see [SST Theorem 2.12],

N(m(~y), C(-y)) = correction in observed-subspace measure

Xno correction in unobserved-subspace measure (it remains the prior)
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