Mathematics and numerics for data assimilation and state estimation - Lecture 10

Summer semester 2020

Overview

1 Bayesian inversion in different problem setting

2 Weak convergence of distributions

3 Linear-Gaussian setting

4 Posterior measure in the small-noise limit

Summary of lecture 9

Considered inverse problem

$$
\begin{equation*}
Y=G(U)+\eta \tag{1}
\end{equation*}
$$

with assumptions: $\quad \eta \sim \pi_{\eta}, U \sim \pi_{U}$ and $\eta \perp U$.
and solution:

$$
\pi_{U \mid Y}(u \mid y)=\frac{\pi_{\eta}(y-G(u)) \pi_{U}(u)}{Z}
$$

Stability: under some assumptions, small perturbations in input leads to small perturbations in output:

$$
\left|G_{\delta}-G\right|=\mathcal{O}(\delta) \Longrightarrow d\left(\pi^{\delta}(\cdot \mid y), \pi(\cdot \mid y)\right)=\mathcal{O}\left(\delta^{p}\right) \quad \text { for some } \quad p>0,
$$

and metrics

$$
d_{T V}(\pi, \bar{\pi})=\frac{1}{2}\|\pi-\bar{\pi}\|_{L^{1}\left(\mathbb{R}^{d}\right)} \quad \text { and } \quad d_{H}(\pi, \bar{\pi})=\frac{1}{\sqrt{2}}\|\sqrt{\pi}-\sqrt{\bar{\pi}}\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

Overview

1 Bayesian inversion in different problem setting

2 Weak convergence of distributions

3 Linear-Gaussian setting

4 Posterior measure in the small-noise limit

Inverse problem with random model and exact observations

Let us consider a different type of inverse problem

$$
Y=G(U)
$$

with prior $U \sim U(0,1)$ and, for any $u \in(0,1), G(u) \sim \operatorname{Bernoulli}(u)$.
In other words U is a continuous rv, while $Y \mid(U=u) \sim \operatorname{Bernoulli}(u)$ is discrete.

Given $Y=y$, we may formally proceed as before

$$
\pi_{U \mid Y}(u \mid y)=\frac{\pi_{Y \mid U}(y \mid u) \pi_{U}(u)}{\pi_{Y}(y)}
$$

Problem: $\quad Y \mid(U=u)$ is a discrete $r v$!

Alternative measures-based approach:

For $y \in\{0,1\}$,

$$
\begin{aligned}
& \mathbb{P}(Y=y, U \in d u)=\mathbb{P}(Y=y \mid U \in d u) \mathbb{P}(U \in d u) \\
& \mathbb{P}(Y=y, U \in d u)=\mathbb{P}(U \in d u \mid Y=y) \mathbb{P}(Y=y)
\end{aligned}
$$

we derive by Bayes' rule the posterior measure

$$
\mathbb{P}(U \in d u \mid Y=y)=\frac{\mathbb{P}(Y=y \mid U \in d u) \mathbb{P}(U \in d u)}{\mathbb{P}(Y=y)}
$$

By $Y=y \mid U=u$, it follows that

$$
\mathbb{P}(Y=y \mid U \in d u)=(1-u)^{1-y} u^{y}
$$

and thus

$$
\mathbb{P}(U \in d u \mid Y=y)=\frac{(1-u)^{y} u^{y} d u}{Z}
$$

With density form

$$
\begin{equation*}
\pi_{U \mid Y}(u \mid y)= \tag{2}
\end{equation*}
$$

$$
=\frac{(1-u)^{1-y} u^{y}}{Z} .
$$

Is the coin fair?

Consider an inverse problem with a sequence of exact observations of coin tosses

$$
Y_{k}=G_{k}(U), \quad \text { for } \quad k=1,2, \ldots
$$

with $G_{k}(U) \mid U=u \sim \operatorname{Bernoulli}(u)$, where for any fixed $\tilde{u} \in(0,1)$ $\left(G_{1}(\tilde{u}), G_{2}(\tilde{u}), \ldots\right)$ is an iid sequence. Hence

$$
\left(Y_{1}, Y_{2}, \ldots\right) \mid(U=u)=\left(G_{1}(u), G_{2}(u), \ldots\right)
$$

is a (conditionally $U=u$) iid sequence.
Input: Coin-bias prior $U \in U(0,1)$ and flipping coin results $Y=\left(Y_{1}, \ldots, Y_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$.

Direct extension of (2) yields

$$
\pi_{U \mid Y}\left(u \mid y_{1: n}\right)=\frac{\prod_{k=1}^{n}(1-u)^{1-y_{k}} u^{y_{k}} \mathbb{1}_{(0,1)}(u)}{Z}=\frac{(1-u)^{n-\bar{y}_{n}} u^{\bar{y}_{n}} \mathbb{1}_{(0,1)}(u)}{Z}
$$

where $\bar{y}_{n}=\sum_{k=1}^{n} y_{k}$.

Computational result given

$$
y=(1,0,1,1, \ldots) \quad \text { with } \quad \bar{y}_{100}=66, \bar{y}_{500}=341, \bar{y}_{2500}=1730
$$

Numerical integration gives

$$
\mathbb{P}\left(|U-0.7|<0.05 \mid Y_{1: 500}=y_{1: 500}\right)=0.9320
$$

Sensitivity to the prior

Computational result given same y measurement sequence but now with the very poor prior $\pi_{U}(u) \propto(1-u)^{50} \mathbb{1}_{[0,1]}(u)$.

Numerical integration gives

$$
\mathbb{P}\left(|U-0.7|<0.05 \mid Y_{1: 500}=y_{1: 500}\right)=0.0695
$$

See ["Data analysis" by D.S. Sivia section 2.1] for more on this example.

Overview

1 Bayesian inversion in different problem setting

2 Weak convergence of distributions

3 Linear-Gaussian setting

4 Posterior measure in the small-noise limit

Definition 1 (Weak convergence of probability measures)

A sequence of distributions \mathbb{P}_{k} on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ is said to converge weakly towards \mathbb{P} if it holds for any globally bounded and continuous function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{d}} g(x) \mathbb{P}_{k}(d x)=\int_{\mathbb{R}^{d}} g(x) \mathbb{P}(d x) .
$$

We write $\mathbb{P}_{k} \Rightarrow \mathbb{P}$.

As an extension of the above, a family of distribution $\left\{\mathbb{P}_{\gamma}\right\}_{\gamma>0}$ converges weakly towards \mathbb{P} as $\gamma \downarrow 0$ provided

$$
\lim _{\gamma \downarrow 0} \int_{\mathbb{R}^{d}} g(x) \mathbb{P}_{\gamma}(d x)=\int_{\mathbb{R}^{d}} g(x) \mathbb{P}(d x)
$$

Example 2 (Weak convergence of distributions)

For any $C \in \mathcal{B}$, let

$$
\mathbb{P}_{k}(C)=\int_{C}\left(1-k^{-1}\right) \mathbb{1}_{(0,1)}+k^{-1} \mathbb{1}_{(1,2)} d x
$$

Then it holds $\mathbb{P}_{k} \Rightarrow \mathbb{P}=U(0,1)$.
Verification: For a given $g \in C_{b}(\mathbb{R})$, we must show that for any $\epsilon>0$, $\exists K>0$ such that

$$
\left|\int_{\mathbb{R}^{d}} g(x) \mathbb{P}_{k}(d x)-\int_{\mathbb{R}^{d}} g(x) \mathbb{P}(d x)\right| \leq \epsilon \quad \forall k>K .
$$

Note that $\mathbb{P}_{k}=\left(1-k^{-1}\right) \mathbb{P}+k^{-1} U(1,2)$ and let $K=2\left\lceil\frac{\max \left(\| \| \|_{\infty}, 1\right)}{\epsilon}\right.$. Then for $\tilde{\mathbb{P}}:=U(1,2)$ and $k>K$,

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d}} g(x) \mathbb{P}_{k}(d x)-\int_{\mathbb{R}^{d}} g(x) \mathbb{P}(d x)\right| & \leq k^{-1} \int_{\mathbb{R}^{d}}|g(x)|(\mathbb{P}+\tilde{\mathbb{P}})(d x) \\
& \leq 2 k^{-1}\|g\|_{\infty} \leq \epsilon .
\end{aligned}
$$

Exercise 1: For $\mathbb{P}_{\gamma}=N\left(\mu, \gamma^{2}\right)$, show that $\mathbb{P}_{\gamma} \Rightarrow \delta_{\mu}$ as $\gamma \downarrow 0$.
Exerecise 2: For $\mathbb{P}_{\gamma}=N\left(\mu+\gamma \eta_{0}, \gamma^{2} \Gamma_{0}\right)$ with fixed $\mu, \eta_{0} \in \mathbb{R}^{d}$ and positive definite $\Gamma_{0} \in \mathbb{R}^{d \times d}$ show that $\mathbb{P}_{\gamma} \Rightarrow \delta_{\mu}$ as $\gamma \downarrow 0$.

Overview

1 Bayesian inversion in different problem setting

2 Weak convergence of distributions

3 Linear-Gaussian setting

4 Posterior measure in the small-noise limit

Linear-Gaussian setting

We consider the inverse problem

$$
\begin{equation*}
Y=G(U)+\eta \tag{3}
\end{equation*}
$$

with

Assumption 1

- linear forward model $G(u)=A u$ where $A \in \mathbb{R}^{k \times d}$
- and $\eta \sim N(0, \Gamma), U \sim N(\hat{m}, \hat{C})$ where both Γ and \hat{C} are positive definite and $\eta \perp U$.

Given an observation $Y=y$, Bayesian inversion yields

$$
\pi(u \mid y)=\quad=\frac{\pi_{\eta}(y-A u) \pi_{u}(u)}{Z}
$$

Recall that for $X \sim N(\mu, \Sigma)$,

$$
\pi_{X}(x)=\frac{\exp \left(-\frac{1}{2}|x-\mu|_{\Sigma}^{2}\right)}{Z}
$$

with

$$
|x-\mu| \Sigma:=\left|\Sigma^{-1 / 2}(x-\mu)\right| .
$$

So we may write (for a different normalizing constant Z),

$$
\begin{aligned}
\pi(u \mid y) & =\frac{\pi_{\eta}(y-A u) \pi_{u}(u)}{Z} \\
& =\frac{\exp \left(-\frac{1}{2}|y-A u|_{\Gamma}^{2}-\frac{1}{2}|u-\hat{m}|_{\hat{C}}^{2}\right)}{Z} \\
& =\frac{\exp (-J(u))}{Z}
\end{aligned}
$$

with

$$
\begin{equation*}
J(u):=\frac{1}{2}|y-A u|_{\Gamma}^{2}+\frac{1}{2}|u-\hat{m}|_{\hat{C}}^{2} \tag{4}
\end{equation*}
$$

Objective: Verify that $U \mid Y=y$ is Gaussian, and find its density.

On the one hand:

$$
\pi(u \mid y)=\frac{\exp (-\mathrm{J}(u))}{Z}
$$

On the other hand, let us make the ansatz that for some $m \in \mathbb{R}^{d}$ and pos. def. C,

$$
\pi(u \mid y)=\frac{\exp \left(-\frac{1}{2}|u-m|_{C}^{2}\right)}{Z}
$$

For this to hold, we must find m and C s.t.,

$$
|u-m|_{C}^{2}=2 \mathrm{~J}(u) .
$$

We write out these terms in sums of their polynomial parts:

$$
|u-m|_{C}^{2}=(u-m)^{T} C^{-1}(u-m)=u^{T} C^{-1} u-2 u^{T} C^{-1} m+q
$$

and

$$
\begin{aligned}
2 \mathrm{~J}(u) & =|y-A u|_{\Gamma}^{2}+|u-\hat{m}|_{\hat{C}}^{2} \\
& =(y-A u)^{T} \Gamma^{-1}(y-A u)+(u-\hat{m})^{T} \hat{C}^{-1}(u-\hat{m}) \\
& =u^{T}\left(A^{T} \Gamma^{-1} A+\hat{C}^{-1}\right) u-2 u^{T}\left(A^{T} \Gamma^{-1} y+\hat{C}^{-1} \hat{m}\right)+\hat{q}
\end{aligned}
$$

Enforcing equality for same-order-term coefficients yields

$$
\begin{aligned}
u^{T} C^{-1} u= & u^{T}\left(A^{T} \Gamma^{-1} A+\hat{C}^{-1}\right) u \quad \forall u \in \mathbb{R}^{d} \\
& \Longrightarrow u^{T}\left(C^{-1}-\left(A^{T} \Gamma^{-1} A+\hat{C}^{-1}\right)\right) u=0 \quad \forall u \in \mathbb{R}^{d} \\
& \Longrightarrow C=\left(A^{T} \Gamma^{-1} A+\hat{C}^{-1}\right)^{-1}
\end{aligned}
$$

and
$u^{T} C^{-1} m=u^{T}\left(A^{T} \Gamma^{-1} y+\hat{C}^{-1} \hat{m}\right) \quad \forall u \in \mathbb{R}^{d} \Longrightarrow m=C\left(A^{T} \Gamma^{-1} y+\hat{C}^{-1} \hat{m}\right)$.

Theorem 3

If Assumption 1 holds, then

$$
\begin{equation*}
\pi(u \mid y)=\frac{\exp \left(-\frac{1}{2}|u-m|_{C}^{2}\right)}{Z} \tag{5}
\end{equation*}
$$

with

$$
C=\left(A^{T} \Gamma^{-1} A+\hat{C}^{-1}\right)^{-1} \quad \text { and } \quad m=C\left(A^{T} \Gamma^{-1} y+\hat{C}^{-1} \hat{m}\right)
$$

MAP of a Gaussian posterior vs deterministic inv. methods

Consider initially ill-posed inverse problem: given y and A, find u s.t.

$$
A u=y
$$

(assume either no or many solutions).
Form of Tikhonov regularization: For some $\lambda>0$, define solution as

$$
u=\arg \min _{x \in \mathbb{R}^{d}} \underbrace{|y-A x|^{2}}_{\text {Loss term }}+\underbrace{\lambda|x|^{2}}_{\text {Regularizing term }}
$$

Bayesian inversion of

$$
Y=A U
$$

for $U \sim N\left(0, \sigma^{2} I\right)$ and $\eta \sim N\left(0, \gamma^{2} I\right)$ and $Y=y$ yields, cf (4),

$$
\pi(u \mid y) \propto \exp \left(-\frac{\gamma^{-2}|y-A u|^{2}+\sigma^{-2}|u|^{2}}{2}\right)
$$

Hence

$$
u_{M A P}[\pi(\cdot \mid y)]=\arg \min _{u \in \mathbb{R}^{d}}|y-A u|^{2}+\frac{\gamma^{2}}{\sigma^{2}}|u|^{2}
$$

Overview

1 Bayesian inversion in different problem setting

2 Weak convergence of distributions

3 Linear-Gaussian setting

4 Posterior measure in the small-noise limit

Small-noise limit and multivariate normals

We consider the inverse problem

$$
Y=A U+\eta
$$

with $U \sim N(\hat{m}, \hat{C})$ and $\eta \sim N\left(0, \gamma^{2} \Gamma_{0}\right)$ for some positive definite Γ_{0} and parameterized in $\gamma>0$.

Theorem 3 yields that $U \mid(Y=y) \sim N(m, C)$ with

$$
C(\gamma)=\gamma^{2}\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1}
$$

and

$$
m(\gamma)=\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1}\left(A^{T} \Gamma_{0}^{-1} y+\gamma^{2} \hat{C}^{-1} \hat{m}\right)
$$

Questions:

■ What happens to the posterior density as $\gamma \downarrow 0$?
■ How does $\lim _{\gamma \rightarrow 0} \pi(\cdot \mid y)$ depend on the prior, A and y ?
■ If $y_{\gamma}=A u^{\dagger}+\gamma \eta^{\dagger}$, for some deterministic $u^{\dagger}, \eta^{\dagger}$, will then asymptotically $\pi\left(\cdot \mid y_{\gamma}\right)$ concentrate around u^{\dagger} ?

Speculations

It seems reasonable to expect that $U \mid Y=y \sim N(m(\gamma), C(\gamma))$ will converge in some sense to $N\left(m^{*}, C^{*}\right)$, where

$$
\begin{aligned}
m^{*} & =\lim _{\gamma \rightarrow 0}\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1}\left(A^{T} \Gamma_{0}^{-1} y+\gamma^{2} \hat{C}^{-1} \hat{m}\right) \\
& \stackrel{?}{=}\left(A^{T} \Gamma_{0}^{-1} A\right)^{-1} A^{T} \Gamma_{0}^{-1} y
\end{aligned}
$$

and

$$
C^{*}=\lim _{\gamma \rightarrow 0} C(\gamma)=\lim _{\gamma \rightarrow 0} \gamma^{2}\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1} \stackrel{?}{=} 0 .
$$

The argument hinges on whether $A^{T} \Gamma_{0}^{-1} A$ is invertible or not.
Need to consider two cases for $A \in \mathbb{R}^{k \times d}$:
■ overdetermined/determined: $k \geq d$ and $\operatorname{Null}(A)=\{0\}$,
■ underdetermined: $k<d$ and $\operatorname{Rank}(A)=k$.

Overdetermined and determined settings

For the case $A \in \mathbb{R}^{k \times d}, k \geq d$ and $\operatorname{Null}(A)=\{0\}$, it is clear that

$$
A x=0 \Longleftrightarrow x=0
$$

which implies that for all $x \in \mathbb{R}^{d} \backslash\{0\}$,

$$
x^{T} A^{T} \Gamma_{0}^{-1} A x>0
$$

so $A^{T} \Gamma_{0}^{-1} A$ is invertible.
For the sequence of distributions $U \mid(Y=y) \sim N(m(\gamma), C(\gamma))$ with a fixed $y \in \mathbb{R}^{k}$, we have that

$$
m^{*}=\lim _{\gamma \rightarrow 0} m(\gamma)=\left(A^{T} \Gamma_{0}^{-1} A\right)^{-1} A^{T} \Gamma_{0}^{-1} y \quad \text { and } \quad C^{*}=\lim _{\gamma \rightarrow 0} C(\gamma)=0
$$

This yields the small-noise limit, as $\gamma \downarrow 0$,

$$
N(m(\gamma), C(\gamma)) \Rightarrow \delta_{m^{*}}= \begin{cases}\delta_{A^{-1} y} & \text { if } k=d \\ \delta_{\left(A^{T} \Gamma_{0}^{-1} A\right)^{-1} A^{T} \Gamma_{0}^{-1} y} & \text { if } k>d\end{cases}
$$

Note above: If $k=d$ then A is invertible.

Interpretation of m^{*} and C^{*}

From (4) we have

$$
\pi(u \mid y ; \gamma)=\frac{\exp (-\mathrm{J}(u, \gamma))}{Z(\gamma)}
$$

with

$$
\begin{equation*}
\mathrm{J}(u, \gamma):=\underbrace{\frac{1}{2} \gamma^{-2}\left|\Gamma_{0}^{-1 / 2}(y-A u)\right|^{2}}_{\text {log likelihood - loss }}+\underbrace{\frac{1}{2}|u-\hat{m}|_{\hat{C}}^{2}}_{\text {log prior - vanishing regularizer }} . \tag{6}
\end{equation*}
$$

Interpretation

$$
m^{*}=\left(A^{T} \Gamma_{0}^{-1} A\right)^{-1} A^{T} \Gamma_{0}^{-1} y
$$

is mean-square minimizer of the log likelihood term,

$$
m^{*}=\arg \min _{u \in \mathbb{R}^{d}}\left|\Gamma_{0}^{-1 / 2}(A u-y)\right|^{2}=\lim _{\gamma \rightarrow 0} \arg \min _{u \in \mathbb{R}^{d}} J(u, \gamma)
$$

Moreover, influence from prior on $\pi(u \mid y ; \gamma)$ vanishes asymptotically since

$$
C^{*}=\lim _{\gamma \rightarrow 0} \gamma^{2}\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1}=0
$$

Consistency of the estimator - overdetermined setting

Consider again the inverse problem

$$
Y=A U+\eta,
$$

with $U \sim N(\hat{m}, \hat{C})$ and $\eta \sim N\left(0, \gamma^{2} \Gamma_{0}\right)$, but assume now that

$$
Y=y(\gamma)=A u^{\dagger}+\gamma \eta^{\dagger} \quad \text { for fixed } u^{\dagger}, \eta^{\dagger}
$$

This yields the posterior distribution $U \mid Y=y(\gamma) \sim N(m(\gamma), C(\gamma))$ where

$$
m(\gamma)=\left(A^{T} \Gamma_{0}^{-1} A+\gamma^{2} \hat{C}^{-1}\right)^{-1}\left(A^{T} \Gamma_{0}^{-1} y(\gamma)+\gamma^{2} \hat{C}^{-1} \hat{m}\right)
$$

and $C(\gamma)=$ as earlier. Consequently,

$$
m^{*}=\lim _{\gamma \rightarrow 0} m(\gamma)=\left(A^{T} \Gamma_{0}^{-1} A\right)^{-1} A^{T} \Gamma_{0}^{-1} A u^{\dagger}=u^{\dagger}
$$

and we obtain the consistency result

$$
N(m(\gamma), C(\gamma)) \Rightarrow \delta_{m^{*}}=\delta_{u^{\dagger}} \quad \text { as } \gamma \rightarrow 0
$$

Underdetermined setting

We consider the simplified inverse problem

$$
Y=A U+\eta=A_{0} U_{1}+\eta
$$

on $\mathbb{R}^{d}=\mathbb{R}^{k} \times \mathbb{R}^{d-k}$ where

- $U=\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right] \sim N\left(\hat{m}_{1}, I_{k}\right) \times N\left(\hat{m}_{2}, I_{d-k}\right)$ with $\hat{m}_{1}, U_{1} \in \mathbb{R}^{k}$ and $\hat{m}_{2}, U_{2} \in \mathbb{R}^{d-k}$,

■ $N\left(\hat{m}_{1}, I_{k}\right) \times N\left(\hat{m}_{2}, I_{d-k}\right)$ is a measure on $\left(\mathbb{R}^{k} \times \mathbb{R}^{d-k}, \mathcal{B}^{k} \times \mathcal{B}^{d-k}\right)$.

- $A=\left[\begin{array}{ll}A_{0} & 0\end{array}\right] \in \mathbb{R}^{k \times d}$ with non-singular $A_{0} \in \mathbb{R}^{k \times k}$
- $\eta \sim N\left(0, \gamma^{2} \Gamma_{0}\right)$ with positive definite $\Gamma_{0} \in \mathbb{R}^{k \times k}$.

Observations only of the first k components yields

$$
\pi\left(u_{1}, u_{2} \mid y\right) \propto \frac{\exp \left(-\frac{1}{2} \gamma^{-2}\left|y-A_{0} u_{1}\right|_{\Gamma_{0}}^{2}-\frac{1}{2}\left|u_{1}-\hat{m}_{1}\right|^{2}-\frac{1}{2}\left|u_{2}-\hat{m}_{2}\right|^{2}\right)}{Z}
$$

Equivalently,
$U \mid(Y=y) \sim N\left(m_{1}(\gamma), C_{1}(\gamma)\right) \times N\left(\hat{m}_{2}, I_{d-k}\right)$ with

$$
m_{1}=\left(A_{0}^{T} \Gamma_{0}^{-1} A_{0}+\gamma^{2} I_{k}\right)^{-1}\left(A_{0}^{T} \Gamma_{0}^{-1} y+\gamma^{2} \hat{m}_{1}\right)
$$

and

$$
C_{1}=\gamma^{2}\left(A_{0}^{T} \Gamma_{0}^{-1} A_{0}+\gamma^{2} I_{k}\right)^{-1}
$$

Restricted to the measure on $\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$,

$$
N\left(m_{1}(\gamma), C_{1}(\gamma)\right) \Rightarrow \delta_{A_{0}^{-1} y} \quad \text { as } \quad \delta \rightarrow 0
$$

and thus

$$
N\left(m_{1}(\gamma), C_{1}(\gamma)\right) \times N\left(\hat{m}_{2}, I_{k}\right) \Rightarrow \delta_{A_{0}^{-1} y} \times N\left(\hat{m}_{2}, I_{d-k}\right) \quad \text { as } \quad \delta \rightarrow 0
$$

Observation: Asymptotically perfect "correction" in observed subspace (prior is near-irrelevant for posterior), no correction in unobserved subspace (posterior equals prior in these components).

Summary small-noise limit

For linear-Gaussian inverse problem

$$
Y=A U+\eta
$$

with $U \sim N(\hat{m}, \hat{C})$ and $\eta \sim N\left(0, \gamma^{2} \Gamma_{0}\right)$ for some positive definite Γ_{0} and parameterized in $\gamma>0$.

We obtained $U \mid(Y=y) \sim N(m(\gamma), C(\gamma))$, and in the small-noise limit $\gamma \rightarrow 0$

- $N(m(\gamma), C(\gamma)) \Rightarrow \delta_{A^{-1} y}$ when A is invertible,
- $N(m(\gamma), C(\gamma)) \Rightarrow \delta_{\left(A^{\top} \Gamma_{0}^{-1} A\right)^{-1} A^{\top} \Gamma_{0}^{-1} y}$ in the overdetermined setting

■ Underdetermined setting, see [SST Theorem 2.12],

$$
N(m(\gamma), C(\gamma)) \Rightarrow \text { correction in observed-subspace measure }
$$

\times no correction in unobserved-subspace measure (it remains the prior)

