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Summary of lecture 9

Considered inverse problem

Y = G (U) + ⌘ (1)

with assumptions: ⌘ ⇠ ⇡⌘, U ⇠ ⇡U and ⌘ ? U.

and solution:

⇡U|Y (u|y) =
⇡⌘(y � G (u))⇡U(u)

Z
.

Stability: under some assumptions, small perturbations in input leads to
small perturbations in output:

|G� � G | = O(�) =) d(⇡�(·|y),⇡(·|y)) = O(�p) for some p > 0,

and metrics

dTV (⇡, ⇡̄) =
1

2
k⇡ � ⇡̄kL1(Rd ) and dH(⇡, ⇡̄) =

1
p
2
k
p
⇡ �

p
⇡̄kL2(Rd )
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Inverse problem with random model and exact observations

Let us consider a di↵erent type of inverse problem

Y = G (U)

with prior U ⇠ U(0, 1) and, for any u 2 (0, 1), G (u) ⇠ Bernoulli(u).

In other words U is a continuous rv, while Y |(U = u) ⇠ Bernoulli(u) is
discrete.

Given Y = y , we may formally proceed as before

⇡U|Y (u|y) =
⇡Y |U(y |u)⇡U(u)

⇡Y (y)

Problem: Y |(U = u) is a discrete rv!
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Alternative measures-based approach:

For y 2 {0, 1},

P(Y = y ,U 2 du) = P(Y = y |U 2 du)P(U 2 du)

P(Y = y ,U 2 du) = P(U 2 du|Y = y)P(Y = y)

we derive by Bayes’ rule the posterior measure

P(U 2 du|Y = y) =
P(Y = y |U 2 du)P(U 2 du)

P(Y = y)

By Y = y | U = u, it follows that

P(Y = y | U 2 du) = (1� u)1�yuy

and thus

P(U 2 du|Y = y) =
(1� u)yuydu

Z
.

With density form

⇡U|Y (u|y) = =
(1� u)1�yuy

Z
. (2)
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Is the coin fair?

Consider an inverse problem with a sequence of exact observations of
coin tosses

Yk = Gk(U), for k = 1, 2, . . .

with Gk(U)|U = u ⇠ Bernoulli(u), where for any fixed ũ 2 (0, 1)
(G1(ũ),G2(ũ), . . .) is an iid sequence. Hence

(Y1,Y2, . . .)|(U = u) = (G1(u),G2(u), . . .)

is a (conditionally U = u) iid sequence.
Input: Coin-bias prior U 2 U(0, 1) and flipping coin results
Y = (Y1, . . . ,Yn) = (y1, . . . , yn).

Direct extension of (2) yields

⇡U|Y (u|y1:n) =

Q
n

k=1(1� u)1�ykuyk (0,)](u)

Z
=

(1� u)n�ȳnuȳn (0,1)(u)

Z

where ȳn =
P

n

k=1 yk .
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Computational result given

y = (1, 0, 1, 1, . . .) with ȳ100 = 66, ȳ500 = 341, ȳ2500 = 1730
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Numerical integration gives

P(|U � 0.7| < 0.05|Y1:500 = Y1:500) = 0.9320
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Sensitivity to the prior

Computational result given same y measurement sequence but now with
the very poor prior ⇡U(u) / (1� u)50 [0,1](u).
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Numerical integration gives

P(|U � 0.7| < 0.05|Y1:500 = Y1:500) = 0.0695

See [“Data analysis” by D.S. Sivia section 2.1] for more on this example.
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Definition 1 (Weak convergence of probability measures)

A sequence of distributions Pk on (Rd ,Bd) is said to converge weakly
towards P if it holds for any globally bounded and continuous function
g : Rd

! R that

lim
k!1

Z

Rd

g(x)Pk(dx) =

Z

Rd

g(x)P(dx).

We write Pk ) P.

As an extension of the above, a family of distribution {P�}�>0 converges
weakly towards P as � # 0 provided

lim
�#0

Z

Rd

g(x)P�(dx) =

Z

Rd

g(x)P(dx).
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Example 2 (Weak convergence of distributions)

For any C 2 B, let

Pk(C ) =

Z

C

(1� k�1) (0,1) + k�1
(1,2)dx

Then it holds Pk ) P = U(0, 1).

Verification: For a given g 2 Cb(R), we must show that for any ✏ > 0,
9K > 0 such that����

Z

Rd

g(x)Pk(dx)�

Z

Rd

g(x)P(dx)
����  ✏ 8k > K .

Note that Pk = (1� k�1)P+ k�1U(1, 2) and let K = 2
l
max(kgk1,1)

✏

m
.

Then for P̃ := U(1, 2) and k > K ,
����
Z

Rd

g(x)Pk(dx)�

Z

Rd

g(x)P(dx)
����  k�1

Z

Rd

|g(x)|(P+ P̃)(dx)

 2k�1
kgk1  ✏.
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Exercise 1: For P� = N(µ, �2), show that P� ) �µ as � # 0.

Exerecise 2: For P� = N(µ+ �⌘0, �2�0) with fixed µ, ⌘0 2 Rd and
positive definite �0 2 Rd⇥d show that P� ) �µ as � # 0.
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Linear-Gaussian setting

We consider the inverse problem

Y = G (U) + ⌘ (3)

with

Assumption 1

linear forward model G (u) = Au where A 2 Rk⇥d

and ⌘ ⇠ N(0, �), U ⇠ N(m̂, Ĉ ) where both � and Ĉ are positive
definite and ⌘ ? U.

Given on observation Y = y , Bayesian inversion yields

⇡(u|y) = =
⇡⌘(y � Au)⇡U(u)

Z

where we have used that

Y |(U = u) = G (u) + ⌘ ⇠ N(G (u), �).
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Recall that for X ⇠ N(µ,⌃),

⇡X (x) =
exp

⇣
�

1
2 |x � µ|2⌃

⌘

Z

with
|x � µ|⌃ := |⌃�1/2(x � µ)|.

So we may write (for a di↵erent normalizing constant Z ),

⇡(u|y) =
⇡⌘(y � Au)⇡U(u)

Z

=
exp

⇣
�

1
2 |y � Au|2� �

1
2 |u � m̂|

2
Ĉ

⌘

Z

=
exp(�J(u))

Z

with

J(u) :=
1

2
|y � Au|2� +

1

2
|u � m̂|

2
Ĉ

(4)

Objective: Verify that U|Y = y is Gaussian, and find its density.
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On the one hand:

⇡(u|y) =
exp(�J(u))

Z
.

On the other hand, let us make the ansatz that for some m 2 Rd and pos.
def. C ,

⇡(u|y) =
exp

⇣
�

1
2 |u �m|

2
C

⌘

Z

For this to hold, we must find m and C s.t.,

|u �m|
2
C
= 2J(u).

We write out these terms in sums of their polynomial parts:

|u �m|
2
C
= (u �m)TC�1(u �m) = uTC�1u � 2uTC�1m + q

and

2J(u) = |y � Au|2� + |u � m̂|
2
Ĉ

= (y � Au)T��1(y � Au) + (u � m̂)T Ĉ�1(u � m̂)

= uT (AT��1A+ Ĉ�1)u � 2uT (AT��1y + Ĉ�1m̂) + q̂
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Enforcing equality for same-order-term coe�cients yields

uTC�1u = uT (AT��1A+ Ĉ�1)u 8u 2 Rd =) C = (AT��1A+Ĉ�1)�1

and

uTC�1m = uT (AT��1y + Ĉ�1m̂) 8u 2 Rd =) m = C (AT��1y+Ĉ�1m̂).

Theorem 3

If Assumption 1 holds, then

⇡(u|y) =
exp

⇣
�

1
2 |u �m|

2
C

⌘

2
(5)

with

C = (AT��1A+ Ĉ�1)�1 and m = C (AT��1y + Ĉ�1m̂).
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MAP of a Gaussian posterior vs deterministic inv. methods

Consider initially ill-posed inverse problem: given y and A, find x s.t.

Au = y ,

(assume either no or many solutions).

Form of Tikhonov regularization: For some � > 0, define solution as

u = arg min
x2Rd

|y � Ax |2| {z }
Loss term

+ �|x |2| {z }
Regularizing term

Bayesian inversion of
Y = AU

for U ⇠ N(0,�2I ) and ⌘ ⇠ N(0, �2I ) and Y = y yields, cf (4),

⇡(u|y) / exp
⇣
�

��2
|y � Au|2 + ��2

|u|2

2

⌘

Hence

uMAP [⇡(·|y)] = arg min
u2Rd

|y � Au|2 +
�2

�2
|u|2.
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Small-noise limit and multivariate normals

We consider the inverse problem

Y = AU + ⌘,

with U ⇠ N(m̂, Ĉ ) and ⌘ ⇠ N(0, �2�0) for some positive definite �0 and
parameterized in � > 0.

Theorem 3 yields that U|(Y = y) ⇠ N(m,C ) with

C (�) = �2(AT��1
0 A+ �2Ĉ�1)�1

and
m(�) = (AT��1

0 A+ �2Ĉ�1)�1(AT��1
0 y + �2Ĉ�1m̂)

Questions:

What happens to the posterior density as � # 0?

How does lim�!0 ⇡(·|y) depend on the prior, A and y?

If y� = Au† + �⌘†, for some deterministic u†, ⌘†, will then
asymptotically ⇡(·|y�) concentrate around u†?
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Speculations

It seems reasonable to expect that U|Y = y ⇠ N(m(�),C (�)) will
converge in some sense to N(m⇤,C ⇤), where

m⇤ = lim
�!0

(AT��1
0 A+ �2Ĉ�1)�1(AT��1

0 y + �2Ĉ�1m̂)

?
= (AT��1

0 A)�1AT��1
0 y

and
C ⇤ = lim

�!0
C (�) = lim

�!0
�2(AT��1

0 A+ �2Ĉ�1)�1 ?
= 0.

The argument hinges on whether AT��1
0 A is invertible or not.

Need to consider two cases for A 2 Rk⇥d :

overdetermined/determined: k � d and Null(A) = {0},

underdetermined: k < d and Rank(A) = k .
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Overdetermined and determined settings

For the case A 2 Rk⇥d , k � d and Null(A) = {0}, it is clear that

Ax = 0 () x = 0

which implies that for all x 2 Rd
\ {0},

xTAT��1
0 Ax > 0

so AT��1
0 A is invertible.

For the sequence of distributions U|(Y = y) ⇠ N(m(�),C (�)) with a
fixed y 2 Rk , we have that

m⇤ = lim
�!0

m(�) = (AT��1
0 A)�1AT��1

0 y and C ⇤ = lim
�!0

C (�) = 0.

This yields the small-noise limit, as � # 0,

N(m(�),C (�)) ) �m⇤ =

(
�A�1y if k = d

�(AT��1
0 A)�1AT��1

0 y
if k > d

Note above: If k = d then A is invertible.
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Interpretation of m⇤
and C ⇤

From (4) we have

⇡(u|y ; �) =
exp(�J(u, �))

Z (�)

with

J(u, �) :=
1

2
��2

|��1/2
0 (y � Au)|2

| {z }
log likelihood – loss

+
1

2
|u � m̂|

2
Ĉ| {z }

log prior – vanishing regularizer

. (6)

Interpretation
m⇤ = (AT��1

0 A)�1AT��1
0 y

is mean-square minimizer of the log likelihood term,

m⇤ = arg min
u2Rd

|��1/2
0 (Au � y)|2 = lim

�!0
arg min

u2Rd

J(u, �)

Moreover, influence from prior on ⇡(u|y ; �) vanishes asymptotically since

C ⇤ = lim
�!0

�2(AT��1
0 A+ �2Ĉ�1)�1 = 0
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Consistency of the estimator – overdetermined setting

Consider again the inverse problem

Y = AU + ⌘,

with U ⇠ N(m̂, Ĉ ) and ⌘ ⇠ N(0, �2�0), but assume now that

Y = y(�) = Au† + �⌘† for fixed u†, ⌘†

This yields the posterior distribution U|Y = y(�) ⇠ N(m(�),C (�)) where

m(�) = (AT��1
0 A+ �2Ĉ�1)�1(AT��1

0 y(�) + �2Ĉ�1m̂)

and C (�) = as earlier. Consequently,

m⇤ = lim
�!0

m(�) = (AT��1
0 A)�1AT��1

0 Au† = u†

and we obtain the consistency result

N(m(�),C (�)) ) �m⇤ = �u† as � ! 0.
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Underdetermined setting

We consider the simplified inverse problem

Y = AU + ⌘ = A0U1 + ⌘,

on Rd = Rk
⇥ Rd�k where

U =


U1

U2

�
⇠ N(m̂1, Ik)⇥ N(m̂2, Id�k) with m̂1,U1 2 Rk and

m̂2,U2 2 Rd�k ,

N(m̂1, Ik)⇥ N(m̂2, Id�k) is a measure on (Rk
⇥ Rd�k ,Bk

⇥ B
d�k).

A = [A0 0] 2 Rk⇥d with non-singular A0 = Rk⇥k

⌘ ⇠ N(0, �2�0) with positive definite �0 2 Rk⇥k .

Observations only of the first k components yields

⇡(u1, u2|y) /
exp

⇣
�

1
2�

�2
|y � A0u1|2�0 �

1
2 |u1 � m̂1|

2
�

1
2 |u2 � m̂2|

2
⌘

Z
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Equivalently,
U|(Y = y) ⇠ N(m1(�),C1(�))⇥ N(m̂2, Id�k) with

m1 = (AT

0 �
�1
0 A0 + �2Ik)

�1(AT

0 �
�1
0 y + �2m̂1)

and
C1 = �2(AT

0 �
�1
0 A0 + �2Ik)

�1

Restricted to the measure on (Rk ,Bk),

N(m1(�),C1(�)) ) �
A
�1
0 y

as � ! 0,

and thus

N(m1(�),C1(�))⇥ N(m̂2, Ik) ) �
A
�1
0 y

⇥ N(m̂2, Id�k) as � ! 0.

Observation: Asymptotically perfect “correction” in observed subspace
(prior is near-irrelevant for posterior), no correction in unobserved
subspace (posterior equals prior in these components).
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Summary small-noise limit

For linear-Gaussian inverse problem

Y = AU + ⌘,

with U ⇠ N(m̂, Ĉ ) and ⌘ ⇠ N(0, �2�0) for some positive definite �0 and
parameterized in � > 0.

We obtained U|(Y = y) ⇠ N(m(�),C (�)), and in the small-noise limit
� ! 0

N(m(�),C (�)) ) �A�1y when A is invertible,

N(m(�),C (�)) ) �(AT��1
0 A)�1AT��1

0 y
in the overdetermined setting

Underdetermined setting, see [SST Theorem 2.12],

N(m(�),C (�)) ) correction in observed-subspace measure

⇥no correction in unobserved-subspace measure (it remains the prior)
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