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Overview

Bayesian inversion and optimization

Entropy and Kullback-Leibler divergence
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Summary of lecture 10

m Weak convergence of distributions P, = P.

m Bayesian inversion in the linear-Gaussian setting

Y =AU +n, my, T, Gaussian pdfs.

m Consistency of posterior m(uly) in small noise limit when 7
“disappears”, when Au = y is overdetermined, determined and
underdetermined.
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Overview

Bayesian inversion and optimization
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Problem setting

Y = G(U)+n (1)
WithGZRd%Rk,nNﬂ'n, U~myandn L U.

For an observation Y = y, we obtained
m(uly) oc my(y — G(u))my(u)
And in the linear-Gaussian setting
w(uly) o exp (= 31y~ G(u)fE ~ 3l — Al2) = exp(~)(u)

where, decomposing into loss and regularization terms,

() = — log(my(y — G(u))) and R(u) := —log(ru(u))
and  J(v) =L(u)+R(v) (2)
~—

Objective fcn

Assuming m,, Ty > 0, we extend the notation (2) to general settings:

m(uly) o< my(y — Au)my(u) = exp(—J(u)) = exp(—L(u) — R(u)).
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MAP estimators and Tikhonov regularization

Maximizing the posterior is equivalent to minimizing the objective
function:

u . —argmaxw(uly) = = arg min J(u
aplr(-1y)] = arg max 7(uly) g min J(u)

m In Gaussian setting, with U|Y =y ~ N(m, C) and U ~ N(0,\71/),
1 A
Umap = m = arg Jg]g‘d Sy - G(u)lf + §|U|2-
m This corresponds to Tikhonov regularization. Unique, closed form

solution in linear setting G(u) = Au.
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Laplace-distributed prior and LASSO regression

m Alternatively, consider the prior with iid Laplace-distributed

components

d d

mu(u) = [[wuur) oc [T e Al = ek

i=1 i=1

where
d 1/p
o= (D lul?)™", p>0.
j=1
m This yields

1
R(u) = Muly 4 “const” and  upap = arg min =|y — G(u)[2 4+ \|ul;
ueRrd 2

which corresponds to lasso (least absolute shrinkage and slection
operator) regression.
m Generally, lasso has no closed-form solution, but a solution is typically

attainable. It tends to produce more sparse solutions than Tikhonov.
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Posterior setting with R > L and regularizers so that approximately

m1(uly) oc exp(—|u|?/2) and  ma(uly) o< exp(—[u]1).
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Attainability of upap

Theorem 1

Assume that the objective fcn J : RY — R is bounded from below,

continuous and that J(u) — oo as |u| — oco. Then J attains its infimum,
which implies that

umap[m(-ly)] is attained for 7(uly) o< exp(—J(u)).

Sufficient conditions for attainable upap:
m G € C(RY R¥) and  ~ N(0,T),

m R(u) = Mulp for any A\, p >0
(as this implies J(u) — oo as |u| — 00).
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Examples of the MAP performing poorly

m “All happy families are alike; each unhappy family is unhappy in its
own way." — Leo Tolstoy, in Anna Karenina
m Paraphrasing: “All unimodal densities are alike; each multimodal
density is multimodal in its own way"
In Lecture 7 we already saw that upap can be of limited value for bimodal
densities:
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Slab-spike figure
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Low-regularity objective function

normalF = @(x) (x)."2/10;

objective = normalF(x)+1.5%(1-2*rand(size(x)));
posterior = exp(-objective);

posterior = exp(-objective)/(trapz(posterior)*dx);
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And low-regularity in higher dimensions ...

Figure: Photo by Michel Royon / Wikimedia Commons
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Overview

Entropy and Kullback-Leibler divergence
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Low-rank approximations of posteriors

m We have seen that one-parameter/vector compression of a posterior,
like MAP or posterior mean, may provide little information.

m Natural next step: Extend the compressed representations of
posteriors to best fitting in a class of candidate densities:

p = arg inf d(p,7(ly))
for some d : M x M — [0, 0)
m Here we will restrict ourselves to
A={p=PDF(N(u,C)) | 1 € RY and C € R?*9 and pos definite}

which can be viewed as a two-parameter (two-moment) compression
of a posterior.
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Kullback-Leibler divergence
Definition 2 (K-L divergence)

m For positive discrete measures: Let
P, = {Probability measures P on A | P(x) > 0 for all x € A}.

For all P,Q € P,

dki(P||Q) := ) _ log (P(X ) x).

XEA
m For positive pdfs on RY: Let
M ={meM|n(x)>0 VxecRI}.

For all m,p € M

dii(r||p) == / log (§)>7r(x) dx = ]E’T[Iog (%)]
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Properties of the K-L divergence

For all m, p € M4, it holds that dk.(7||p) € [0, c0] (similar result holds
for prob measures).

Example of infinite K-L divergence:

p(x) x e Mmoo (14+|x)72, xeR
Then

dKLoer>::jélog(;}ji)w(x)dx

:céo%wunquwnﬂnw
_ C/R —2IogE(1 + |x])) + ’X’)dx

1+ |x[)?
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Properties of the K-L divergence

dky is not a metric; neither does it saitisfy the triangle inequality nor is it
symmetric in its arguments.

Example: Let A= {1,2,3} and P(1) =P(2) =P(3) =1/3 and
Q(1) = 1/2, Q(2) = 1/3, Q(3) = 1/6. Then

dki(P||Q) = ) log ( ) xi)

x;€EA

_ log(2/3) +log(1) +10g(2) _ 1 1959
3 :

while

dt (QI[P) = 3log(3/2) +2 I(;g(l) + log(1/2) ~ 0.0872
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Properties of the K-L divergence

m K-L divergence has natural applications in information theory and
thermodynamics.

m In Bayesian inference, for a prior 7wy and a posterior 7(-|y),
dii(7(-|ly)||my) is a measure of the information gain of replacing the
prior by the posterior.

m The logarithm base in the definition of K-L divergence is flexible; use
what is most suitable for the application (here, log denotes the
natural logarithm).
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Lemma 3 (Lower bounds for K-L divergence, (SST 4.2))
For any , p € M it holds that

1
du(r, p)* < sdke(7llp) and drv(m, p)* < diu (x| p)-

Proof of first inequality:

dulmpf = 5 [ (V7= VB

_ /Rd (1 - \/E)ﬂ'dx < —;/Rd log (g)wdx - %dKL(pr).

where we used that
1
1—vx< -5 log(x) Vx € [0, o00].
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Comments

m Second inequality follows from dry(m, p) < V2dy(, p).

m The lemma implies that K-L divergence is point/density separating:
For all m,p € M4,

dii(r||p) >0

and
dKL(Ter):O <~ p=nT.

(Similar for measures.)
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Entropy in information theory

Suppose you want to transmit a very long text encoded in some alphabet,
eg., A={a b,c,d, e},

TEXT= "abbedeeeedcaababecbddaeedeccabe..."
and that

m the data-transmission problem can to good approximation be viewed
as transmitting a sequence iid characters drawn with relative
frequencies P(a), P(b) etc.

m you want to send the text over a digital communication channel with
alphabet {0,1}. Hence, each letter in your original alphabet must be
replaced with a codeword, e.g. a =101, b = 111, and your want the
digitally encoded text to be as short as possible.

m Core idea: assign shortest codeword to most frequent letter in the
text, second shortest codeword to ... (then there is a subtle issue with
uniqueness/reversibility of encoding).
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Huffman encoding
Input alphabet: A = {al, a2, a3, a4}.

0
al: 0.4
10
a2:0.35 1
110 !
. 0.6
a3:0.2 11
0.25
a4: 0.05— 111 |

Letter frequency: P(al) = 0.4, P(a2) = 0.35 etc
Digital codewords: al =0, a2 = 10, etc

NB! A shorter encoding is possible: a1 =0, a2 =1, a3 =10 and a4 =11
but this encoding is, unlike Huffman'’s, not uniquely reversible, since it is
not injective when applied to strings:

a4 — 11 a2a2+— 11
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Shannon's approach

Shannon relates the text-frequency of a letter to the information content:

Definition 4 (Information content of a character)

For an event/character a which occurs with probability P(a) we define its
information content by

I(a) = — log,(P(3))

Idealized motivation: if there are 1/P(a) many independent events,
each occurring with probability P(a), how many bits do | need to
distinguish all these events when encoded in {0,1}7

Example Alphabet A= {a, b, c,d, e} with uniform letter probability 1/5.
Then at least —[log,(1/5)]| = 3 bits are needed to distinguish the
letters/events.

24/36



Shannon entropy

Generalization: Information content straightforwardly generalizes from a
character to any text string B

I(B) := —log,(P(B))

where we recall that letter sequences, e.g., B = abeba, are assumed to
consist of iid characters,

P(abeba) = P(a)P(b)P(e)P(b)P(a)

Lemma 5 (Information content of independent events)

Let B and C denote two independent events (i.e., text strings), then the
information content of B and C is additive

I(BC) == I(B) + I(C)

Verification for two-character sequence: Consider basic events B = a
and C = b. Then

I(ab) = — log,(P(ab)) = —logy(P(a)P(b)) = I(a) + I(b)
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Shannon entropy

Question: Given a text encoded in the alphabet A = {a1,...,a,} with
relative frequencies {P(ax)}« , and a digital encoding representing the
letter ax by /(ax) bits (we allow fractional-bit encoding in this thought
experiment) then if the original text consists of N > 1 characters, how
long does the digitally encoded text become?

Answer:

N x mean num of bits for single A-character = NZ I(ak)P(ak)
k=1

Introducing the information content rv

Ip(a) := —log,r(P(a)), (k:A—[0,00], and Py (Ip(a)) = P(a)),

we may associate the above with the expected information
content/Shannon entropy

EF[le] =) Ip(an)P(ax) = — Y _ log,(P(ak))P(ax)
k=1 k=1
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Comparison of encoding methods

Assume that a text encoded in A= {as,...,a,} has true relative
frequencies {P(ax)}, but that

m you only have an approximation of the relative frequencies {Q(ax)}

m and that given Q, your encoding in {0, 1} is optimal, meaning it uses
lo(ax) = —logo(Q(ax)) bits to encode the letter ay.

K-L divergence is a comparison of efficiency Q- vs P-encoding:

[mean Q-bits in encoded A-char]

[mean P-bits in encoded A-char|

= Z(I@(ak) — hp(ak))P(ax)
_Z(Iog2 — log,(Q(ax))P(ak)

= Z log, ((g(j;))ﬂ”(ak) = dKL(PHQ)
k=1
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Best encoding in a set
Given a collection of encodings, a natural task is to find the most efficient

one:

* = in dy; (P||Q).
Q arg min kL (P|Q)

Example: Let A= {a, b,

and A = {Ql,Qz} with

Q1(a) = Qu(b) =

and

Q2(a) = Qo(b) =

Result: Q* = Q; as

dk(Pl|Q1) =

and
dk(Pl|Q2) =

c,d,e} and P(a) =P(b) = ... =P(e) = 1/5,

Qi(c) = Qu(d) =27% Qu(e) =3/4

Q2(c) = Qa(d) =272, Qa(e) =7/8.

41og,(16/5) + log,(4/15)
5

~ 0.9611

4log,(32/5) + log,(8/35)
5

~ 1.7166
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Connecting information theory and random variables

For discrete distributions P and Q on A we defined the information
content rv

Ir(a) = —log(P(a)), Ilo(a) = —log(Q(a))

and the K-L divergence from Q to P takes the form

dk(P||Q) = EF[lg — Ie] = Zlo( Z) 2)

acA

For continuous rv X, Y with densities wx, 7y € M, we define the
information content as

Iy (x) = —log(mx(x)),  Iry(x) = —log(7y(x))
and

(x)

s
diL(mx|my) = E™ [y, — Iny] = / log ( X
Rd

’R’y(X))ﬂ-X(X) dx
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Expected information gain Bayesian inversion

For the inverse problem
Y=G(U)+n (3)
with 7, my € M4 and U L 0, the posterior is also a strictly positive pdf

W(U’y) _ exp(—L(Zu))WU(u). (4)

Then
die(r([Y)l7u) = B[k, — L)

is a measure of the information gained by revising the prior into the
posterior.

Interpretation: wrt 7(-|y), Iz(,) yields the minimum expected
information content, so, as we already know,

E"C[,, — L)) = 0.
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Variational formulation of Bayes theorem

Theorem 6 (SST Thm 4.9)
For the inverse problem (3) it holds that

7(ly) = arg min dha(pllnu) + E7IL(w)

Verification: Recalling that m(uly) = %W,

che(pllrly)) = | 1og (20— plx) o

(x|y) mu

= /Rd log (I)ZL(L(U))) p(x) dx

U

= /Rd (Iog (%) + L(u)) p(x) dx + log(Z)

= dke(p||lmu) + EP[L] + log(Z)
and
m(:ly) = arg pgkiz drc(pl7(-]y))-
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Best Gaussian fit and K-L divergence
Consider again the posterior obtained from the inverse problem (3),

W(U’y) _ exp(—L(;))?Tu(U). (5)

Theorem 7

Assume that L is non-negative, continuous, and globally bounded from
above and that U ~ N(0,\~11) for some v > 0. Then there exists at least
one pdf p in

A= {p=PDF(N(u,C)) | p € RY and C € R¥*9 and pos definite}.
(6)

which satisfies the best-Gaussian-fit-of-posterior condition

dic(plm(ly)) = inf, dicu(pllm(ly))

Essential fitting idea:

make Iog( .
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Ideas in proof
For p,,c = PDF(N(u, C)) it is possible to show that for

(e, C) := dir(pu,clm(-ly))

it holds that
1(0,/) < oo, lim I(u,C) =00
| ] —o00
and
li I(p, C) = li I(p, C) = oo.
tracel(rg)—>0 (M’ ) trace(IrCn)—wo (M’ ) >

Consequently, there exists R > r > 0 s.t.
arg inf d r)e A
g inf, ki(pll™) € Arr

where

Arr={puc€ Al|p| <R, and r < trace(C) < R}.
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Best Gaussian fit by moment matching
One may also fit p to 7 by minimizing dk.(7(-|y)||p)
Theorem 8 (SST Thm 4.5)

Let w(-|y) denote the posterior density of the inverse problem (3). If
i = B™C[u] is finite and € = E™CW)[(u — a)(u — )] is finite and
positive definite then

- ~=arg inf d ,
B = A 10 k(m(|p)

and the minimizer Py, ¢ is unique.

Essential fitting idea:

7T(X|Y)) small, i.e.,

make lo
Bl p(x) p
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Comparison of the fitting approaches

= For dk(pllm(-]y)): make A5 <1

m For dii(m(-|y)||p): make L(}Jy—) S 1

1Y)
— é;Aijsgiczii %if_f
fom d,, (PITIL 1)
— Gusrion $it
oy, (WE-1)11P)

A

A%
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Next time

m discrete time continuous state-space Markov chains

m Markov chain Monte Carlo methods

m introduction to smoothing and filtering in continuous state-space
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