
Mathematics and numerics for data assimilation and
state estimation – Lecture 11

Summer semester 2020
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Overview

1 Bayesian inversion and optimization

2 Entropy and Kullback-Leibler divergence
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Summary of lecture 10

Weak convergence of distributions Pk ⇒ P.

Bayesian inversion in the linear-Gaussian setting

Y = AU + η, πU , πη Gaussian pdfs.

Consistency of posterior π(u|y) in small noise limit when η
“disappears”, when Au = y is overdetermined, determined and
underdetermined.
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Problem setting

Y = G (U) + η (1)

with G : Rd → Rk , η ∼ πη, U ∼ πU and η ⊥ U.

For an observation Y = y , we obtained

π(u|y) ∝ πη(y − G (u))πU(u)

And in the linear-Gaussian setting

π(u|y) ∝ exp
(
− 1

2
|y − G (u)|2Γ −

1

2
|u − m̂|2

Ĉ

)
= exp(−J(u))

where, decomposing into loss and regularization terms,

L(u) := − log(πη(y − G (u))) and R(u) := − log(πU(u))

and J(u)︸︷︷︸
Objective fcn

:= L(u) + R(u) (2)

Assuming πη, πU > 0, we extend the notation (2) to general settings:

π(u|y) ∝ πη(y − Au)πU(u) = exp(−J(u)) = exp(−L(u)− R(u)).
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MAP estimators and Tikhonov regularization

Maximizing the posterior is equivalent to minimizing the objective
function:

uMAP [π(·|y)] = arg max
u∈Rd

π(u|y) = = arg min
u∈Rd

J(u)

In Gaussian setting, with U|Y = y ∼ N(m,C ) and U ∼ N(0, λ−1I ),

uMAP = m = arg min
u∈Rd

1

2
|y − G (u)|2Γ +

λ

2
|u|2.

This corresponds to Tikhonov regularization. Unique, closed form
solution in linear setting G (u) = Au.
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Laplace-distributed prior and LASSO regression
Alternatively, consider the prior with iid Laplace-distributed
components

πU(u) =
d∏

i=1

πUi
(ui ) ∝

d∏
i=1

e−λ|ui | = e−λ|u|1

where

|u|p :=
( d∑

j=1

|uj |p
)1/p

, p > 0.

This yields

R(u) = λ|u|1 + “const” and uMAP = arg min
u∈Rd

1

2
|y −G (u)|2Γ +λ|u|1

which corresponds to lasso (least absolute shrinkage and slection
operator) regression.

Generally, lasso has no closed-form solution, but a solution is typically
attainable. It tends to produce more sparse solutions than Tikhonov.
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Posterior setting with R� L and regularizers so that approximately

π1(u|y) ∝ exp(−|u|2/2) and π2(u|y) ∝ exp(−|u|1).
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Attainability of uMAP

Theorem 1

Assume that the objective fcn J : Rd → R is bounded from below,
continuous and that J(u)→∞ as |u| → ∞. Then J attains its infimum,
which implies that

uMAP [π(·|y)] is attained for π(u|y) ∝ exp(−J(u)).

Sufficient conditions for attainable uMAP :

G ∈ C (Rd ,Rk) and η ∼ N(0, Γ),

R(u) = λ|u|pp for any λ, p > 0
(as this implies J(u)→∞ as |u| → ∞).
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Examples of the MAP performing poorly
“All happy families are alike; each unhappy family is unhappy in its
own way.” — Leo Tolstoy, in Anna Karenina
Paraphrasing: “All unimodal densities are alike; each multimodal
density is multimodal in its own way”

In Lecture 7 we already saw that uMAP can be of limited value for bimodal
densities:
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Slab-spike figure

For

π(u|y) =
exp(−|u|2/0.02) + 0.3exp(−|u − 10|2/18)√

2π
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Low-regularity objective function

normalF = @(x) (x).^2/10;

objective = normalF(x)+1.5*(1-2*rand(size(x)));

posterior = exp(-objective);

posterior = exp(-objective)/(trapz(posterior)*dx);
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And low-regularity in higher dimensions . . .

Figure: Photo by Michel Royon / Wikimedia Commons
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Low-rank approximations of posteriors

We have seen that one-parameter/vector compression of a posterior,
like MAP or posterior mean, may provide little information.

Natural next step: Extend the compressed representations of
posteriors to best fitting in a class of candidate densities:

p∗ = arg inf
p∈A

d(p, π(·|y))

for some d :M×M→ [0,∞)

Here we will restrict ourselves to

A = {p = PDF (N(µ,C )) | µ ∈ Rd and C ∈ Rd×d and pos definite}

which can be viewed as a two-parameter (two-moment) compression
of a posterior.
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Kullback-Leibler divergence

Definition 2 (K-L divergence)

For positive discrete measures: Let

P+ = {Probability measures P on A | P(x) > 0 for all x ∈ A}.

For all P,Q ∈ P+,

dKL(P||Q) :=
∑
x∈A

log
( P(x)

Q(x)

)
P(x).

For positive pdfs on Rd : Let

M+ := {π ∈M | π(x) > 0 ∀x ∈ Rd}.

For all π, p ∈M+

dKL(π||p) :=

∫
Rd

log
(π(x)

p(x)

)
π(x) dx = Eπ

[
log
(π
p

)]
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Properties of the K-L divergence

For all π, p ∈M+, it holds that dKL(π||p) ∈ [0,∞] (similar result holds
for prob measures).

Example of infinite K-L divergence:

p(x) ∝ e−|x |, π ∝ (1 + |x |)−2, x ∈ R

Then

dKL(π||p) =

∫
R

log
(π(x)

p(x)

)
π(x) dx

= C

∫
R

(
log(π(x))− log(p(x))

)
π(x) dx

= C

∫
R

−2 log((1 + |x |)) + |x |
(1 + |x |)2

)
dx

=∞.
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Properties of the K-L divergence

dKL is not a metric; neither does it saitisfy the triangle inequality nor is it
symmetric in its arguments.

Example: Let A = {1, 2, 3} and P(1) = P(2) = P(3) = 1/3 and
Q(1) = 1/2, Q(2) = 1/3, Q(3) = 1/6. Then

dKL(P||Q) =
∑
xi∈A

log
( P(xi )

Q(xi )

)
P(xi )

=
log(2/3) + log(1) + log(2)

3
≈ 0.0959

while

dKL(Q||P) =
3 log(3/2) + 2 log(1) + log(1/2)

6
≈ 0.0872
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Properties of the K-L divergence

K-L divergence has natural applications in information theory and
thermodynamics.

In Bayesian inference, for a prior πU and a posterior π(·|y),
dKL(π(·|y)||πU) is a measure of the information gain of replacing the
prior by the posterior.

The logarithm base in the definition of K-L divergence is flexible; use
what is most suitable for the application (here, log denotes the
natural logarithm).
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Lemma 3 (Lower bounds for K-L divergence, (SST 4.2))

For any π, p ∈M+ it holds that

dH(π, p)2 ≤ 1

2
dKL(π||p) and dTV (π, p)2 ≤ dKL(π||p).

Proof of first inequality:

dH(π, p)2 =
1

2

∫
Rd

(
√
π −√p)2 dx

=

=

=

∫
Rd

(
1−

√
p

π

)
π dx ≤ −1

2

∫
Rd

log
(p
π

)
π dx =

1

2
dKL(π||p).

where we used that

1−
√
x ≤ −1

2
log(x) ∀x ∈ [0,∞].
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Comments

Second inequality follows from dTV (π, p) ≤
√

2dH(π, p).

The lemma implies that K-L divergence is point/density separating:
For all π, p ∈M+,

dKL(π||p) ≥ 0

and
dKL(π||p) = 0 ⇐⇒ p = π.

(Similar for measures.)
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Entropy in information theory
Suppose you want to transmit a very long text encoded in some alphabet,
e.g., A = {a, b, c , d , e},

TEXT= "abbedeeeedcaababecbddaeedeccabe..."

and that

the data-transmission problem can to good approximation be viewed
as transmitting a sequence iid characters drawn with relative
frequencies P(a), P(b) etc.

you want to send the text over a digital communication channel with
alphabet {0, 1}. Hence, each letter in your original alphabet must be
replaced with a codeword, e.g. a = 101, b = 111, and your want the
digitally encoded text to be as short as possible.

Core idea: assign shortest codeword to most frequent letter in the
text, second shortest codeword to . . . (then there is a subtle issue with
uniqueness/reversibility of encoding).
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Huffman encoding
Input alphabet: A = {a1, a2, a3, a4}.

Letter frequency: P(a1) = 0.4, P(a2) = 0.35 etc

Digital codewords: a1 = 0, a2 = 10, etc

NB! A shorter encoding is possible: a1 = 0, a2 = 1, a3 = 10 and a4 = 11
but this encoding is, unlike Huffman’s, not uniquely reversible, since it is
not injective when applied to strings:

a4 7→ 11 a2a2 7→ 11
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Shannon’s approach

Shannon relates the text-frequency of a letter to the information content:

Definition 4 (Information content of a character)

For an event/character a which occurs with probability P(a) we define its
information content by

I (a) := − log2(P(a))

Idealized motivation: if there are 1/P(a) many independent events,
each occurring with probability P(a), how many bits do I need to
distinguish all these events when encoded in {0, 1}?

Example Alphabet A = {a, b, c , d , e} with uniform letter probability 1/5.
Then at least −dlog2(1/5)e = 3 bits are needed to distinguish the
letters/events.
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Shannon entropy
Generalization: Information content straightforwardly generalizes from a
character to any text string B

I (B) := − log2(P(B))

where we recall that letter sequences, e.g., B = abeba, are assumed to
consist of iid characters,

P(abeba) = P(a)P(b)P(e)P(b)P(a)

Lemma 5 (Information content of independent events)

Let B and C denote two independent events (i.e., text strings), then the
information content of B and C is additive

I (BC ) := I (B) + I (C )

Verification for two-character sequence: Consider basic events B = a
and C = b. Then

I (ab) = − log2(P(ab)) = − log2(P(a)P(b)) = I (a) + I (b)
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Shannon entropy
Question: Given a text encoded in the alphabet A = {a1, . . . , an} with
relative frequencies {P(ak)}k , and a digital encoding representing the
letter ak by I (ak) bits (we allow fractional-bit encoding in this thought
experiment) then if the original text consists of N � 1 characters, how
long does the digitally encoded text become?
Answer:

N ×mean num of bits for single A-character = N
n∑

k=1

I (ak)P(ak)

Introducing the information content rv

IP(a) := − log2(P(a)), (IP : A→ [0,∞], and PIP(IP(a)) = P(a)),

we may associate the above with the expected information
content/Shannon entropy

EP[IP] =
n∑

k=1

IP(ak)P(ak) = −
n∑

k=1

log2(P(ak))P(ak)
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Comparison of encoding methods
Assume that a text encoded in A = {a1, . . . , an} has true relative
frequencies {P(ak)}, but that

you only have an approximation of the relative frequencies {Q(ak)}
and that given Q, your encoding in {0, 1} is optimal, meaning it uses
IQ(ak) = − log2(Q(ak)) bits to encode the letter ak .

K-L divergence is a comparison of efficiency Q- vs P-encoding:

[mean Q-bits in encoded A-char] − [mean P-bits in encoded A-char]

=
n∑

k=1

(IQ(ak)− IP(ak))P(ak)

=
n∑

k=1

(log2(P(ak))− log2(Q(ak))P(ak)

=
n∑

k=1

log2

( P(ak)

Q(ak)

)
P(ak) = dKL(P||Q)
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Best encoding in a set
Given a collection of encodings, a natural task is to find the most efficient
one:

Q∗ = arg min
Q∈A

dKL(P||Q).

Example: Let A = {a, b, c , d , e} and P(a) = P(b) = . . . = P(e) = 1/5,
and A = {Q1,Q2} with

Q1(a) = Q1(b) = Q1(c) = Q1(d) = 2−4, Q1(e) = 3/4

and
Q2(a) = Q2(b) = Q2(c) = Q2(d) = 2−5, Q2(e) = 7/8.

Result: Q∗ = Q1 as

dKL(P||Q1) =
4 log2(16/5) + log2(4/15)

5
≈ 0.9611

and

dKL(P||Q2) =
4 log2(32/5) + log2(8/35)

5
≈ 1.7166
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Connecting information theory and random variables
For discrete distributions P and Q on A we defined the information
content rv

IP(a) = − log(P(a)), IQ(a) = − log(Q(a))

and the K-L divergence from Q to P takes the form

dKL(P||Q) = EP[IQ − IP] =
∑
a∈A

log
( P(a)

Q(a)

)
P(a)

For continuous rv X ,Y with densities πX , πY ∈M+, we define the
information content as

IπX (x) = − log(πX (x)), IπY (x) = − log(πY (x))

and

dKL(πX ||πY ) = EπX [IπY − IπX ] =

∫
Rd

log
(πX (x)

πY (x)

)
πX (x) dx
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Expected information gain Bayesian inversion
For the inverse problem

Y = G (U) + η (3)

with πη, πU ∈M+ and U ⊥ η, the posterior is also a strictly positive pdf

π(u|y) =
exp(−L(u))πU(u)

Z
. (4)

Then
dKL(π(·|y)||πU) = Eπ(·|y)[IπU − Iπ(·|y)]

is a measure of the information gained by revising the prior into the
posterior.

Interpretation: wrt π(·|y), Iπ(·|y) yields the minimum expected
information content, so, as we already know,

Eπ(·|y)[IπU − Iπ(·|y)] ≥ 0.
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Variational formulation of Bayes theorem

Theorem 6 (SST Thm 4.9)

For the inverse problem (3) it holds that

π(·|y) = arg min
p∈M+

dKL(p||πU) + Ep[L(u)]

Verification: Recalling that π(u|y) = exp(−L(u))πU(u)
Z ,

dKL(p||π(·|y)) =

∫
Rd

log
( p πU
π(x |y)πU

)
p(x) dx

=

∫
Rd

log
(pZ exp(L(u))

πU

)
p(x) dx

=

∫
Rd

(
log
( p

πU

)
+ L(u)

)
p(x) dx + log(Z )

= dKL(p||πU) + Ep[L] + log(Z )

and
π(·|y) = arg min

p∈M+

dKL(p||π(·|y)).
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Best Gaussian fit and K-L divergence
Consider again the posterior obtained from the inverse problem (3),

π(u|y) =
exp(−L(u))πU(u)

Z
. (5)

Theorem 7

Assume that L is non-negative, continuous, and globally bounded from
above and that U ∼ N(0, λ−1I ) for some γ > 0. Then there exists at least
one pdf p in

A := {ρ = PDF (N(µ,C )) | µ ∈ Rd and C ∈ Rd×d and pos definite}.
(6)

which satisfies the best-Gaussian-fit-of-posterior condition

dKL(p||π(·|y)) = inf
ρ∈A

dKL(ρ||π(·|y))

Essential fitting idea:

make log
( p(x)

π(x |y)

)
small i.e.,

p

π(·|y)
/ 1.
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Ideas in proof
For pµ,C = PDF (N(µ,C )) it is possible to show that for

I (µ,C ) := dKL(pµ,C ||π(·|y))

it holds that
I (0, I ) <∞, lim

|µ|→∞
I (µ,C ) =∞

and
lim

trace(C)→0
I (µ,C ) = lim

trace(C)→∞
I (µ,C ) =∞.

Consequently, there exists R > r > 0 s.t.

arg inf
p∈A

dKL(p||π) ∈ Ãr ,R

where

Ãr ,R = {pµ,C ∈ A | |µ| < R, and r < trace(C ) < R}.
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Best Gaussian fit by moment matching

One may also fit p to π by minimizing dKL(π(·|y)||p)

Theorem 8 (SST Thm 4.5)

Let π(·|y) denote the posterior density of the inverse problem (3). If
µ̄ = Eπ(·|y)[u] is finite and C̄ = Eπ(·|y)[(u − µ̄)(u − µ̄)T ] is finite and
positive definite then

pµ̄,C̄ = arg inf
p∈A

dKL(π||p),

and the minimizer pµ̄,C̄ is unique.

Essential fitting idea:

make log(
π(x |y)

p(x)
) small, i.e.,

π(·|y)

p
/ 1.
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Comparison of the fitting approaches
For dKL(p||π(·|y)): make p

π(·|y) / 1

For dKL(π(·|y)||p): make π(·|y)
p / 1

-IC- ly)
- Gaussian fit
from dialPHTHYD
- Gaussian fit
from dkhutl.ly) HP)t.EE#
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Next time

discrete time continuous state-space Markov chains

Markov chain Monte Carlo methods

introduction to smoothing and filtering in continuous state-space
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