
Mathematics and numerics for data assimilation and
state estimation – Lecture 11

Summer semester 2020
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Overview

1 Bayesian inversion and optimization

2 Entropy and Kullback-Leibler divergence
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Summary of lecture 10

Weak convergence of distributions Pk ) P.

Bayesian inversion in the linear-Gaussian setting

Y = AU + ⌘, ⇡U ,⇡⌘ Gaussian pdfs.

Consistency of posterior ⇡(u|y) in small noise limit when ⌘
“disappears”, when A is overdetermined, determined and
underdetermined.
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Problem setting

Y = G (U) + ⌘ (1)

with G : Rd ! Rk , ⌘ ⇠ ⇡⌘, U ⇠ ⇡U and ⌘ ? U.

For an observation Y = y , we obtained

⇡(u|y) / ⇡⌘(y � Au)⇡U(u)

And in the linear-Gaussian setting

⇡(u|y) / exp
⇣
� 1

2
|y � G (u)|2� �

1

2
|u � m̂|2

Ĉ

⌘
= exp(�J(u))

where, decomposing into loss and regularization terms,

L(u) := � log(⇡⌘(y � G (u))) and R(u) := � log(⇡U(u))

and J(u)|{z}
Objective fcn

:= L(u) + R(u) (2)

Assuming ⇡⌘,⇡U > 0, we extend the notation (2) to general settings:

⇡(u|y) / ⇡⌘(y � Au)⇡U(u) = exp(�J(u)) = exp(�L(u)� R(u)).
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MAP estimators and Tikhonov regularization

Maximizing the posterior is equivalent to minimizing the objective
function:

uMAP [⇡(·|y)] = arg max
u2Rd

⇡(u|y) = = arg min
u2Rd

J(u)

In Gaussian setting, with U|Y = y ⇠ N(m,C ) and U ⇠ N(0,��1I ),

uMAP = m = arg min
u2Rd

1

2
|y � G (u)|2� +

�

2
|u|2.

This corresponds to Tikhonov regularization. Unique, closed form
solution in linear setting G (u) = Au.
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Laplace-distributed prior and LASSO regression
Alternatively, consider the prior with iid Laplace-distributed
components

⇡U(u) =
dY

i=1

⇡Ui
(ui ) /

dY

i=1

e��|ui | = e��|u|1

where

|u|p :=
⇣ dX

j=1

|uj |p
⌘1/p

, p > 0.

This yields

R(u) / �|u|1 and uMAP = arg min
u2Rd

1

2
|y � G (u)|2� + �|u|1

which corresponds to lasso (least absolute shrinkage and slection
operator) regression.
Generally, lasso has no closed-form solution, but a solution is typically
attainable. It tends to produce more sparse solutions than Tikhonov.
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Posterior setting with R � L and regularizers so that approximately

⇡1(u|y) / exp(�|u|2/2) and ⇡2(u|y) / exp(�|u|1).
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Attainability of uMAP

Theorem 1

Assume that the objective fcn J : Rd ! R is bounded from below,
continuous and that J(u) ! 1 as |u| ! 1. Then J attains its infimum,
which implies that

uMAP [⇡(·|y)] is attained for ⇡(u|y) / exp(�J(u)).

Su�cient conditions for attainable uMAP :

G 2 C (Rd ,Rk) and ⌘ ⇠ N(0, �),

R(u) = �|u|pp for any �, p > 0
(as this implies J(u) ! 1 as |u| ! 1).
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Examples of the MAP performing poorly

“All happy families are alike; each unhappy family is unhappy in its
own way.” Leo Tolstoy, in Anna Karenina

Paraphrasing: “All unimodal densities are alike; each multimodal
density is multimodal in its own way”

In Lecture 7 we already saw that uMAP can be of limited value for bimodal
densities:
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Slab-spike figure

For

⇡(u|y) = exp(�|u|2/0.02) + 0.3exp(�|u � 10|2/18)p
2⇡
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Low-regularity objective function

normalF = @(x) (x).^2/10;

objective = normalF(x)+1.5*(1-2*rand(size(x)));

posterior = exp(-objective);

posterior = exp(-objective)/(trapz(posterior)*dx);
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And low-regularity in higher dimensions . . .

Figure: Photo by Michel Royon / Wikimedia Commons
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Low-rank approximations of posteriors

We have seen that one-parameter/vector compression of a posterior,
like MAP or posterior mean, may provide little information.

Natural next step: Extend the compressed representations of
posteriors to best fitting in a class of candidate densities:

p⇤ = arg inf
p2A

d(p,⇡(·|y))

for some d : M⇥M ! [0,1)

Here we will restrict ourselves to

A = {p = PDF (N(µ,C )) | µ 2 Rd and C 2 Rd⇥d and pos definite}

which can be viewed as a two-parameter (two-moment) compression
of a posterior.
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Kullback-Leibler divergence

Definition 2 (K-L divergence)

For positive discrete measures: Let

P+ = {Probability measures on A | P(x),Q(x) > 0 for all x 2 A}.

For all P,Q 2 P+,

dKL(P||Q) :=
X

x2A
log

⇣ P(x)
Q(x)

⌘
P(x).

For positive pdfs on Rd : Let

M+ := {⇡ 2 M | ⇡(x) > 0 8x 2 Rd}.

For all ⇡, p 2 M+

dKL(⇡||p) :=
Z

Rd

log
⇣⇡(x)
p(x)

⌘
⇡(x) dx = E⇡

h
log

⇣⇡
p

⌘i
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Properties of the K-L divergence

For all ⇡, p 2 M+, it holds that dKL(⇡||p) 2 [0,1] (similar result holds
for prob measures).

Example of infinite K-L divergence:

p(x) / e�|x |, ⇡ / (1 + |x |)�2, x 2 R

Then

dKL(⇡||p) =
Z

R
log

⇣⇡(x)
p(x)

⌘
⇡(x) dx

= C

Z

R

⇣
log(⇡(x))� log(p(x))

⌘
⇡(x) dx

= C

Z

R

�2 log((1 + |x |)) + |x |
(1 + |x |)2

⌘
⇡(x)dx

= 1.
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Properties of the K-L divergence

dKL is not a metric; neither does it saitisfy the triangle inequality nor is it
symmetric in its arguments.

Example: Let A = {1, 2, 3} and P(1) = P(2) = P(3) = 1/3 and
Q(1) = 1/2, Q(2) = 1/3, Q(3) = 1/6. Then

dKL(P||Q) =
X

xi2A
log

⇣ P(xi )
Q(xi )

⌘
P(xi )

=
log(2/3) + log(1) + log(2)

3
⇡ 0.0959

while

dKL(Q||P) = 3 log(3/2) + 2 log(1) + log(1/2)

6
⇡ 0.0872
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Properties of the K-L divergence

K-L divergence has natural applications in information theory and
thermodynamics.

In Bayesian inference, for a prior ⇡U and a posterior ⇡(·|y),
dKL(⇡(·|y),⇡U) is a measure of the information gain of replacing the
prior by the posterior.

The logarithm base in the definition of K-L divergence is flexible; use
what is most suitable for the application (here, log denotes the
natural logarithm).
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Lemma 3 (Lower bounds for K-L divergence, (SST 4.2))

For any pi , p 2 M+ it holds that

dH(⇡, p)
2  1

2
dKL(⇡||p) and dTV (⇡, p)

2  dKL(⇡||p).

Proof of first inequality:

dH(⇡, p)
2 =

1

2

Z

Rd

(
p
⇡ �p

p)2 dx

=

=

=

Z

Rd

⇣
1�

r
p

⇡

⌘
⇡ dx  �1

2

Z

Rd

log
⇣p
⇡

⌘
⇡ dx =

1

2
dKL(⇡||p).

where we used that

1�
p
x  �1

2
log(x) 8x 2 [0,1].
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Comments

Second inequality follows from dTV (⇡, p) 
p
2dH(⇡, p).

The lemma implies that K-L divergence is point/density separating:
For all ⇡, p 2 M+,

dKL(⇡||p) � 0

and
dKL(⇡||p) = 0 () p = ⇡.

(Similar for measures.)
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Entropy in information theory
Suppose you want to transmit a very long text encoded in some alphabet,
e.g., A = {a, b, c , d , e},

TEXT= "abbedeeeedcaababecbddaeedeccabe..."

and that

the data-transmission problem can to good approximation be viewed
as transmitting a sequence iid characters drawn with relative
frequencies P(a), P(b) etc.
you want to send the text over a digital communication channel with
alphabet {0, 1}. Hence, each letter in your original alphabet must be
replaced with a codeword, e.g. a = 101, b = 111, and your want the
digitally encoded text to be as short as possible.

Core idea: assign shortest codeword to most frequent letter in the
text, second shortest codeword to . . . (then there is a subtle issue with
uniqueness/reversibility of encoding).
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Hu↵man encoding
Input alphabet: A = {a1, a2, a3, a4}.

Letter frequency: P(a1) = 0.4, P(a2) = 0.35 etc

Digital codewords: a1 = 0, a2 = 10, etc

NB! A shorter encoding is possible: a1 = 0, a2 = 1, a3 = 10 and a4 = 11
but this encoding is, unlike Hu↵man’s, not uniquely reversible, since it is
not injective when applied to strings:

a4 7! 11 a2a2 7! 11
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Shannon’s approach

Shannon relates the text-frequency of a letter to the information content:

Definition 4 (Information content of a character)

For an event/character a which occurs with probability P(a) we define its
information content by

I (a) := � log2(P(a))

Idealized motivation: if there are 1/P(a) many independent events,
each occurring with probability P(a), how many bits do I need to
distinguish all these events when encoded in {0, 1}?

Example Alphabet A = {a, b, c , d , e} with uniform letter probability 1/5.
Then at least �dlog2(1/5)e = 3 bits are needed to distinguish the
letters/events.
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Shannon entropy
Generalization: Information content straightforwardly generalizes from a
character to any text string B

I (B) := � log2(P(B))

where we recall that letter sequences, e.g., B = abeba, are assumed to
consist of iid characters,

P(abeba) = P(a)P(b)P(e)P(b)P(a)

Lemma 5 (Information content of independent events)

Let B and C denote two independent events (i.e., text strings), then the
information content of B and C is additive

I (BC ) := I (B) + I (C )

Verification for two-character sequence: Consider basic events B = a
and C = b. Then

I (ab) = � log2(P(ab)) = � log2(P(a)P(b)) = I (a) + I (b)
25 / 36
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Shannon entropy
Question: Given a text encoded in the alphabet A = {a1, . . . , an} with
relative frequencies {P(ak)}k , and a digital encoding representing the
letter ak by I (ak) bits (we allow fractional-bit encoding in this thought
experiment) then if the original text consists of N � 1 characters, how
long does the digitally encoded text become?
Answer:

N ⇥mean num of bits for single A-character = N
nX

k=1

I (ak)P(ak)

Introducing the information content rv

IP(a) := � log2(P(a)), (IP : A ! [0,1], and PIP(IP(a)) = P(a)),

we may associate the above with the expected information
content/Shannon entropy

EP[IP] =
nX

k=1

IP(ak)P(ak) = �
nX

k=1

log2(P(ak))P(ak)
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Comparison of encoding methods
Assume that a text encoded in A = {a1, . . . , an} has true relative
frequencies {P(ak)}, but that

you only have an approximation of the relative frequencies {Q(ak)}
and that given Q, your encoding in {0, 1} is optimal, meaning it uses
IQ(ak) = � log2(Q(ak)) bits to encode the letter ak .

K-L divergence is a comparison of e�ciency Q- vs P-encoding:

[mean Q-bits in encoded A-char] � [mean P-bits in encoded A-char]

=
nX

k=1

(IQ(ak)� IP(ak))P(ak)

=
nX

k=1

(log2(P(ak))� log2(Q(ak))P(ak)

=
nX

k=1

log2

⇣ P(ak)
Q(ak)

⌘
P(ak) = dKL(P||Q)
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Best encoding in a set
Given a collection of encodings, a natural task is to find the most e�cient
one:

Q⇤ = arg min
Q2A

dKL(P||Q).

Example: Let A = {a, b, c , d , e} and P(a) = P(b) = . . . = P(d) = 1/5,
and A = {Q1,Q2} with

Q1(a) = Q1(b) = Q1(c) = Q1(d) = 2�4, Q1(e) = 3/4

and
Q2(a) = Q2(b) = Q2(c) = Q2(d) = 2�5, Q2(e) = 7/8.

Result: Q⇤ = Q1 as

dKL(P||Q1) =
4 log2(16/5) + log2(4/15)

5
⇡ 0.9611

and

dKL(P||Q2) =
4 log2(32/5) + log2(8/35)

5
⇡ 1.7166
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Connecting information theory and random variables
For discrete distributions P and Q on A we defined the information
content rv

IP(a) = � log(P(a)), IQ(a) = � log(Q(a))

and the K-L divergence from Q to P takes the form

dKL(P||Q) = EP[IQ � IP] =
X

a2A
log

⇣ P(a)
Q(a)

⌘
P(a)

For continuous rv X ,Y with densities ⇡X ,⇡Y 2 M+, we define the
information content as

I⇡X
(x) = � log(⇡X (x)), I⇡Y

(x) = � log(⇡Y (x))

and

dKL(⇡X ||⇡Y ) = E⇡X [I⇡Y
� I⇡X

] =

Z

Rd

log
⇣⇡X (x)
⇡Y (x)

⌘
⇡X (x) dx
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Expected information gain Bayesian inversion
For the additive Gaussian inverse problem

Y = G (U) + ⌘ (3)

with ⇡⌘,⇡U 2 M+ and U ? ⌘, the posterior is also a strictly positive pdf

⇡(u|y) = exp(�L(u))⇡U(u)

Z
. (4)

Then
dKL(⇡(·|y)||⇡U) = E⇡(·|y)[I⇡U

� I⇡(·|y)]

is a measure of the information gained by revising the prior ⇡U into the
posterior dKL(⇡(·|y)||⇡U)

Interpretation: wrt ⇡(·|y), I⇡(·|y) yields the minimum expected
information content, so, as we already know,

E⇡(·|y)[I⇡U
� I⇡(·|y)] � 0.
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Variational formulation of Bayes theorem

Theorem 6 (SST Thm 4.9)

For the inverse problem (3) it holds that

⇡(·|y) = arg min
p2M+

dKL(p||⇡U) + Ep[L(u)]

Verification: Recalling that ⇡(·|y) = exp(�L(u))⇡U(u)

Z
,

dKL(p||⇡(·|y)) =
Z

Rd

log
⇣ p ⇡U
⇡(x |y)⇡U

⌘
p(x) dx

=

Z

Rd

log
⇣pZ exp(L(u))

⇡U

⌘
p(x) dx

=

Z

Rd

log
⇣ p

⇡U
) + L(u)

⌘
p(x) dx + log(Z )

= dKL(p||⇡U) + Ep[L] + log(Z )

and
⇡(·|y) = arg min

p2M+

dKL(p||⇡(·|y)).
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Best Gaussian fit and K-L divergence
Consider again the posterior obtained from the inverse problem (3),

⇡(u|y) = exp(�L(u))⇡U(u)

Z
. (5)

Theorem 7
Assume that L is non-negative, continuous, and globally bounded from
above and that U ⇠ N(0,��1I ) for some � > 0. Then there exists at least
one pdf p in

A := {⇢ = PDF (N(µ,C )) | µ 2 Rd and C 2 Rd⇥d and pos definite}.
(6)

which satisfies the best-Gaussian-fit-of-posterior condition

dKL(p||⇡(·|y)) = inf
⇢2A

dKL(⇢||⇡(·|y))

Essential fitting idea:

make log
⇣ p(x)

⇡(x |y)

⌘
small i.e.,

p

⇡(·|y) / 1.
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Ideas in proof
For pµ,C = PDF (N(µ,C )) it is possible to show that for

I (µ,C ) := dKL(pµ,C ||⇡(·|y))

it holds that
I (0, I ) < 1, lim

|µ|!1
I (µ,C ) = 1

and
lim

trace(C)!0

I (µ,C ) = lim
trace(C)!1

I (µ,C ) = 1.

Consequently, there exists R > r > 0 s.t.

arg inf
p2A

dKL(p||⇡) 2 Ãr ,R

where

Ãr ,R = {pµ,C 2 A | |µ| < R , and r < trace(C ) < R}.
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Best Gaussian fit by moment matching

One may also fit p to ⇡ by minimizing dKL(⇡(·|y)||p)

Theorem 8 (SST Thm 4.5)

Let ⇡(·|y) denote the posterior density of the inverse problem (3). If
µ̄ = E⇡(·|y)[u] is finite and C̄ = E⇡(·|y)[(u � µ̄)(u � µ̄)T ] is finite and
positive definite then

pµ̄,C̄ = arg inf
p2A

dKL(⇡||p),

and the minimizer pµ̄,C̄ is unique.

Essential fitting idea:

make log(
⇡(x |y)
p(x)

) small, i.e.,
⇡(·|y)
p

/ 1.
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Comparison of the fitting approaches
For dKL(p||⇡(·|y)): make p

⇡(·|y) / 1

For dKL(⇡(·|y)||p): make ⇡(·|y)
p

/ 1

-IC- ly)
- Gaussian fit
from dialPHTHYD
- Gaussian fit
from dkhutl.ly) HP)t.EE#
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Next time

discrete time continuous state-space Markov chains

Markov chain Monte Carlo methods

introduction to smoothing and filtering in continuous state-space
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