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Summary of lecture 11

Bayesian inversion and optimization

Y = G (U) + η, η ∼ N(0, Γ)

MAP estimator corresponds to a form of Tikhonov regularization
when prior is Gaussian, and to LASSO regression when it is
component-wise iid-Laplace distributed.

Kullback-Leibler divergence and information gain and fitting of
Gaussian to posteriors.
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We recall that by Bayesian inversion

Y = G (U) + η,

and observation Y = y leads to the posterior density

π(u|y) =
g(u)πU(u)

Z
, where g(u) := πη(y − G (u)).

Problem: Given a quantity of interest (QoI) f : Rd → R, we seek to
estimate the mean ∫

f (u)π(u|y)du

Plan: Present different Monte Carlo methods for approximating said
mean.
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Plain Monte Carlo method

Given a pdf π ∈M on Rd , we seek to approximate

π[f ] := Eπ[f ].

We introduce the empirical (random) probability measure

πMMC :=
1

M

M∑
k=1

δUk
, where Uk ∼ π are iid (1)

and the Monte Carlo estimator

πMMC [f ] =
1

M

M∑
k=1

f (Uk)

Comment: regardless of whether π̂ is a pdf or a probability measure we
denote by π̂[f ] the expectation of f (X ) where X ∼ π̂.
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Theorem 1 (Convergence results SST 5.1)

For any f : Rd → R such that π[|f |] <∞,

E
[
πMMC [f ]

]
= π[f ] and E

[(
πMMC [f ]− π[f ]

)2
]

=
Var[f ]

M
,

where Var[f ] = π[f 2]− (π[f ])2.

Proof ideas: The assumption π[|f |] <∞ is a sufficient condition for
π[f ] being well-defined, and

E
[
πMMC [f ]

]
= = π[f ].

And using that π[f ] = E [ f (U)] and {f (Uk)− E [ f (U)]}k are iid,

E
[(
πMMC [f ]− π[f ]

)2
]

=
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Remark:

Whenever ‖f ‖L∞(Rd ) ≤ 1, then

Var[f ] = π[f 2]− (π[f ])2 ≤ 1

which implies that

sup
‖f ‖

L∞(Rd )
≤1

E
[(
πMMC [f ]− π[f ]

)2
]
≤ 1

M
,
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Example 2 (Volume ratio unit ball / smallest containing cube)

Let Bd = {x ∈ Rd | |x | ≤ 1} and π = PDF (U(−1, 1)d). Then for
f (x) = 1Bd

(x)

π[f ] = 2−d
∫

[−1,1]d
1Bd

(x)dx

= 2−dLeb(Bd) =
Leb(Bd)

Leb([−1, 1]d)

=
πd/2

2d Γ(d/2 + 1)

Since ‖f ‖∞ ≤ 1, √
E
[(
πMMC [f ]− π[f ]

)2
]
≤ 1√

M
.

Let us numerically confirm that root-mean-square convergence rate is
independent of d .
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Efficiency of Monte Carlo

Given an accuracy constraint

E
[

(πMMC [f ]− π[f ])2
]
≤ ε2

it is sufficient to use M = dVar[f ]/ε2e.

Verification: By theorem

E
[

(πMMC [f ]− π[f ])2
]

= Var[πMMC [f ]] =
Var[f ]

M

Note: It is often possible to reduce the magnitude of Var[f ] and improve
the efficiency of Monte Carlo methods.
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Importance sampling

π[f ] =

∫
Rd

f (x)π(x) dx

can alternatively be computed by the expectation wrt to another pdf π̂
provided f π is dominated by π̂, meaning that

π̂(x) = 0 =⇒ f (x)π(x) = 0.

Then

π[f ] =

∫
Rd

f (x)π(x) dx =

∫
Rd

f (x)
π(x)

π̂(x)︸ ︷︷ ︸
W (x)

π̂(x) dx = π̂[Wf ]

IS algorithm:

1 Select a π̂ that domintes f π.

2 Generate U1, . . . ,UM
iid∼ π̂ and compute

π̂MMC [Wf ] =
1

M

M∑
i=1

W (Ui )f (Ui ) =
1

M

M∑
i=1

π(Ui )

π̂(Ui )
f (Ui )
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The convergence rate of IS

E
[

(π̂MMC [Wf ]− π[f ])2
]

= Var[π̂MMC [Wf ]] =
Varπ̂[Wf ]

M

So performance of IS compared to plain Monte Carlo relates to ratio

Var[π̂MMC [Wf ]]

Var[πMMC [f ]]
=

Varπ̂[Wf ]

Varπ[f ]
.

Optimization: Find π̂ dominating f π that minimizes

Varπ̂

[π
π̂
f
]
.

In real optimization problem, i.e., for efficiency of method rather than
convergence rate, the cost of sampling from π̂ should also be included.
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Convergence of random variables – in the probability space
A different viewpoint, leading to analogous results as the above, is to
extend the sampling theory in Lecture 4 to mixed and continuous rv.
Drawing iid Xk ∼ PX that may continuous, mixed or discrete, the sample
average

X̄M :=
1

M

M∑
k=1

Xk (2)

satisfies the following:

it is unbiased E
[
X̄M

]
= E [X ],

if X ∈ L2(Ω), then, as we know, it converges in root-mean-square
sense with rate 1/2

‖X̄M − µ‖L2(Ω) =
‖X − E [X ] ‖L2(Ω)√

M
, (3)

if E [ |Xk |] <∞, then the weak law of large numbers applies: for any
ε > 0,

P(|X̄M − E [X ] | > ε)→ 0 as M →∞.
14 / 34



Overview

1 Sampling of the posterior probability density function
Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

15 / 34



Importance sampling of the posterior
Objective: Given a posterior

π(u|y) =
g(u)πU(u)

Z
we seek to estimate Eπ(·|y)[f ].

Problem setting: We do not know Z , and we cannot sample from the
posterior directly. But we can sample from the prior πU and we can
evaluate g(u).

Approach:

Eπ(·|y)[f ] =

∫
Rd

f (u)π(u|y) du =
1

Z

∫
Rd

f (u)g(u)πU(u)du =
πU [fg ]

πU [g ]
.

Using the shorthand π := πU , we introduce the sampling estimator

πMMC [fg ]

πMMC [g ]
.
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The estimator
Simulate U1, . . . ,UM

iid∼ π and compute

πMMC [fg ]

πMMC [g ]
=

M−1
∑M

i=1 f (Ui )g(Ui )

M−1
∑M

j=1 g(Uj)
=

M∑
i=1

g(Ui )∑M
j=1 g(Uj)

f (Ui ) =
M∑
i=1

Wi f (Ui )

with

Wi :=
g(Ui )∑M
j=1 g(Uj)

.

Introducing the weighted, random empirical measure

πMIS :=
M∑
i=1

WiδUi
we define πMIS [f ] :=

M∑
i=1

Wi f (Ui ).

NB! error analysis of πMIS [f ]→ Eπ(·|y)[f ] is more complicated than before,
since this estimator may be biased, meaning

E
[
πMIS [f ]

]
6= Eπ(·|y)[f ]
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Convergence rates

For pdfs π, π̂ ∈M+, we define the χ2-divergence from π to π̂ as

dχ2(π||π̂) =

∫
Rd

(π(u)

π̂(u)
− 1
)2
π̂(u) du

Theorem 3 (SST 5.4)

For any f : Rd → R with ‖f ‖L∞(Rd ) ≤ 1, it holds that (where we expand
our shorthand π = πU on the RHS for clarity)∣∣∣E [πMIS [f ]− Eπ(·|y)[f ]

] ∣∣∣ ≤ 2
1 + dχ2(π(·|y)||πU)

M

and

E
[(
πMIS [f ]− Eπ(·|y)[f ]

)2
]
≤ 4

1 + dχ2(π(·|y)||πU)

M

Bias convergence rate: 1, root-mean-square convergence rate: 1/2.
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From discrete-space to continuous space Markov chains

Essential components of discrete-space Markov chains on S
Initial distribution π0 : S→ [0, 1].

Transition function p : S× S→ [0, 1]:

p(x , y) = P(Xn+1 = y |Xn = x) wheneverP(Xn = x) > 0,

(also time-inhomogeneous transition functions p(x,y,n))

Dynamics for path:
Xn+1 ∼ p(Xn, ·)

Dynamics for distribution

πn+1 = πnp.
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Continuous-space Markov chains
X0,X1, . . . is a time-discrete Markov chain on state-space Rd provided it

has initial distribution X0 ∼ P0

has transition kernel K : Rd × Bd → [0,∞) satisfying that

1 for every x ∈ Rd ,

K (x , ·) is a probability measure,

2 for each A ∈ Bd , K (·,A) is a measurable mapping,

3 Markov property and conditioning on probability 0 events defined
through the kernel and limits: For any A ∈ Bd and x0, . . . , xn ∈ Rd ,

P(Xn+1 ∈ A | X0:n = x0:n) := P(Xn+1 ∈ A | Xn ∈ dx0:n)

and

P(Xn+1 ∈ A | X0:n ∈ dx0:n) = P(Xn+1 ∈ A | Xn ∈ dxn) := K (xn,A).
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Dynamics

Dynamics of the Markov chain X0 ∼ P0 and

Xn+1 ∼ K (Xn, ·).

Example difference equation

Xn+1 = θXn

Then
Xn+1|Xn = xn ∼ δθxn = K (xn, ·)

A Markov chain may be deterministic (but it is then probably not practical
to study it as a random process).
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Example
Auto regressive AR(1) process on R:

Xn+1 = θXn + ηn,

with θ ∈ R iid sequence ηk ∼ N(0, σ2).

Transition kernel:

Xn+1|Xn = xn ∼ N(θxn, σ
2) = K (xn, ·).

1 2 3 4 5

n

-0.5

0

0.5

1

1.5

2

2.5

Figure: Simulations of AR(1) when θ = 1/2, σ = 1 and X0 ∼ U(0, 1).
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Chapman-Kolmogorov equation
By the Markov property and law of total probability,

P(X2 ∈ A2,X1 ∈ A1|X0 = x0) =

∫
A1

P(X2 ∈ A2,X1 ∈ dx1|X0 = x0)

=

∫
A1

P(X2 ∈ A2|X0:1 = x0:1)P(X1 ∈ dx1|X0 = x0)

=

∫
A1

K (x1,A2)K (x0, dx1).

This leads to the Chapman-Kolmogorov equation: for any
A1, . . . ,An ∈ Bd ,

P(X1:n ∈ A1:n|X0 = x0)

=

∫
An−1

. . .

∫
A2

∫
A1

K (xn−1,An)K (xn−2, dxn−1) . . .K (x1, dx2)K (x0, dx1)

Compare to discrete-space Markov chain on A:

P(Xn = xn|X0 = x0) =
∑

x1:n−1∈An−1

p(x0, x1)p(x1, x2) . . . , p(xn−1, xn).
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Remarks

Dynamics of the chain can also be described as dynamics P, the space
probability measures on Rd :
Let the transition mapping T : P → P be defined by

(TP)(A) :=

∫
Rd

K (x ,A)P(dx)

and
Pn+1 = TPn

Invariant measure P is an invariant measure provided

P = TP,

(Trivial example: AR(1) with θ = 0 has invariant measure P = N(0, σ2).)
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Markov chains - density point of view
If there exists a function k : Rd × Rd → [0,∞) such that

K (x ,A) =

∫
A
k(x , y)dy ∀x ∈ Rd A ∈ Bd ,

then k is the density kernel function, i.e., k(x , ·) ∈M for every x .

And we can describe the Markov chain dynamics for densities: Let
T :M→M be defined by

(Tπ)(y) =

∫
Rd

k(x , y)π(x)dx

Invariant density π is an invariant density provided

π = Tπ, i.e. if dTV (π,Tπ) = 0.

And for the dynamics of the chain X0,X1, . . . ,

Xn+1 ∼ k(Xn, ·).
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Accept reject sampling
Problem setting: We have a target density π that we want to sample
from.

Accept reject algorithm: Assume that we a proposal density π̂ which
we can draw samples from, and that for some N ≥ 1, it holds that
Nπ̂ ≥ π.

Sample X ∼ π as follows:

1 sample Y ∼ π̂ and U ∼ U[0, 1] with U ⊥ Y .

2 accept X = Y with acceptance probability U ≤ π(Y )/(Nπ̂(Y ));
otherwise return to step 1.

Verification that X ∼ π:

πX (x) =
P(Y ∈ dx | U ≤ π(Y )/(Nπ̂(Y )))

dx
= . . . ubung 5
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Markov Chain Monte Carlo method (MCMC)
Input: target pdf π, a conditional proposal q(y |x) (i.e., q(·|x) ∈M for
every x ∈ Rd).

Output: Markov chain X0,X1, . . . with objective that
πMMCMC = 1

M

∑M
k=1 δXk

approximates measure associated to π.

Metropolis-Hastings algorithm

Given Xn,

1 generate proposal Yn ∼ q(·|Xn)

2 set

Xn+1 =

{
Yn with probability ρ(Xn,Yn)

Xn with probability 1− ρ(Xn,Yn)

where the M-H acceptance probability is defined by

ρ(x , y) = min

(
π(y)

π(x)

q(x |y)

q(y |x)
, 1

)
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Assumptions and properties of Metropolis Hastings
Assumptions

must be able to sample from q(·|x) for relevant x
π must be known up to a constant (i.e., relevant for posterior
densities with Z unknown),
q(·|x) must be known up to a constant that is independent of x .

Properties:

When q(x |y) = q(y |x) the test ratio becomes

π(y)

π(x)

q(x |y)

q(y |x)
=
π(y)

π(x)
.

If q(x |y) > q(y |x), then (compared to not having a q ratio in the
acceptance probability), the probability accepting transitions x 7→ y
increases. So transitions for which the reverse transition q(x |y) is
more often proposed than the transition itself, increases likelihood.
If q(x |y) < q(y |x), then (compared to not having a q ratio in the
acceptance probability), the probability accepting transitions x 7→ y
decreases.
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M-H dynamics is associated to the transition kernel (ubung 5)

K (x ,A) =

∫
A
ρ(x , y)q(y |x)dy︸ ︷︷ ︸

r(x ,A)

+
(

1− r(x ,Rd)
)
δx(A)

Idea:

K (x ,A) = P(X1 ∈ A | X0 = x)

= P(Y0 ∈ A,X1 = Y0 | X0 = x) + P(x ∈ A,X1 = x | X0 = x)
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M-H properties
If q(·|x) dominates π for all x , then the M-H kernel satisfies detailed
balance wrt π:∫

A
K (x ,B)π(x)dx =

∫
B
K (x ,A)π(x)dx ∀A,B ∈ Bd ,

and π is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that X0 ∼ π. Then

PX1(A) =

∫
Rd

K (x ,A)PX0(dx)

=

∫
Rd

K (x ,A)π(x)dx

=

∫
Rd

(
ρ(x , y)q(y |x)−

(
1− r(x ,Rd)

)
δx(A)

)
π(x) dx

= . . .

=

∫
A
π(x)dx .
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Remarks

Challenges in real applications: Choosing a proposal such that (1) one
achieves convergence πn → π, (2) the convergence is fast in n, and (3)
that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for π(·|y) in
combination with Gaussian proposal q(·|x) which ensures convergence of
the chain distribution.

If interested, “Monte Carlo Statistical Methods” by Robert and Casella is
a good book on Monte Carlo and MCMC methods.
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Next time

Smoothing and filtering for discrete-time continuous state-space
Markov chains.

Discrete-time Kalman filtering and smoothing.
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