Mathematics and numerics for data assimilation and state estimation – Lecture 12

Summer semester 2020

Overview

Sampling of the posterior probability density function Monte Carlo method

2 Importance sampling applied to posterior densities

- 3 Discrete-time continuous-space Markov chains
- 4 Markov chain Monte Carlo sampling/dynamics

Summary of lecture 11

Bayesian inversion and optimization

$$Y = G(U) + \eta, \qquad \eta \sim N(0, \Gamma)$$

MAP estimator corresponds to a form of Tikhonov regularization when prior is Gaussian, and to LASSO regression when it is component-wise iid-Laplace distributed.

 Kullback-Leibler divergence and information gain and fitting of Gaussian to posteriors.

Overview

Sampling of the posterior probability density function Monte Carlo method

Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

We recall that by Bayesian inversion

$$Y = G(U) + \eta,$$

and observation Y = y leads to the posterior density

$$\pi(u|y) = rac{g(u)\pi_U(u)}{Z}, \quad ext{where} \quad g(u) := \pi_\eta(y - G(u)).$$

Problem: Given a quantity of interest (QoI) $f : \mathbb{R}^d \to \mathbb{R}$, we seek to estimate the mean

$$\int f(u)\pi(u|y)du$$

Plan: Present different Monte Carlo methods for approximating said mean.

Plain Monte Carlo method

Given a pdf $\pi \in \mathcal{M}$ on \mathbb{R}^d , we seek to approximate

 $\pi[f] := \mathbb{E}^{\pi}[f].$

We introduce the empirical (random) probability measure

$$\pi^M_{MC} := rac{1}{M} \sum_{k=1}^M \delta_{U_k}, \quad ext{where } U_k \sim \pi ext{ are iid}$$
 (1)

and the Monte Carlo estimator

$$\pi_{MC}^{M}[f] = \frac{1}{M} \sum_{k=1}^{M} f(U_k)$$

Comment: regardless of whether $\hat{\pi}$ is a pdf or a probability measure we denote by $\hat{\pi}[f]$ the expectation of f(X) where $X \sim \hat{\pi}$.

Theorem 1 (Convergence results SST 5.1)

For any $f: \mathbb{R}^d \to \mathbb{R}$ such that $\pi[|f|] < \infty$,

$$\mathbb{E}\left[\pi_{MC}^{M}[f]\right] = \pi[f] \quad \text{and} \quad \mathbb{E}\left[\left(\pi_{MC}^{M}[f] - \pi[f]\right)^{2}\right] = \frac{Var[f]}{M}$$

where $Var[f] = \pi[f^2] - (\pi[f])^2$.

Proof ideas: The assumption $\pi[|f|] < \infty$ is a sufficient condition for $\pi[f]$ being well-defined, and

$$\mathbb{E}\left[\pi_{MC}^{M}[f]\right] = = \pi[f]$$

And using that $\pi[f] = \mathbb{E}[f(U)]$ and $\{f(U_k) - \mathbb{E}[f(U)]\}_k$ are iid,

$$\mathbb{E}\left[\left(\pi_{MC}^{M}[f]-\pi[f]
ight)^{2}
ight]=$$

Remark:

Whenever $\|f\|_{L^{\infty}(\mathbb{R}^d)} \leq 1$, then

$$Var[f] = \pi[f^2] - (\pi[f])^2 \le 1$$

which implies that

$$\sup_{\|f\|_{L^{\infty}(\mathbb{R}^d)} \leq 1} \mathbb{E}\left[\left(\pi_{MC}^{M}[f] - \pi[f]\right)^2\right] \leq \frac{1}{M},$$

Example 2 (Volume ratio unit ball / smallest containing cube) Let $B_d = \{x \in \mathbb{R}^d \mid |x| \le 1\}$ and $\pi = PDF(U(-1,1)^d)$. Then for $f(x) = \mathbb{1}_{B_d}(x)$

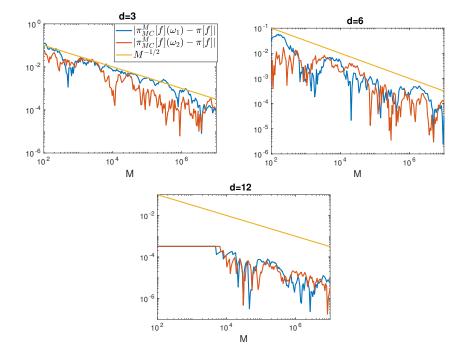
$$\pi[f] = 2^{-d} \int_{[-1,1]^d} \mathbb{1}_{B_d}(x) dx$$

= $2^{-d} \operatorname{Leb}(B_d) = \frac{\operatorname{Leb}(B_d)}{\operatorname{Leb}([-1,1]^d)}$
= $\frac{\pi^{d/2}}{2^d \, \Gamma(d/2+1)}$

Since $||f||_{\infty} \leq 1$,

$$\sqrt{\mathbb{E}\left[\left(\pi_{MC}^{M}[f]-\pi[f]
ight)^{2}
ight]}\leqrac{1}{\sqrt{M}}$$

Let us numerically confirm that root-mean-square convergence rate is independent of d.



Efficiency of Monte Carlo

Given an accuracy constraint

$$\mathbb{E}\left[\left(\pi_{MC}^{M}[f] - \pi[f]\right)^{2}
ight] \leq \epsilon^{2}$$

it is sufficient to use $M = \lceil Var[f]/\epsilon^2 \rceil$.

Verification: By theorem

$$\mathbb{E}\left[\left(\pi_{MC}^{M}[f] - \pi[f]\right)^{2}\right] = \mathsf{Var}[\pi_{MC}^{M}[f]] = \frac{\mathsf{Var}[f]}{M}$$

Note: It is often possible to reduce the magnitude of Var[f] and improve the efficiency of Monte Carlo methods.

Importance sampling

$$\pi[f] = \int_{\mathbb{R}^d} f(x) \pi(x) \, dx$$

can alternatively be computed by the expectation wrt to another pdf $\hat{\pi}$ provided $f\pi$ is **dominated** by $\hat{\pi}$, meaning that

$$\hat{\pi}(x) = 0 \implies f(x)\pi(x) = 0.$$

Then

$$\pi[f] = \int_{\mathbb{R}^d} f(x)\pi(x) \, dx = \int_{\mathbb{R}^d} f(x) \underbrace{\frac{\pi(x)}{\hat{\pi}(x)}}_{W(x)} \hat{\pi}(x) \, dx = \hat{\pi}[Wf]$$

IS algorithm:

- **1** Select a $\hat{\pi}$ that domintes $f\pi$.
- **2** Generate $U_1, \ldots, U_M \stackrel{iid}{\sim} \hat{\pi}$ and compute

$$\hat{\pi}_{MC}^{M}[Wf] = rac{1}{M} \sum_{i=1}^{M} W(U_i) f(U_i) = rac{1}{M} \sum_{i=1}^{M} rac{\pi(U_i)}{\hat{\pi}(U_i)} f(U_i)$$

The convergence rate of IS

$$\mathbb{E}\left[\left(\hat{\pi}_{MC}^{M}[Wf] - \pi[f]\right)^{2}\right] = \mathsf{Var}[\hat{\pi}_{MC}^{M}[Wf]] = \frac{\mathsf{Var}_{\hat{\pi}}[Wf]}{M}$$

So performance of IS compared to plain Monte Carlo relates to ratio

$$rac{\mathsf{Var}[\hat{\pi}_{MC}^{M}[Wf]]}{\mathsf{Var}[\pi_{MC}^{M}[f]]} = rac{\mathsf{Var}_{\hat{\pi}}[Wf]}{\mathsf{Var}_{\pi}[f]}.$$

Optimization: Find $\hat{\pi}$ dominating $f\pi$ that minimizes

$$\operatorname{Var}_{\hat{\pi}}\left[\frac{\pi}{\hat{\pi}}f\right]$$

In real optimization problem, i.e., for efficiency of method rather than convergence rate, the cost of sampling from $\hat{\pi}$ should also be included.

Convergence of random variables - in the probability space

A different viewpoint, leading to analogous results as the above, is to extend the sampling theory in Lecture 4 to mixed and continuous rv. Drawing iid $X_k \sim \mathbb{P}_X$ that may continuous, mixed or discrete, the sample average

$$\bar{X}_M := \frac{1}{M} \sum_{k=1}^M X_k \tag{2}$$

satisfies the following:

• it is unbiased
$$\mathbb{E}\left[\bar{X}_{M}\right] = \mathbb{E}\left[X\right]$$
,

 if X ∈ L²(Ω), then, as we know, it converges in root-mean-square sense with rate 1/2

$$\|\bar{X}_{M} - \mu\|_{L^{2}(\Omega)} = \frac{\|X - \mathbb{E}[X]\|_{L^{2}(\Omega)}}{\sqrt{M}},$$
(3)

■ if $\mathbb{E}[|X_k|] < \infty$, then the weak law of large numbers applies: for any $\epsilon > 0$,

$$\mathbb{P}(|ar{X}_{M} - \mathbb{E}\left[X
ight]| > \epsilon) o 0$$
 as $M o \infty.$

Overview

Sampling of the posterior probability density function
 Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

Importance sampling of the posterior

Objective: Given a posterior

$$\pi(u|y) = rac{g(u)\pi_U(u)}{Z}$$
 we seek to estimate $\mathbb{E}^{\pi(\cdot|y)}[f]$.

Problem setting: We do not know Z, and we cannot sample from the posterior directly. But we can sample from the prior π_U and we can evaluate g(u).

Approach:

$$\mathbb{E}^{\pi(\cdot|y)}[f] = \int_{\mathbb{R}^d} f(u)\pi(u|y) \, du = \frac{1}{Z} \int_{\mathbb{R}^d} f(u)g(u)\pi_U(u) du = \frac{\pi_U[fg]}{\pi_U[g]}.$$

Using the shorthand $\pi := \pi_U$, we introduce the sampling estimator

$$\frac{\pi_{MC}^{M}[fg]}{\pi_{MC}^{M}[g]}.$$

The estimator

Simulate $U_1, \ldots, U_M \stackrel{iid}{\sim} \pi$ and compute

$$\frac{\pi_{MC}^{M}[fg]}{\pi_{MC}^{M}[g]} = \frac{M^{-1}\sum_{i=1}^{M}f(U_{i})g(U_{i})}{M^{-1}\sum_{j=1}^{M}g(U_{j})} = \sum_{i=1}^{M}\frac{g(U_{i})}{\sum_{j=1}^{M}g(U_{j})}f(U_{i}) = \sum_{i=1}^{M}W_{i}f(U_{i})$$

with

$$\mathcal{N}_i := \frac{g(U_i)}{\sum_{j=1}^M g(U_j)}.$$

Introducing the weighted, random empirical measure

$$\pi^M_{IS} := \sum_{i=1}^M W_i \delta_{U_i}$$
 we define $\pi^M_{IS}[f] := \sum_{i=1}^M W_i f(U_i).$

NB! error analysis of $\pi_{IS}^{M}[f] \to \mathbb{E}^{\pi(\cdot|y)}[f]$ is more complicated than before, since this estimator may be biased, meaning

$$\mathbb{E}\left[\pi_{IS}^{M}[f]\right] \neq \mathbb{E}^{\pi(\cdot|y)}[f]$$

Convergence rates

For pdfs $\pi, \hat{\pi} \in \mathcal{M}_+$, we define the χ^2 -divergence from π to $\hat{\pi}$ as

$$d_{\chi^2}(\pi||\hat{\pi}) = \int_{\mathbb{R}^d} \left(\frac{\pi(u)}{\hat{\pi}(u)} - 1\right)^2 \hat{\pi}(u) \, du$$

Theorem 3 (SST 5.4)

For any $f : \mathbb{R}^d \to \mathbb{R}$ with $||f||_{L^{\infty}(\mathbb{R}^d)} \leq 1$, it holds that (where we expand our shorthand $\pi = \pi_U$ on the RHS for clarity)

$$\mathbb{E}\left[\left.\pi_{IS}^{M}[f] - \mathbb{E}^{\pi(\cdot|y)}[f]\right]\right| \leq 2\frac{1 + d_{\chi^{2}}(\pi(\cdot|y)||\pi_{U})}{M}$$

and

$$\mathbb{E}\left[\left(\pi_{IS}^{M}[f] - \mathbb{E}^{\pi(\cdot|y)}[f]\right)^{2}\right] \leq 4\frac{1 + d_{\chi^{2}}(\pi(\cdot|y)||\pi_{U})}{M}$$

Bias convergence rate: 1, root-mean-square convergence rate: 1/2.

Overview

Sampling of the posterior probability density function Monte Carlo method

Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

From discrete-space to continuous space Markov chains

Essential components of discrete-space Markov chains on $\ensuremath{\mathbb{S}}$

- Initial distribution $\pi^0 : \mathbb{S} \to [0, 1]$.
- Transition function $p : \mathbb{S} \times \mathbb{S} \rightarrow [0, 1]$:

 $p(x,y) = \mathbb{P}(X_{n+1} = y | X_n = x)$ whenever $\mathbb{P}(X_n = x) > 0$,

(also time-inhomogeneous transition functions p(x,y,n))Dynamics for path:

$$X_{n+1} \sim p(X_n, \cdot)$$

Dynamics for distribution

$$\pi^{n+1} = \pi^n p.$$

Continuous-space Markov chains

 X_0, X_1, \ldots is a time-discrete Markov chain on state-space \mathbb{R}^d provided it

- has initial distribution $X_0 \sim \mathbb{P}^0$
- has transition kernel $K : \mathbb{R}^d \times \mathcal{B}^d \to [0,\infty)$ satisfying that

1 for every $x \in \mathbb{R}^d$,

 $K(x, \cdot)$ is a probability measure,

- 2 for each $A \in \mathcal{B}^d$, $\mathcal{K}(\cdot, A)$ is a measurable mapping,
- **3** Markov property and conditioning on probability 0 events defined through the kernel and limits: For any $A \in \mathcal{B}^d$ and $x_0, \ldots, x_n \in \mathbb{R}^d$,

$$\mathbb{P}(X_{n+1} \in A \mid X_{0:n} = x_{0:n}) := \mathbb{P}(X_{n+1} \in A \mid X_n \in dx_{0:n})$$

and

$$\mathbb{P}(X_{n+1} \in A \mid X_{0:n} \in dx_{0:n}) = \mathbb{P}(X_{n+1} \in A \mid X_n \in dx_n) := K(x_n, A).$$

Dynamics

Dynamics of the Markov chain $X_0 \sim \mathbb{P}^0$ and

$$X_{n+1} \sim K(X_n, \cdot).$$

Example difference equation

$$X_{n+1} = \theta X_n$$

Then

$$X_{n+1}|X_n = x_n \sim \delta_{\theta x_n} = K(x_n, \cdot)$$

A Markov chain may be deterministic (but it is then probably not practical to study it as a random process).

Example

Auto regressive AR(1) process on \mathbb{R} :

$$X_{n+1} = \theta X_n + \eta_n,$$

with $\theta \in \mathbb{R}$ iid sequence $\eta_k \sim N(0, \sigma^2)$.

Transition kernel:

$$X_{n+1}|X_n=x_n\sim N(\theta x_n,\sigma^2)=K(x_n,\cdot).$$

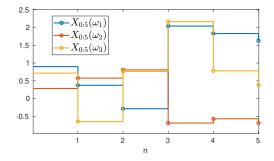


Figure: Simulations of AR(1) when $\theta = 1/2$, $\sigma = 1$ and $X_0 \sim U(0, 1)$.

Chapman-Kolmogorov equation

By the Markov property and law of total probability,

$$\begin{split} \mathbb{P}(X_2 \in A_2, X_1 \in A_1 | X_0 = x_0) &= \int_{A_1} \mathbb{P}(X_2 \in A_2, X_1 \in dx_1 | X_0 = x_0) \\ &= \int_{A_1} \mathbb{P}(X_2 \in A_2 | X_{0:1} = x_{0:1}) \mathbb{P}(X_1 \in dx_1 | X_0 = x_0) \\ &= \int_{A_1} K(x_1, A_2) K(x_0, dx_1). \end{split}$$

This leads to the Chapman-Kolmogorov equation: for any $A_1, \ldots, A_n \in \mathcal{B}^d$,

$$\mathbb{P}(X_{1:n} \in A_{1:n} | X_0 = x_0) = \int_{A_{n-1}} \dots \int_{A_2} \int_{A_1} K(x_{n-1}, A_n) K(x_{n-2}, dx_{n-1}) \dots K(x_1, dx_2) K(x_0, dx_1)$$

Compare to discrete-space Markov chain on A:

$$\mathbb{P}(X_n = x_n | X_0 = x_0) = \sum_{x_{1:n-1} \in \mathcal{A}^{n-1}} p(x_0, x_1) p(x_1, x_2) \dots, p(x_{n-1}, x_n).$$

Remarks

Dynamics of the chain can also be described as dynamics \mathcal{P} , the space probability measures on \mathbb{R}^d :

Let the transition mapping $\mathcal{T}:\mathcal{P}\to\mathcal{P}$ be defined by

$$(T\mathbb{P})(A) := \int_{\mathbb{R}^d} K(x,A)\mathbb{P}(dx)$$

and

$$\mathbb{P}^{n+1} = T\mathbb{P}^n$$

Invariant measure \mathbb{P} is an invariant measure provided

$$\mathbb{P}=T\mathbb{P},$$

(Trivial example: AR(1) with $\theta = 0$ has invariant measure $\mathbb{P} = N(0, \sigma^2)$.)

Markov chains - density point of view

If there exists a function $k: \mathbb{R}^d imes \mathbb{R}^d o [0,\infty)$ such that

$$K(x,A) = \int_A k(x,y) dy \qquad \forall x \in \mathbb{R}^d \quad A \in \mathcal{B}^d,$$

then k is the density kernel function, i.e., $k(x, \cdot) \in \mathcal{M}$ for every x.

And we can describe the Markov chain dynamics for densities: Let $T: \mathcal{M} \to \mathcal{M}$ be defined by

$$(T\pi)(y) = \int_{\mathbb{R}^d} k(x,y)\pi(x)dx$$

Invariant density π is an invariant density provided

$$\pi = T\pi$$
, i.e. if $d_{TV}(\pi, T\pi) = 0$.

And for the dynamics of the chain $X_0, X_1, \ldots,$

$$X_{n+1} \sim k(X_n, \cdot).$$

Overview

Sampling of the posterior probability density function Monte Carlo method

Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

Accept reject sampling

Problem setting: We have a **target density** π that we want to sample from.

Accept reject algorithm: Assume that we a proposal density $\hat{\pi}$ which we can draw samples from, and that for some $N \ge 1$, it holds that $N\hat{\pi} \ge \pi$.

Sample $X \sim \pi$ as follows:

- **1** sample $Y \sim \hat{\pi}$ and $U \sim U[0,1]$ with $U \perp Y$.
- **2** accept X = Y with acceptance probability $U \le \pi(Y)/(N\hat{\pi}(Y))$; otherwise return to step 1.

Verification that $X \sim \pi$:

$$\pi_X(x) = \frac{\mathbb{P}(Y \in dx \mid U \leq \pi(Y)/(N\hat{\pi}(Y)))}{dx} = \dots \text{ ubung } 5$$

Markov Chain Monte Carlo method (MCMC)

Input: target pdf π , a conditional proposal q(y|x) (i.e., $q(\cdot|x) \in \mathcal{M}$ for every $x \in \mathbb{R}^d$).

Output: Markov chain X_0, X_1, \ldots with objective that $\pi_{MCMC}^M = \frac{1}{M} \sum_{k=1}^M \delta_{X_k}$ approximates measure associated to π .

Metropolis-Hastings algorithm

Given X_n ,

1 generate proposal
$$Y_n \sim q(\cdot|X_n)$$

2 set

$$X_{n+1} = \begin{cases} Y_n & ext{with probability} &
ho(X_n, Y_n) \\ X_n & ext{with probability} & 1 -
ho(X_n, Y_n) \end{cases}$$

where the M-H acceptance probability is defined by

$$\rho(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}\frac{q(x|y)}{q(y|x)}, 1\right)$$

Assumptions and properties of Metropolis Hastings Assumptions

- must be able to sample from $q(\cdot|x)$ for relevant x
- π must be known up to a constant (i.e., relevant for posterior densities with Z unknown),
- $q(\cdot|x)$ must be known up to a constant that is independent of x.

Properties:

• When q(x|y) = q(y|x) the test ratio becomes

$$\frac{\pi(y)}{\pi(x)}\frac{q(x|y)}{q(y|x)} = \frac{\pi(y)}{\pi(x)}.$$

If q(x|y) > q(y|x), then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions x → y increases. So transitions for which the reverse transition q(x|y) is more often proposed than the transition itself, increases likelihood.
If q(x|y) < q(y|x), then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions x → y decreases.

M-H dynamics is associated to the transition kernel (ubung 5)

$$K(x,A) = \underbrace{\int_{A} \rho(x,y)q(y|x)dy}_{r(x,A)} + \left(1 - r(x,\mathbb{R}^{d})\right)\delta_{x}(A)$$

Idea:

$$\begin{split} \mathcal{K}(x,A) &= \mathbb{P}(X_1 \in A \mid X_0 = x) \\ &= \mathbb{P}(Y_0 \in A, X_1 = Y_0 \mid X_0 = x) + \mathbb{P}(x \in A, X_1 = x \mid X_0 = x) \end{split}$$

M-H properties

If $q(\cdot|x)$ dominates π for all x, then the M-H kernel satisfies detailed balance wrt π :

$$\int_{A} \mathcal{K}(x,B)\pi(x)dx = \int_{B} \mathcal{K}(x,A)\pi(x)dx \qquad \forall A,B \in \mathcal{B}^{d},$$

and π is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that $X_0 \sim \pi$. Then

$$\begin{split} \mathbb{P}_{X_1}(A) &= \int_{\mathbb{R}^d} \mathcal{K}(x, A) \mathbb{P}_{X_0}(dx) \\ &= \int_{\mathbb{R}^d} \mathcal{K}(x, A) \pi(x) dx \\ &= \int_{\mathbb{R}^d} \left(\rho(x, y) q(y|x) - \left(1 - r(x, \mathbb{R}^d) \right) \delta_x(A) \right) \pi(x) \, dx \\ &= \dots \\ &= \int_A \pi(x) dx. \end{split}$$

Remarks

Challenges in real applications: Choosing a proposal such that (1) one achieves convergence $\pi^n \to \pi$, (2) the convergence is fast in *n*, and (3) that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for $\pi(\cdot|y)$ in combination with Gaussian proposal $q(\cdot|x)$ which ensures convergence of the chain distribution.

If interested, "Monte Carlo Statistical Methods" by Robert and Casella is a good book on Monte Carlo and MCMC methods.

Next time

 Smoothing and filtering for discrete-time continuous state-space Markov chains.

Discrete-time Kalman filtering and smoothing.