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Summary of lecture 11

m Bayesian inversion and optimization

MAP estimator corresponds to a form of Tikhonov regularization
when prior is Gaussian, and to LASSO regression when it is
component-wise iid-Laplace distributed.

m Kullback-Leibler divergence and information gain and fitting of
Gaussian to posteriors.



Overview

Sampling of the posterior probability density function
m Monte Carlo method



We recall that by Bayesian inversion
Y = G(U)+n,
and observation Y = y leads to the posterior density

m(uly) = g(u);U(u)7 where  g(u) :=m,(y — G(u)).

Problem: Given a quantity of interest (Qol)  : R? — R, we seek to
estimate the mean

/ f(u)m(uly)du

Plan: Present different Monte Carlo methods for approximating said
mean.



Plain Monte Carlo method
Given a pdf m € M on RY, we seek to approximate
w[f] .= E7[f].

We introduce the empirical (random) probability measure

M
1
e = o Zduk, where Uy ~ 7 are iid (1)
k=1

and the Monte Carlo estimator

1M
ﬂ'l\Aj,IC[f] M Z f(Uk)
k=1

Comment: regardless of whether 7 is a pdf or a probability measure we
denote by 7[f] the expectation of f(X) where X ~ 7.



Theorem 1 (Convergence results SST 5.1)
For any f : RY — R such that 7[|f|] < oo,

E[niclf]] = xlf] and E {(ﬂ'ﬂc[f] —w[f])z] _ V";\'ﬂ[f]

where Var[f] = ©[f?] — (n[f])?.

Proof ideas: The assumption 7[|f|] < oo is a sufficient condition for
7[f] being well-defined, and

E [TrMC[f]} - — x[f].

And using that w[f] = E[f(U)] and {f(Ux) — E[f(U)]}« are iid,

B | (el - n17)°| -



Remark:

Whenever |[f|| oo gey < 1, then
Var[f] = 7[f?] — (=[f])? < 1

which implies that

sp | (nliclf] - #111) |

”f”LOO(Rd)_

1
< 9y
- M



Example 2 (Volume ratio unit ball / smallest containing cube)
Let By = {x € RY | |x| <1} and 7 = PDF(U(—1,1)9). Then for
f(x) = 1g,(x)

w[f] = 2_d/ 1g,(x)dx
[_lvl]d

= 279eb(By) = I_lb_(e[b(lel)]d)

d/2

~ 291 (d/2 +1)

Since [|f]loo <1,

\/E | (rttel) - al11)°| < =

Let us numerically confirm that root-mean-square convergence rate is
independent of d.
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Efficiency of Monte Carlo

Given an accuracy constraint

E [ (rMclf] - =[] < &
it is sufficient to use M = [Var[f]/e?].
Verification: By theorem

Var|[f]
M

E | (miclf] = 7lf])?| = Varlmyc[f]] =

Note: It is often possible to reduce the magnitude of Var[f] and improve
the efficiency of Monte Carlo methods.



Importance sampling

ﬂm_/fmﬂ@w
Rd
can alternatively be computed by the expectation wrt to another pdf &
provided fm is dominated by 7, meaning that
(x) =0 = f(x)m(x)=0.

Then
wﬂ:/f@ﬂ@ﬂ:/f@ﬂﬂﬂAW:ﬂW]
R? R4 7(x)
——
W(x)
IS algorithm:
Select a # that domintes f.
Generate Uy, ..., Uy 9 % and compute
1 Y 1 L r(U;)

AW = 47 W) = > Zafv)



The convergence rate of IS

Var; [WrF]

E | (#MclWF] — alf])?| = Varlaficlwe)l = ==
So performance of IS compared to plain Monte Carlo relates to ratio

Var[#M - [WF]] _ Var; W]

Var[ﬂMC[f]] Var,[f]

Optimization: Find T dominating f7 that minimizes

Varﬁ[ﬂf]

~

In real optimization problem, i.e., for efficiency of method rather than
convergence rate, the cost of sampling from 7 should also be included.



Convergence of random variables — in the probability space
A different viewpoint, leading to analogous results as the above, is to
extend the sampling theory in Lecture 4 to mixed and continuous rv.

Drawing iid X, ~ Px that may continuous, mixed or discrete, the sample
average

Xk (2)

=
1
<
e

satisfies the following:
® it is unbiased E [ Xy] = E[X],
mif X¢c L2(Q), then, as we know, it converges in root-mean-square
sense with rate 1/2
X —E[X] 120 3)
\/M )

m if E[|Xk|] < oo, then the weak law of large numbers applies: for any
e>0,

1 Xnm = pell 2y =

P(| Xy —E[X]| >¢) =0 as M — oco.



Overview

Importance sampling applied to posterior densities



Importance sampling of the posterior
Objective: Given a posterior

g(u)my(u)

> we seek to estimate ETCM[f].

m(uly) =

Problem setting: We do not know Z, and we cannot sample from the
posterior directly. But we can sample from the prior 7y and we can
evaluate g(u).

Approach:

ETCI[f] = /Rd f(u)m(uly) du = % . f(u)g(u)my(u)du = jrlzj[[;g]],

Using the shorthand 7 := my, we introduce the sampling estimator

WAAZC[fg] ‘
71'/\,\Zc[g]




The estimator

Simulate Uy,..., Uy " r and compute
_ M M
mhcle] M-t Zj\il g(U;) i=1 Zj\il g(Uj) i=1
with
__&lby)
>t e(U)

Introducing the weighted, random empirical measure

M M
me =Y Wby, wedefine mid[f]:=> Wif(U)).
i=1 i=1

NB! error analysis of 7/ [f] — E™CI")[f] is more complicated than before,
since this estimator may be biased, meaning

E[#41A] # E7M[f]



Convergence rates

For pdfs m, # € M_., we define the y>-divergence from 7 to # as

da(m||7) = /Rd (ZEZ; - 1)27?(u) du

Theorem 3 (SST 5.4)

For any f : RY — R with ||| gy < 1, it holds that (where we expand
our shorthand m = 7y on the RHS for clarity)

1+ dya(7(:|y)llmv)
M

’E [7r,"§’[f] - Eﬂly)[f]} ‘ <2

and

E [(w{‘é’[f] _Efr<4|y>[f])2] - 41+dxz(7,rv(l-|y)ll7ru)

Bias convergence rate: 1, root-mean-square convergence rate: 1/2.



Overview

Discrete-time continuous-space Markov chains



From discrete-space to continuous space Markov chains

Essential components of discrete-space Markov chains on S
m Initial distribution 7° : S — [0, 1].
m Transition function p: S xS — [0, 1]:

p(x,y) = P(Xpt1 = y|Xn = x) wheneverP(X, = x) > 0,

(also time-inhomogeneous transition functions p(x,y,n))

m Dynamics for path:
Xnt1 ~ P(Xm )

m Dynamics for distribution

n+l _ __n



Continuous-space Markov chains
Xo, X1, ... is a time-discrete Markov chain on state-space RY provided it
m has initial distribution Xg ~ P°
m has transition kernel K : RY x B — [0, o) satisfying that
for every x € R9,
K(x,-) is a probability measure,

for each A € B9, K(-,A) is a measurable mapping,

Markov property and conditioning on probability 0 events defined
through the kernel and limits: For any A € B9 and x, ..., x, € RY,

P(Xn+1 €A | Xon = X();,,) = P(Xn+1 eA | X, € dXO:n)
and

P(Xn+1 eA ‘ Xo:n € dXo;n) = ]P(Xn+1 €A | X, € an) = K(Xn,A).



Dynamics

Dynamics of the Markov chain X ~ P° and

Xn+1 ~ K(th )

Example difference equation
Xn+1 = HXn

Then
Xn+1|Xn = Xp ™~ 59x,, = K(Xnv )

A Markov chain may be deterministic (but it is then probably not practical
to study it as a random process).



Example

Auto regressive AR(1) process on R:
Xn1 = 00Xy + 1,

with 6 € R iid sequence 7, ~ N(0,0?).

Transition kernel:

Xnt 1| Xn = xn ~ N(0xp, 0%) = K(xp, ).
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Figure: Simulations of AR(1) when §# =1/2, 0 =1 and Xy ~ U(0, 1).



Chapman-Kolmogorov equation
By the Markov property and law of total probability,

P(XQ € Ay, X1 € A1|X0 = Xo) = / ]P(XQ € Ay, X1 € dX1|X0 = Xg)
Ar
= / P(Xg S A2|X0;1 = Xo;l)P(Xl S dX1’X0 = X())
A

= / K(Xl, AQ)K(X(), Xm).
Ar

This leads to the Chapman-Kolmogorov equation: for any
Ai,..., A, € B9,

P(X1:n € A1:n|Xo = x0)
/ / / Xn 17 (Xn_2,an_1)...K(Xl,dX2)K(X0,dX1)
An—1 Az J A

Compare to discrete-space Markov chain on A:

P(Xp=xalXo =x0) = Y plx0.x1)p(x1,%2) ..., p(Xn-1,%n)-

X1:n—1 6An71



Remarks

Dynamics of the chain can also be described as dynamics P, the space
probability measures on R¥:

Let the transition mapping T : P — P be defined by

(TP)(A) = / K(x, A)P(dx)

Rd
and
Pt = TP”

Invariant measure P is an invariant measure provided

P= TP,

(Trivial example: AR(1) with § = 0 has invariant measure P = N(0,02).)



Markov chains - density point of view
If there exists a function k : RY x RY — [0, 00) such that

K(x, A) = / k(x,y)dy — VxeR? AeB9,
A
then k is the density kernel function, i.e., k(x,-) € M for every x.

And we can describe the Markov chain dynamics for densities: Let
T : M — M be defined by

(Tr)0) = [ Kxoy)e(x)ae
Invariant density m is an invariant density provided
m=Tm, e ifdry(7, Tw)=0.

And for the dynamics of the chain Xp, Xy, ..

*

Xn+1 ~ k(th )



Overview

Markov chain Monte Carlo sampling/dynamics



Accept reject sampling
Problem setting: We have a target density 7 that we want to sample
from.

Accept reject algorithm: Assume that we a proposal density 7 which
we can draw samples from, and that for some N > 1, it holds that
N7 > .

Sample X ~ 7 as follows:
sample Y ~ @ and U ~ U[0,1] with U L Y.

accept X = Y with acceptance probability U < 7(Y)/(N#(Y));
otherwise return to step 1.

Verification that X ~

_ P(Y e dx | U<n(Y)/(N7(Y)))
™x(x) dx

= ...ubung 5



Markov Chain Monte Carlo method (MCMC)

Input: target pdf 7, a conditional proposal g(y|x) (i.e., g(-|x) € M for
every x € RY).

Output: Markov chain Xp, X, ... with objective that
WMCMC = ﬁ 22/,:1 dx, approximates measure associated to 7.

Metropolis-Hastings algorithm
Given X,,

generate proposal Y, ~ q(-|X»)
set

X Y, with probability p(X,, Y;)
™7 X,  with probability 1 — p(X», V)

where the M-H acceptance probability is defined by

2(x.) = min (w(y) q(xly) 1)

m(x) q(y|x)’




Assumptions and properties of Metropolis Hastings
Assumptions

m must be able to sample from g(:|x) for relevant x

m 7 must be known up to a constant (i.e., relevant for posterior

densities with Z unknown),
m g(:|x) must be known up to a constant that is independent of x.

Properties:
m When g(x|y) = g(y|x) the test ratio becomes

m(y) alxly)  7(y)

m(x) qlylx)  w(x)’

m If g(x|y) > q(y|x), then (compared to not having a g ratio in the
acceptance probability), the probability accepting transitions x — y
increases. So transitions for which the reverse transition g(x|y) is
more often proposed than the transition itself, increases likelihood.

m If g(x|]y) < g(y|x), then (compared to not having a g ratio in the
acceptance probability), the probability accepting transitions x — y
decreases.



M-H dynamics is associated to the transition kernel (ubung 5)

Ko ) = [ plxoyatyildy +(1 = r( ) 5(4)

r(x,A)

Idea:

K(x,A) = P(X; € A | Xo = x)
=P(Yoe AXi =Y | Xo=x)+P(x € A, X1 =x| Xp=x)



M-H properties
If g(-|x) dominates 7 for all x, then the M-H kernel satisfies detailed
balance wrt 7:

/ K(x, B)r(x)dx = / K(x, A)r(x)dx VA B e B,
A B

and 7 is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that Xy ~ 7. Then

Py, (A) = /R K AYBx,(d)

= /]Rd K(x, A)m(x)dx
- / <p<x,y)q<yx> -~ (1- r(de))éx(A)) 7(x) dx
RY

- /A 7(x)dx.



Remarks

Challenges in real applications: Choosing a proposal such that (1) one
achieves convergence 7" — 7, (2) the convergence is fast in n, and (3)
that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for m(-|y) in
combination with Gaussian proposal g(:|x) which ensures convergence of
the chain distribution.

If interested, “Monte Carlo Statistical Methods” by Robert and Casella is
a good book on Monte Carlo and MCMC methods.



Next time

m Smoothing and filtering for discrete-time continuous state-space
Markov chains.

m Discrete-time Kalman filtering and smoothing.
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