
Mathematics and numerics for data assimilation and
state estimation – Lecture 12

Summer semester 2020
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Overview

1 Sampling of the posterior probability density function
Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics
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Summary of lecture 11

Bayesian inversion and optimization

Y = G (U) + ⌘, ⌘ ⇠ N(0, �)

MAP estimator corresponds to a form of Tikhonov regularization
when prior is Gaussian, and to LASSO regression when it is
component-wise iid-Laplace distributed.

Kullback-Leibler divergence and information gain and fitting of
Gaussian to posteriors.
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We recall that by Bayesian inversion

Y = G (U) + ⌘,

and observation Y = y leads to the posterior density

⇡(u|y) = g(u)⇡U(u)

Z
, where g(u) := ⇡⌘(y � G (u)).

Problem: Given a quantity of interest (QoI) f : Rd ! R, we seek to
estimate the mean Z

f (u)⇡(u|y)du

Plan: Present di↵erent Monte Carlo methods for approximating said
mean.
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Plain Monte Carlo method

Given a pdf ⇡ 2 M on Rd , we seek to approximate

⇡[f ] := E⇡[f ].

We introduce the empirical (random) probability measure

⇡M
MC :=

1

M

MX

k=1

�Uk , where Uk ⇠ ⇡ are iid (1)

and the Monte Carlo estimator

⇡M
MC [f ] =

1

M

MX

k=1

f (Uk)

Comment: regardless of whether ⇡̂ is a pdf or a probability measure we
denote by ⇡̂[f ] the expectation of f (X ) where X ⇠ ⇡̂.
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Theorem 1 (Convergence results SST 5.1)

For any f : Rd ! R such that ⇡[|f |] < 1,

E
h
⇡M
MC [f ]

i
= ⇡[f ] and E

⇣
⇡M
MC [f ]� ⇡[f ]

⌘2�
=

Var[f ]

M
,

where Var[f ] = ⇡[f 2]� (⇡[f ])2.

Proof ideas: The assumption ⇡[|f |] < 1 is a su�cient condition for
⇡[f ] being well-defined, and

E
h
⇡M
MC [f ]

i
= = ⇡[f ].

And using that ⇡[f ] = E [ f (U)] and {f (Uk)� E [ f (U)]}k are iid,

E
⇣

⇡M
MC [f ]� ⇡[f ]

⌘2�
=
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Remark:

Whenever kf kL1(Rd )  1, then

Var[f ] = ⇡[f 2]� (⇡[f ])2  1

which implies that

sup
kf kL1(Rd )1

E
⇣

⇡M
MC [f ]� ⇡[f ]

⌘2�
 1

M
,
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Example 2 (Volume ratio unit ball / smallest containing cube)

Let Bd = {x 2 Rd | |x |  1} and ⇡ = PDF (U(�1, 1)d). Then for
f (x) = Bd (x)

⇡[f ] = 2�d
Z

[�1,1]d
Bd (x)dx

= 2�dLeb(Bd) =
Leb(Bd)

Leb([�1, 1]d)

=
⇡d/2

2d �(d/2 + 1)

Since kf k1  1,

s

E
⇣

⇡M
MC [f ]� ⇡[f ]

⌘2�
 1p

M
.

Let us numerically confirm that root-mean-square convergence rate is
independent of d .
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E�ciency of Monte Carlo

Given an accuracy constraint

E
h
(⇡M

MC [f ]� ⇡[f ])2
i
 ✏2

it is su�cient to use M = dVar[f ]/✏2e.

Verification: By theorem

E
h
(⇡M

MC [f ]� ⇡[f ])2
i
= Var[⇡M

MC [f ]] =
Var[f ]

M

Note: It is often possible to reduce the magnitude of Var[f ] and improve
the e�ciency of Monte Carlo methods.
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Importance sampling

⇡[f ] =

Z

Rd
f (x)⇡(x) dx

can alternatively be computed by the expectation wrt to another pdf ⇡̂
provided f ⇡ is dominated by ⇡̂, meaning that

⇡̂(x) = 0 =) f (x)⇡(x) = 0.

Then

⇡[f ] =

Z

Rd
f (x)⇡(x) dx =

Z

Rd
f (x)

⇡(x)

⇡̂(x)| {z }
W (x)

⇡̂(x) dx = ⇡̂[Wf ]

IS algorithm:

1 Select a ⇡̂ that domintes f ⇡.

2 Generate U1, . . . ,UM
iid⇠ ⇡̂ and compute

⇡̂M
MC [Wf ] =

1

M

MX

i=1

W (Ui )f (Ui ) =
1

M

MX

i=1

⇡(Ui )

⇡̂(Ui )
f (Ui )
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The convergence rate of IS

E
h
(⇡̂M

MC [Wf ]� ⇡[f ])2
i
= Var[⇡̂MC [Wf ]] =

Var⇡̂[Wf ]

M

So performance of IS compared to plain Monte Carlo relates to ratio

Var[⇡̂M
MC [Wf ]]

Var[⇡M
MC [f ]]

=
Var⇡̂[Wf ]

Var⇡[f ]
.

Optimization: Find ⇡̂ dominating f ⇡ that minimizes

Var⇡̂
h⇡
⇡̂
f

i
.

In real optimization problem, i.e., for e�ciency of method rather than
convergence rate, the cost of sampling from ⇡̂ should also be included.
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Convergence of random variables – in the probability space
A di↵erent viewpoint, leading to analogous results as the above, is to
extend the sampling theory in Lecture 4 to mixed and continuous rv.
Drawing iid Xk ⇠ PX that may continuous, mixed or discrete, the sample
average

X̄M :=
1

M

MX

k=1

Xk (2)

satisfies the following:

it is unbiased E
⇥
X̄M
⇤
= E [X ],

if X 2 L
2(⌦), then, as we know, it converges in root-mean-square

sense with rate 1/2

kX̄M � µkL2(⌦) =
kX � E [X ] kL2(⌦)p

M
, (3)

if E [ |Xk |] < 1, then the weak law of large numbers applies: for any
✏ > 0,

P(|X̄M � E [X ] | > ✏) ! 0 as M ! 1.
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Importance sampling of the posterior
Objective: Given a posterior

⇡(u|y) = g(u)⇡U(u)

Z
we seek to estimate ⇡⇡(·|y)[f ].

Problem setting: We do not know Z , and we cannot sample from the
posterior directly. But we can sample from the prior ⇡U and we can
evaluate g(u).

Approach:

E⇡(·|y)[f ] =

Z

Rd
f (u)⇡(u|y) du =

1

Z

Z

Rd
f (u)g(u)⇡U(u)du =

⇡U [fg ]

⇡U [g ]
.

Using the shorthand ⇡ := ⇡U , we introduce the sampling estimator

⇡M
MC [fg ]

⇡M
MC [g ]

.
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The estimator
Simulate U1, . . . ,UM

iid⇠ ⇡ and compute

⇡M
MC [fg ]

⇡M
MC [g ]

=
M

�1PM
i=1 f (Ui )g(Ui )

M�1
PM

j=1 g(Uj)
=

MX

i=1

g(Ui )PM
j=1 g(Uj)

f (ui ) =
MX

i=1

Wi f (Ui )

with

Wi :=
g(Ui )PM
j=1 g(Uj)

.

Introducing the weighted, random empirical measure

⇡M
IS :=

MX

i=1

Wi�Ui we define ⇡M
IS [f ] :=

MX

i=1

Wi f (Ui ).

NB! error analysis of ⇡M
IS [f ] ! E⇡(·|y)[f ] is more complicated than before,

since this estimator may be biased, meaning

E
h
⇡M
IS [f ]

i
6= E⇡(·|y)[f ]

17 / 33

:



Convergence rates

For pdfs ⇡, ⇡̂ 2 M+, we define the �2-divergence from ⇡ to ⇡̂ as

d�2(⇡||⇡̂) =
Z

Rd

⇣⇡(u)
⇡̂(u)

� 1
⌘2

⇡̂(u) du

Theorem 3 (SST 5.4)

For any f : Rd ! R with kf kL1(Rd )  1, it holds that (where we expand

our shorthand ⇡ = ⇡U on the RHS for clarity)

���E
h
⇡M
IS [f ]� E⇡(·|y)[f ]

i ���  2
1 + d�2(⇡(·|y)||⇡U)

M

and

E
⇣

⇡M
IS [f ]� E⇡(·|y)[f ]

⌘2�
 4

1 + d�2(⇡(·|y)||⇡U)
M

Bias convergence rate: 1, root-mean-square convergence rate: 1/2.
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From discrete-space to continuous space Markov chains

Essential components of discrete-space Markov chains on S
Initial distribution ⇡0 : S ! [0, 1].

Transition function p : S⇥ S ! [0, 1]:

p(x , y) = P(Xn+1 = y |Xn = x) wheneverP(Xn = x) > 0,

(also time-inhomogeneous transition functions p(x,y,n))

Dynamics for path:
Xn+1 ⇠ p(Xn, ·)

Dynamics for distribution

⇡n+1 = ⇡n
p.
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Continuous-space Markov chains
X0,X1, . . . is a time-discrete Markov chain on state-space Rd provided it

has initial density distribution X0 ⇠ P0

has transition kernel K : Rd ⇥ Bd ! [0,1) satisfying that

1 for every x 2 Rd ,

K (x , ·) is a probability measure,

2 for each A 2 Bd , K (·,A) is a measurable mapping,

3 Markov property and conditioning on probability 0 events defined
through the kernel and limits: For any A 2 Bd and x0, . . . , xn 2 Rd ,

P(Xn+1 2 A | X0:n = x0:n) := P(Xn+1 2 A | Xn 2 dx0:n)

and

P(Xn+1 2 A | X0:n 2 dx0:n) = P(Xn+1 2 A | Xn 2 dxn) := K (xn,A).
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Dynamics

Dynamics of the Markov chain X0 ⇠ P0 and

Xn+1 ⇠ K (Xn, ·).

Example di↵erence equation

Xn+1 = ✓Xn

Then
Xn+1|Xn = xn ⇠ �(·� ✓xn) = K (xn, ·)

A Markov chain may be deterministic (but it is then probably not practical
to study it as a random process).
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Example
Auto regressive AR(1) process on R:

Xn+1 = ✓Xn + ⌘n,

with ✓ 2 R iid sequence ⌘k ⇠ N(0,�2).

Transition kernel:

Xn+1|Xn = xn ⇠ N(✓xn,�
2) = K (xn, ·).

1 2 3 4 5

n

-0.5

0

0.5

1

1.5

2

2.5

Figure: Simulations of AR(1) when ✓ = 1/2, � = 1 and X0 ⇠ U(0, 1).
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Chapman-Kolmogorov equation
By the Markov property and law of total probability,

P(X2 2 A2,X1 2 A1|X0 = x0) =

Z

A1

P(X2 2 A2,X1 2 dx1|X0 = x0)

=

Z

A1

P(X2 2 A2|X0:1 = x0:1)P(X1 2 dx1|X0 = x0)

=

Z

A1

K (x1,A2)K (x0, dx1).

This leads to the Chapman-Kolmogorov equation: for any
A1, . . . ,An 2 Bd ,

P(X1:n 2 A1:n|X0 = x0)

=

Z

An�1

. . .

Z

A2

Z

A1

K (xn�1,An)K (xn�2, dxn�1) . . .K (x1, dx2)K (x0, dx1)

Compare to discrete-space Markov chain on A:

P(Xn = xn|X0 = x0) =
X

x1:n�12An�1

p(x0, x1)p(x1, x2) . . . , p(xn�1, xn).
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Remarks

Dynamics of the chain can also be described as dynamics P, the space
probability measures on Rd :
Let the transition mapping T : P ! P be defined by

(TP)(A) :=
Z

Rd
K (x ,A)P(dx)

and
Pn+1 = TPn

Invariant measure P is an invariant measure provided

P = TP,

(Trivial example: AR(1) with ✓ = 0 has invariant measure P = N(0,�2).)
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Markov chains - density point of view
If there exists a function k : Rd ⇥ Rd ! [0,1) such that

K (x ,A) =

Z

A
k(x , y)dy 8x 2 Rd

A 2 Bd ,

then k is the density kernel function, i.e., k(x , ·) 2 M for every x .

And we can describe the Markov chain dynamics for densities: Let
T : M ! M be defined by

(T⇡)(y) =

Z

Rd
k(x , y)⇡(x)dx

Invariant density ⇡ is an invariant density provided

⇡ = T⇡, i.e. if dTV (⇡,T⇡) = 0.

And for the dynamics of the chain X0,X1, . . . ,

Xn+1 ⇠ k(Xn, ·).
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Accept reject sampling
Problem setting: We have a target density ⇡ is an un-normalized
strictly positive function that want to sample from.

Accept reject algorithm: Assume that we a proposal density ⇡̂ which
we can draw samples from, and that for some N � 1, it holds that
N⇡̂ � ⇡.

Sample X ⇠ ⇡ as follows:

1 sample Y ⇠ ⇡̂ and U ⇠ U[0, 1] with U ? Y .

2 accept X = Y with acceptance probability U  ⇡(Y )/(N⇡̂(Y ));
otherwise return to step 1.

Verification that X ⇠ ⇡:

⇡X (x) =
d

dx
P(Y 2 dx | U  ⇡(Y )/(N⇡̂(Y ))) = . . . ubung 5

28 / 33

-

2E←Fk-IE>I



Markov Chain Monte Carlo method (MCMC)
Input: target pdf ⇡, a conditional proposal q(y |x) (i.e., q(·|x) 2 M for
every x 2 Rd).

Output: Markov chain X0,X1, . . . with objective that
⇡M
MCMC = 1

M

PM
k=1 �Xk approximates measure associated to ⇡.

Metropolis-Hastings algorithm

Given Xn,

1 generate proposal Yn ⇠ q(·|Xn)

2 set

Xn+1 =

(
Yn with probability ⇢(Xn,Yn)

Xn with probability 1� ⇢(Xn,Yn)

where the M-H acceptance probability is defined by

⇢(x , y) = min

 
⇡(y)

⇡(x)

q(x |y)
q(y |x) , 1

!
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Assumptions and properties of Metropolis Hastings
Assumptions

must be able to sample from q(·|x) for relevant x
⇡ must be known up to a constant (i.e., relevant for posterior
densities with Z unknown),
q(·|x) must be known up to a constant that is independent of x .

Properties:

When q(x |y) = q(y |x) the test ratio becomes

⇡(y)

⇡(x)

q(x |y)
q(y |x) =

⇡(y)

⇡(x)
.

In general, the ratio of q increases probability accepting transitions
when q(x |y) > q(y |x), meaning x 7! y relative to y 7! x .
M-H dynamics is associated to the transition kernel (ubung 5)

K (x ,A) =

Z

A
⇢(x , y)q(y |x)dy

| {z }
r(x ,A)

�
⇣
1� r(x ,Rd)

⌘
�x(A)
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M-H properties
If q(·|x) dominates ⇡ for all x , then the M-H kernel satisfies detailed
balance wrt ⇡:Z

A
K (x ,B)⇡(x)dx =

Z

B
K (x ,A)⇡(x)dx 8A,B 2 Bd ,

and ⇡/Z is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that X0 ⇠ ⇡. Then

PX1(A) =

Z

Rd
K (x ,A)PX0(dx)

=

Z

Rd
K (x ,A)⇡(x)dx

=

Z

Rd

 
⇢(x , y)q(y |x)�

⇣
1� r(x ,Rd)

⌘
�x(A)

!
⇡(x) dx

= . . .

=

Z

A
⇡(x)dx .
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Remarks

Challenges in real applications: Choosing a proposal such that (1) one
achieves convergence ⇡n ! ⇡ and (2) the convergence is fast in n.

See SST 6.4.2 for assumptions on prior and likelihood for ⇡(·|y) in
combination with Gaussian proposal q(·|x) which ensures convergence of
the chain distribution.

If interested, “Monte Carlo Statistical Methods” by Robert and Casella is
a good book on Monte Carlo and MCMC methods.
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Next time

Smoothing and filtering for discrete-time continuous state-space
Markov chains.

Discrete-time Kalman filtering and smoothing.
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