Mathematics and numerics for data assimilation and

 state estimation - Lecture 12Summer semester 2020

Overview

1 Sampling of the posterior probability density function ■ Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

Summary of lecture 11

■ Bayesian inversion and optimization

$$
Y=G(U)+\eta, \quad \eta \sim N(0, \Gamma)
$$

MAP estimator corresponds to a form of Tikhonov regularization when prior is Gaussian, and to LASSO regression when it is component-wise iid-Laplace distributed.

■ Kullback-Leibler divergence and information gain and fitting of Gaussian to posteriors.

Overview

1 Sampling of the posterior probability density function ■ Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

We recall that by Bayesian inversion

$$
Y=G(U)+\eta
$$

and observation $Y=y$ leads to the posterior density

$$
\pi(u \mid y)=\frac{g(u) \pi_{u}(u)}{Z}, \quad \text { where } \quad g(u):=\pi_{\eta}(y-G(u))
$$

Problem: Given a quantity of interest (Qol) $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, we seek to estimate the mean

$$
\int f(u) \pi(u \mid y) d u
$$

Plan: Present different Monte Carlo methods for approximating said mean.

Plain Monte Carlo method

Given a pdf $\pi \in \mathcal{M}$ on \mathbb{R}^{d}, we seek to approximate

$$
\pi[f]:=\mathbb{E}^{\pi}[f]
$$

We introduce the empirical (random) probability measure
and the Monte Carlo estimator

$$
\begin{gather*}
\pi_{M C}^{M}:=\frac{1}{M} \sum_{k=1}^{M} \delta_{U_{k}}, \quad \text { where } U_{k} \sim \pi \text { are iid } \tag{1}\\
\text { Carlo estimator } / E^{\pi / N}[f] \\
\pi_{M C}^{M}[f]=\frac{1}{M} \sum_{k=1}^{M} f\left(U_{k}\right)
\end{gather*}
$$

Comment: regardless of whether $\hat{\pi}$ is a pdf or a probability measure we denote by $\hat{\pi}[f]$ the expectation of $f(X)$ where $X \sim \hat{\pi}$.

Theorem 1 (Convergence results SST 5.1)
For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\pi[|f|]<\infty$,

$$
\mathbb{E}\left[\pi_{M C}^{M}[f]\right]=\pi[f] \quad \text { and } \quad \mathbb{E}\left[\left(\pi_{M C}^{M}[f]-\pi[f]\right)^{2}\right]=\frac{\operatorname{Var}[f]}{M}
$$

where $\operatorname{Var}[f]=\pi\left[f^{2}\right]-(\pi[f])^{2}$.
Proof ideas: The assumption $\pi[|f|]<\infty$ is a sufficient condition for $\pi[f]$ being well-defined, and \boldsymbol{M}

$$
\mathbb{E}\left[\pi_{M C}^{M}[f]\right]=\mathbb{E}\left[\frac{1}{M} \sum_{i=1}^{M} f\left(\mathcal{O}_{i}\right)\right]=\sum_{i=1}^{M} \frac{\left(\mathbb { E } \left[f\left(\theta_{i}\right)\right.\right.}{\mathcal{O}}=\pi[f]
$$

And using that $\pi[f]=\mathbb{E}[f(U)]$ and $\left\{f\left(U_{k}\right)-\mathbb{E}[f(U)]\right\}_{k}$ are ied,

$$
\begin{aligned}
& \stackrel{i i d}{=} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\left(f\left(u_{i}\right)-E E\left[\left(B_{(i)}^{i}\right)\right]\right)^{2}\right]^{M}}{M^{2}-}=\frac{\operatorname{Var}[t]}{M}
\end{aligned}
$$

Remark:

Whenever $\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq 1$, then

$$
\operatorname{Var}[f]=\pi\left[f^{2}\right]-(\pi[f])^{2} \leq 1
$$

which implies that

$$
\sup _{\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq 1} \mathbb{E}\left[\left(\pi_{M C}^{M}[f]-\pi[f]\right)^{2}\right] \leq \frac{1}{M},
$$

Example 2 (Volume ratio unit ball / smallest containing cube)
Let $B_{d}=\left\{x \in \mathbb{R}^{d}| | x \mid \leq 1\right\}$ and $\pi=\operatorname{PDF}\left(U(-1,1)^{d}\right)$. Then for $f(x)=\mathbb{1}_{B_{d}}(x)$

$$
\begin{aligned}
\pi[f] & =2^{-d} \int_{[-1,1]^{d}} \mathbb{1}_{B_{d}}(x) d x \\
& =2^{-d} \operatorname{Leb}\left(B_{d}\right)=\frac{\operatorname{Leb}\left(B_{d}\right)}{\operatorname{Leb}\left([-1,1]^{d}\right)} \\
& =\frac{\pi^{d / 2}}{2^{d} \Gamma(d / 2+1)}
\end{aligned}
$$

Since $\|f\|_{\infty} \leq 1$,

$$
\sqrt{\mathbb{E}\left[\left(\pi_{M C}^{M}[f]-\pi[f]\right)^{2}\right]} \leq \frac{1}{\sqrt{M}} .
$$

Let us numerically confirm that root-mean-square convergence rate is independent of d.

Efficiency of Monte Carlo

Given an accuracy constraint

$$
\mathbb{E}\left[\left(\pi_{M C}^{M}[f]-\pi[f]\right)^{2}\right] \leq \epsilon^{2}
$$

it is sufficient to use $M=\left\lceil\operatorname{Var}[f] / \epsilon^{2}\right\rceil$.
Verification: By theorem

$$
\mathbb{E}\left[\left(\pi_{M C}^{M}[f]-\pi[f]\right)^{2}\right]=\operatorname{Var}\left[\pi_{M C}^{M}[f]\right]=\frac{\operatorname{Var}[f]}{M} \leq \mathcal{E}^{2}
$$

Note: It is often possible to reduce the magnitude of $\operatorname{Var}[f]$ and improve the efficiency of Monte Carlo methods.

Importance sampling

$$
f(x)=\mathbb{\pi}_{\underline{\varepsilon}} x>10^{0^{\circ}} \hat{\beta}
$$

$$
\pi[f]=\int_{\mathbb{R}^{d}} f(x) \pi(x) d x
$$

can alternatively be computed by the expectation wit to another pdf $\hat{\pi}$ provided $f \pi$ is dominated by $\hat{\pi}$, meaning that

$$
\hat{\pi}(x)=0 \Longrightarrow f(x) \pi(x)=0
$$

Then

$$
\pi[f]=\int_{\mathbb{R}^{d}} f(x) \pi(x) d x=\int_{\mathbb{R}^{d}} f(x) \underbrace{\frac{\pi(x)}{\hat{\pi}(x)}}_{W(x)} \hat{\pi}(x) d x=\hat{\pi}[W f]
$$

IS algorithm:

1 Select a $\hat{\pi}$ that dominates $f \pi$.
2 Generate $U_{1}, \ldots, U_{M} \stackrel{i i d}{\sim} \hat{\pi}$ and compute

$$
\hat{\pi}_{M C}^{M}[W f]=\frac{1}{M} \sum_{i=1}^{M} W\left(U_{i}\right) f\left(U_{i}\right)=\frac{1}{M} \sum_{i=1}^{M} \frac{\pi\left(U_{i}\right)}{\hat{\pi}\left(U_{i}\right)} f\left(U_{i}\right)
$$

The convergence rate of IS

$$
\mathbb{E}\left[\left(\hat{\pi}_{M C}^{M}[W f]-\pi[f]\right)^{2}\right]=\operatorname{Var}\left[\hat{\pi}_{M C}^{M}[W f]\right]=\frac{\operatorname{Var} \hat{\pi}}{M}[W f]
$$

So performance of IS compared to plain Monte Carlo relates to ratio

$$
\frac{\operatorname{Var}\left[\hat{\pi}_{M C}^{M}[W f]\right]}{\operatorname{Var}\left[\pi_{M C}^{M}[f]\right]}=\frac{\operatorname{Var}_{\hat{\pi}}[W f]}{\operatorname{Var}_{\pi}[f]} .
$$

Optimization: Find $\hat{\pi}$ dominating $f \pi$ that minimizes

$$
\operatorname{Var} \hat{\pi}\left[\frac{\pi}{\hat{\pi}} f\right] . \quad \hat{\pi} \approx \pi f
$$

In real optimization problem, i.e., for efficiency of method rather than convergence rate, the cost of sampling from $\hat{\pi}$ should also be included.

Convergence of random variables - in the probability space

 A different viewpoint, leading to analogous results as the above, is to extend the sampling theory in Lecture 4 to mixed and continuous rv. Drawing iid $X_{k} \sim \mathbb{P}_{X}$ that may continuous, mixed or discrete, the sample average$$
\begin{equation*}
\bar{X}_{M}:=\frac{1}{M} \sum_{k=1}^{M} X_{k} \tag{2}
\end{equation*}
$$

satisfies the following:
■ it is unbiased $\mathbb{E}\left[\bar{X}_{M}\right]=\mathbb{E}[X]$,

- if $X \in L^{2}(\Omega)$, then, as we know, it converges in root-mean-square sense with rate $1 / 2$

$$
\begin{equation*}
\left\|\bar{X}_{M}-\mu\right\|_{L^{2}(\Omega)}=\frac{\|X-\mathbb{E}[X]\|_{L^{2}(\Omega)}}{\sqrt{M}} \tag{3}
\end{equation*}
$$

■ if $\mathbb{E}\left[\left|X_{k}\right|\right]<\infty$, then the weak law of large numbers applies: for any $\epsilon>0$,

$$
\mathbb{P}\left(\left|\bar{X}_{M}-\mathbb{E}[X]\right|>\epsilon\right) \rightarrow 0 \quad \text { as } \quad M \rightarrow \infty
$$

Overview

1 Sampling of the posterior probability density function ■ Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

Importance sampling of the posterior

Objective: Given a posterior

$$
\pi(u \mid y)=\frac{g(u) \pi u(u)}{Z} \text { we seek to estimate }\left(\mathbb{E}^{\pi(\cdot \mid y)}[f] .\right.
$$

Problem setting: We do not know Z, and we cannot sample from the posterior directly. But we can sample from the prior π_{U} and we can evaluate $g(u)$.

Approach:

$$
\begin{aligned}
Z & =\int g(u) \pi_{\theta}(v) d v= \\
& =\pi_{v}[g]
\end{aligned}
$$

$$
\mathbb{E}^{\pi(\cdot \mid y)}[f]=\int_{\mathbb{R}^{d}} f(u) \pi(u \mid y) d u=\frac{1}{Z} \int_{\mathbb{R}^{d}} f(u) g(u) \pi_{U}(u) d u=\frac{\pi_{U}[f g]}{\pi_{U}[g]}
$$

Using the shorthand $\pi:=\pi_{U}$, we introduce the sampling estimator

$$
\frac{\pi_{M C}^{M}[f g]}{\pi_{M C}^{M}[g]}
$$

The estimator

Simulate $U_{1}, \ldots, U_{M} \stackrel{i i d}{\sim} \pi$ and compute

$$
\frac{\pi_{M C}^{M}[f g]}{\pi_{M C}^{M}[g]}=\frac{M^{-1} \sum_{i=1}^{M} f\left(U_{i}\right) g\left(U_{i}\right)}{M^{-1} \sum_{j=1}^{M} g\left(U_{j}\right)}=\sum_{i=1}^{M} \frac{g\left(U_{i}\right)}{\sum_{j=1}^{M} g\left(U_{j}\right)} f\left(\boldsymbol{U}_{i}\right)=\sum_{i=1}^{M} W_{i} f\left(U_{i}\right)
$$

with

$$
W_{i}:=\frac{g\left(U_{i}\right)}{\sum_{j=1}^{M} g\left(U_{j}\right)} .
$$

Introducing the weighted, random empirical measure

$$
\pi_{I S}^{M}:=\sum_{i=1}^{M} W_{i} \delta u_{i} \quad \text { we define } \quad \pi_{I S}^{M}[f]:=\sum_{i=1}^{M} W_{i} f\left(U_{i}\right) .
$$

NB! error analysis of $\pi_{I S}^{M}[f] \rightarrow \mathbb{E}^{\pi(\cdot \mid y)}[f]$ is more complicated than before, since this estimator may be biased, meaning

$$
\mathbb{E}\left[\pi_{I S}^{M}[f]\right] \neq \mathbb{E}^{\pi(\cdot \mid y)}[f]
$$

Convergence rates

For pdfs $\pi, \hat{\pi} \in \mathcal{M}_{+}$, we define the χ^{2}-divergence from π to $\hat{\pi}$ as

$$
d_{\chi^{2}}(\pi \| \hat{\pi})=\int_{\mathbb{R}^{d}}\left(\frac{\pi(u)}{\hat{\pi}(u)}-1\right)^{2} \hat{\pi}(u) d u
$$

Theorem 3 (SST 5.4)

For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq 1$, it holds that (where we expand our shorthand $\pi=\pi_{U}$ on the RHS for clarity)

$$
\left|\mathbb{E}\left[\pi_{I S}^{M}[f]-\mathbb{E}^{\pi(\cdot \mid y)}[f]\right]\right| \leq 2 \frac{1+d_{\chi^{2}}\left(\pi(\cdot \mid y)| | \pi_{U}\right)}{M}
$$

and

$$
\mathbb{E}\left[\left(\pi_{l S}^{M}[f]-\mathbb{E}^{\pi(\cdot \mid y)}[f]\right)^{2}\right] \leq 4 \frac{1+d_{\chi^{2}}\left(\pi(\cdot \mid y)| | \pi_{u}\right)}{M}
$$

Bias convergence rate: 1 , root-mean-square convergence rate: $1 / 2$.

Overview

1 Sampling of the posterior probability density function
■ Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

From discrete-space to continuous space Markov chains

Essential components of discrete-space Markov chains on \mathbb{S}

- Initial distribution $\pi^{0}: \mathbb{S} \rightarrow[0,1]$.

■ Transition function $p: \mathbb{S} \times \mathbb{S} \rightarrow[0,1]:$

$$
p(x, y)=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right) \quad \text { whenever } \mathbb{P}\left(X_{n}=x\right)>0
$$

(also time-inhomogeneous transition functions $p(x, y, n)$)

- Dynamics for path:

$$
\chi_{0} \sim \pi, \quad X_{n+1} \sim p\left(X_{n}, \cdot\right)
$$

- Dynamics for distribution

$$
\pi^{n+1}=\pi^{n} p
$$

Continuous-space Markov chains

X_{0}, X_{1}, \ldots is a time-discrete Markov chain on state-space \mathbb{R}^{d} provided it

- has initial densify distribution $X_{0} \sim \mathbb{P}^{0}$

■ has transition kernel $K: \mathbb{R}^{d} \times \mathcal{B}^{d} \rightarrow[0, \infty)$ satisfying that
1 for every $x \in \mathbb{R}^{d}$,

$$
K(x, \cdot) \text { is a probability measure, }
$$

2 for each $A \in \mathcal{B}^{d}, K(\cdot, A)$ is a measurable mapping,
3 Markov property and conditioning on probability 0 events defined through the kernel and limits: For any $A \in \mathcal{B}^{d}$ and $x_{0}, \ldots, x_{n} \in \mathbb{R}^{d}$,

$$
\mathbb{P}\left(X_{n+1} \in A \mid X_{0: n}=x_{0: n}\right):=\mathbb{P}\left(X_{n+1} \in A \mid X_{n} \in d x_{0: n}\right)
$$

and

$$
\mathbb{P}\left(X_{n+1} \in A \mid X_{0: n} \in d x_{0: n}\right)=\mathbb{P}\left(X_{n+1} \in A \mid X_{n} \in d x_{n}\right):=K\left(x_{n}, A\right) .
$$

Dynamics

Dynamics of the Markov chain $X_{0} \sim \mathbb{P}^{0}$ and

$$
X_{n+1} \sim K\left(X_{n}, \cdot\right)
$$

Example difference equation

$$
\begin{gathered}
X_{n+1}=\theta X_{n} \\
\delta_{\theta x_{4}}(\cdot) \\
X_{n+1} \mid X_{n}=x_{n} \sim \delta\left(\cdot-\theta x_{n}\right)=K\left(x_{n}, \cdot\right)
\end{gathered}
$$

Then

A Markov chain may be deterministic (but it is then probably not practical to study it as a random process).

Example

Auto regressive $\mathbf{A R}(1)$ process on \mathbb{R} :

$$
X_{n+1}=\theta X_{n}+\eta_{n}
$$

with $\theta \in \mathbb{R}$ iid sequence $\eta_{k} \sim N\left(0, \sigma^{2}\right)$.
Transition kernel:

$$
X_{n+1} \mid X_{n}=x_{n} \sim N\left(\theta x_{n}, \sigma^{2}\right)=K\left(x_{n}, \cdot\right)
$$

Figure: Simulations of $\operatorname{AR}(1)$ when $\theta=1 / 2, \sigma=1$ and $X_{0} \sim U(0,1)$.

Chapman-Kolmogorov equation

By the Markov property and law of total probability,

$$
\begin{aligned}
& \mathbb{P}\left(X_{2} \in A_{2}, X_{1} \in A_{1} \mid X_{0}=x_{0}\right)=\int_{A_{1}} \mathbb{P}\left(X_{2} \in A_{2}, X_{1} \in d x_{1} \mid X_{0}=x_{0}\right) \\
& =\int_{A_{1}} \mathbb{P}\left(X_{2} \in A_{2} \mid X_{0: 1}=x_{0: 1}\right) \mathbb{P}\left(X_{1} \in d x_{1} \mid X_{0}=x_{0}\right) \\
& =\int_{A_{1}} K\left(x_{1}, A_{2}\right) K\left(x_{0}, d x_{1}\right) .
\end{aligned}
$$

This leads to the Chapman-Kolmogorov equation: for any 1 $A_{1}, \ldots, A_{n} \in \mathcal{B}^{d}$,

$$
\begin{aligned}
& \mathbb{P}\left(X_{1: n} \in A_{1: n} \mid X_{0}=x_{0}\right) \\
& =\int_{A_{n-1}} \ldots \int_{A_{2}} \int_{A_{1}} K\left(x_{n-1}, A_{n}\right) K\left(x_{n-2}, d x_{n-1}\right) \ldots K\left(x_{1}, d x_{2}\right) K\left(x_{0}, d x_{1}\right)
\end{aligned}
$$

Compare to discrete-space Markov chain on A :

$$
\mathbb{P}\left(X_{n}=x_{n} \mid X_{0}=x_{0}\right)=\sum_{x_{1: n-1} \in A^{n-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \ldots, p\left(x_{n-1}, x_{n}\right) .
$$

Remarks

$$
\pi^{n+1}=\pi^{n} p
$$

Dynamics of the chain can also be described as dynamics \mathcal{P}, the space probability measures on \mathbb{R}^{d} :
Let the transition mapping $T: \mathcal{P} \rightarrow \mathcal{P}$ be defined by

$$
(T \mathbb{P})(A):=\int_{\mathbb{R}^{d}} K(x, A) \mathbb{P}(d x)
$$

and

$$
\mathbb{P}^{n+1}=T \mathbb{P}^{n}
$$

Invariant measure \mathbb{P} is an invariant measure provided

$$
\mathbb{P}=T \mathbb{P}
$$

(Trivial example: $\operatorname{AR}(1)$ with $\theta=0$ has invariant measure $\mathbb{P}=N\left(0, \sigma^{2}\right)$.)

$$
\bar{X}_{n+1}=\quad n_{n}
$$

Markov chains - density point of view

If there exists a function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty)$ such that

$$
K(x, A)=\int_{A} k(x, y) d y \quad \forall x \in \mathbb{R}^{d} \quad A \in \mathcal{B}^{d}
$$

then k is the density kernel function, i.e., $k(x, \cdot) \in \mathcal{M}$ for every x.
And we can describe the Markov chain dynamics for densities: Let $T: \mathcal{M} \rightarrow \mathcal{M}$ be defined by

$$
(T \pi)(y)=\int_{\mathbb{R}^{d}} k(x, y) \pi(x) d x
$$

Invariant density π is an invariant density provided

$$
\pi=T \pi, \quad \text { i.e. if } d_{T V}(\pi, T \pi)=0
$$

And for the dynamics of the chain X_{0}, X_{1}, \ldots,

$$
X_{n+1} \sim k\left(X_{n}, \cdot\right)
$$

Overview

1 Sampling of the posterior probability density function

■ Monte Carlo method

2 Importance sampling applied to posterior densities

3 Discrete-time continuous-space Markov chains

4 Markov chain Monte Carlo sampling/dynamics

Accept reject sampling

Problem setting: We have a target density π is an mn-mormalized strictly positive function that want to sample from.

Accept reject algorithm: Assume that we a proposal density $\hat{\pi}$ which we can draw samples from, and that for some $N \geq 1$, it holds that $N \hat{\pi} \geq \pi$.

Sample $X \sim \pi$ as follows:
1 sample $Y \sim \hat{\pi}$ and $U \sim U[0,1]$ with $U \perp Y$.
2 accept $X=Y$ with acceptance probability $U \leq \pi(Y) /(N \hat{\pi}(Y))$; otherwise return to step 1.

Verification that $X \sim \pi$:

$$
\pi_{X}(x)=\frac{d}{d x} \mathbb{P}(Y \in d x \mid U \leq \pi(Y) /(N \hat{\pi}(Y)))=\ldots \text { ubung } 5
$$

Markov Chain Monte Carlo method (MCMC)

Input: target pdf π, a conditional proposal $q(y \mid x)$ (i.e., $q(\cdot \mid x) \in \mathcal{M}$ for every $x \in \mathbb{R}^{d}$).

Output: Markov chain X_{0}, X_{1}, \ldots with objective that $\pi_{M C M C}^{M}=\frac{1}{M} \sum_{k=1}^{M} \delta_{X_{k}}$ approximates measure associated to π.

Metropolis-Hastings algorithm

Given X_{n},

1 generate proposal $Y_{n} \sim q\left(\cdot \mid X_{n}\right)$
2 set

$$
X_{n+1}=\left\{\begin{array}{lll}
Y_{n} & \text { with probability } & \rho\left(X_{n}, Y_{n}\right) \\
X_{n} & \text { with probability } & 1-\rho\left(X_{n}, Y_{n}\right)
\end{array}\right.
$$

where the $\mathrm{M}-\mathrm{H}$ acceptance probability is defined by

$$
\rho(x, y)=\min \left(\frac{\pi(y)}{\pi(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right)
$$

Assumptions and properties of Metropolis Hastings

Assumptions

- must be able to sample from $q(\cdot \mid x)$ for relevant x
- π must be known up to a constant (i.e., relevant for posterior densities with Z unknown),
$\square q(\cdot \mid x)$ must be known up to a constant that is independent of x.

Properties:

■ When $q(x \mid y)=q(y \mid x)$ the test ratio becomes

$$
\frac{\pi(y)}{\pi(x)} \frac{q(x \mid y)}{q(y \mid x)}=\frac{\pi(y)}{\pi(x)}
$$

■ In general, the ratio of q increases probability accepting transitions when $q(x \mid y)>q(y \mid x)$, meaning $x \mapsto y$ relative to $y \mapsto x$.

- M-H dynamics is associated to the transition kernel (ubung 5)

$$
K(x, A)=\underbrace{\int_{A} \rho(x, y) q(y \mid x) d y}_{r(x, A)}+\left(1-r\left(x, \mathbb{R}^{d}\right)\right) \delta_{x}(A)
$$

M-H properties

If $q(\cdot \mid x)$ dominates π for all x, then the M -H kernel satisfies detailed balance wrt π :

$$
\begin{aligned}
& \int_{A} K(x, B) \pi(x) d x=\int_{B} K(x, A) \pi(x) d x \quad \forall A, B \in \mathcal{B}^{d}, \text {, }, B
\end{aligned}
$$

and is an invariant pdf of the M-H Markov chain.
Sketch of proof: Assume that $X_{0} \sim \pi$. Then

$$
\begin{aligned}
\mathbb{P}_{X_{1}}(A) & =\int_{\mathbb{R}^{d}} K(x, A) \mathbb{P}_{X_{0}}(d x) \\
& =\int_{\mathbb{R}^{d}} K(x, A) \pi(x) d x \\
& =\int_{\mathbb{R}^{d}}\left(\rho(x, y) q(y \mid x)+\left(1-r\left(x, \mathbb{R}^{d}\right)\right) \delta_{x}(A)\right) \pi(x) d x \\
& =\ldots \\
& =\int_{A} \pi(x) d x
\end{aligned}
$$

Remarks

Challenges in real applications: Choosing a proposal such that (1) one achieves convergence $\pi^{n} \rightarrow \pi$, ancb(2) the convergence is fast $\mathrm{jn} n$., 4 effic sulcy (migh a certonce reebios). See SST 6.4 .2 for assumptions on prior and likelihood for $\pi(\cdot \mid y)$ in combination with Gaussian proposal $q(\cdot \mid x)$ which ensures convergence of the chain distribution.

If interested, "Monte Carlo Statistical Methods" by Robert and Casella is a good book on Monte Carlo and MCMC methods.

Next time

- Smoothing and filtering for discrete-time continuous state-space Markov chains.

■ Discrete-time Kalman filtering and smoothing.

