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Summary of lecture 12

m Monte Carlo methods for sampling =:

<

f i
mhclfl = Z (I\ljlk)’ where Uy X 7
k=1

Sampling the target (exactly or approximately) 7 indirectly through
change of measure or an auxiliary/proposal distribution 7.

m Discrete-time continuous-space Markov chains

Metropolis Hastings MCMC method.
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Overview

Metropolis Hastings MCMC method
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Markov Chain Monte Carlo method (MCMC)

Input: target pdf 7, a conditional proposal g(y|x) (i.e., g(-|x) € M for
every x € RY).

Output: Markov chain Xp, X, ... with objective that
WMCMC = ﬁ 22/,:1 dx, approximates measure associated to 7.

Metropolis-Hastings algorithm
Given X,,

generate proposal Y, ~ q(-|X»)
A set

X Y, with probability p(X,, Y;)
™7 X,  with probability 1 — p(X», V)

where the M-H acceptance probability is defined by

2(x.) = min (w(y) q(xly) 1)

m(x) q(y|x)’
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Assumptions and properties of Metropolis Hastings

Assumptions
m must be able to sample from g(-|x) for relevant x
m 7 must be known up to a constant (i.e., relevant for posterior
densities with Z unknown),
m g(:|x) must be known up to a constant that is independent of x.

Properties:
m When g(x|y) = g(y|x) the test ratio becomes
m(y) alxly) _ 7(y)

m(x) qlylx)  m(x)

m If g(x|y) > g(y|x), then (compared to not having a g ratio in the
acceptance probability), the probability accepting transitions x — y
increases. So transitions for which the reverse transition g(x|y) is
more often proposed than the transition itself, increases likelihood.

m If g(x|y) < q(y|x), then (compared to not having a g ratio in the
acceptance probability), the probability accepting transitions x — y

decreases.
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Effect of M-H acceptance
Top row: Markov chain with kernel density k(u, v) = gq(v|u).

Bottom row: M-H transforms kernel density to new kernel “density”

p(u,v) = p(u, v)q(v|u), with p(u,v) = min (w(v) q(u|v)’ 1)

() g(v]u)

02*05 03*05
m(u)q uv) w

'U (v) vw)
05 * 05 05 + 05

Let us modify the kernel: H a(u,v) = min m(v)q(v, ) 1)

pw,v) =alw,v)q(w,v) ‘“’(“)‘I(U v)’
A4
OFOF- @
w(v)p(u u) 7"(“ (v,
05 = 0.2 * 0.3

Figure: From Data Assimilation and Inverse Problems, Sanz-Alonso et al. 737



M-H dynamics is associated to the transition kernel (ubung 5)

K ) = [ ol viatybddy +(1 = r( ) 5(4)

r(x,A)

Idea:

K(x,A) = P(X; € A | Xo = x)
=P(Yoe AXi =Y | Xo=x)+P(x € A, X1 =x| Xo=x)
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M-H properties
If g(-|x) dominates 7 for all x, then the M-H kernel satisfies detailed
balance wrt 7:

/ K(x, B)m(x)dx = / K(x, Ar(x)dx VA B e B9,
A B

and 7 is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that Xg ~ 7. Then
Py (A) = / K APy (o)
R
:/ K(x, A)m(x)dx
Rd
:/K(X,]Rd)w(x) dx
A
_ / (x)dx = Po(A)
A

9/37



Remarks

Challenges in real applications: Choosing a proposal such that (1) one
achieves convergence 7" — 7, (2) the convergence is fast in n, and (3)
that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for m(-|y) in
combination with Gaussian proposal g(:|x) which ensures convergence of

the chain distribution.

If interested, “Monte Carlo Statistical Methods” by Robert and Casella is
a good book on Monte Carlo and MCMC methods.
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Overview

Smoothing in continuous state-space
m Examples of dynamics
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Dynamics and observation setting

Continuous state-space dynamics: A mapping ¥V € C(R?, R9) is
associated to the dynamics

\/J+1:\U(\/j)+£ja ./:0717

(1)
Vo ~ N(mo, Go)
where {{;} is iid £ ~ N(0, X)-distributed and Vo L {&;}.
Observations:
Yi=h(V))+mn;, j=12,..., (2)

where h € C(RY,RK) and {n;} is iid with 1 ~ N(0,T).
Independence assumptions:

{niy L{&§} and {n;} L Vo.

Objectives: Study the smoothing pdf of Vg4 Y1.0 = y1.J.
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Examples of W

In many applications, W can be associated to a solution of a time-invariant
ODE:

v="Ff(v), t>0
_ (3)
v(0) = w
Viewing vy as a variable, let us denote the solution of (3) at time s by
V(vp; s).
For a fixed interval 7 > 0 and any V € RY, we define

V(V):=v(V;7).

For later reference, let us also introduce

VO(V):=WoWo.. oW(V)=W(V;jr).

J times
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Guiding examples
The scalar-valued ODE
v=Ilog(\)v, t>0
_ (4)
v(0) = w
and 7 =1 yields
Y(V) =8Ny = \v.

The dynamics

\/J+1:)\\/_]+£Ju JZO)]-)
with &€ ~ N(0,02) is fundamentally different when |\| < 1 and || > 1.
Using that

E[Via] =XE[V], E[VZ]=NE[V7]+0?

one can show that when || < 1,
o2

Py, :>N(O as n— oo.

)\2)
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—o0=0.1

-0.4 0

Figure: Dynamics of Vi1 = AV; + & with A = 0.5 (left) and A = 1.05 (right).
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Nonlinear dynamics
For

V(v) = asin(v)
the deterministic dynamics

Vit1 = asin(V))
is sensitive to the initial condition.

25

M”»”'”\f\“f"r\\""\""M“\" ‘1

et |

= | Vv/HH/\H/\H/\H/H/ | / \ 2 HMW i
15 V H‘VV‘VV‘VV‘VV‘VHV‘VH » WM/\,\WHHHHHHHH
o 10 20 30 a0 0 25) 1Vom ’MM‘J‘J‘J‘JHWW

20 30 40 50

Figure: Dynamics of with o = 2.5 and Vg = 1 (left) and Vg = —1 (right)



The stochastic dynamics
Vi = asin(V)) + &, €~ N(0,02).

is not sensitive to the initial condition, if one views

as the relevant feature (take as soft motivation, have not even shown that
this measure exists).

0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
J

Figure: @ = 2.5, 0 = 1/4 and Vy =1 (left) and Vo = —1 (right)
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The stochastic dynamics

is not sensitive to the initial condition,

Vii1 = asin(

\/J)—i_g_]) £NN(0702)'

if one views

P

lim —
J—oo J

Py (-)

as the relevant feature (take as soft motivation; we have not shown that

this measure exists).

0.5 0.5
04 ¢ N 0.4 A
0.3+ \ 0.3
E \ /r‘"“‘ l? | \ /
0.2+ / 0.2 | \ /
\ /. [\ /
\ \‘ | /
0.1+ / \ / \ 1 0.1 | \
\ / \ \ /
o/ NS \ o/ NS )
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x

Figure: my = PDF(Py

Vo = —1 (right)

) fora =25, 0=1/4, J=107, and Vo =1 (left) and
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Lorenz '63
Is the system of ODE

\71 = a(v2 — V1)
Vo = —avi — Vo — V1 \3 =: f(v), t>0,
V3 = vivo — bvg — b(r+ a)

where a, b, r > 0 and v(0) € R3.

For some a, 8 > 0, depending on vector field, it can be shown that
f(v)Tv<a-gvJ>

This ensures that [LSZ Example 1.22]

lim sup |v(t)|* <
t—o0

=L

For any |v(0)| < «/f there exists a unique solution, see ubung 6, but
v(t) is very sensitive to the initial condition!
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Integration in Matlab with parameter values (a, b, r) = (10,8/3,28)
v(0) = (1,1,1) and #(0) = (1,1,1+ 107°):

options = odeset(’RelTol’,le-12,’AbsTol’,1e-10);
a = 10;

b = 8/3;
r = 28;
f = e(t,v) [ax(v(2)-v(1));

—a*xv (1)-v(2)-v(1)*v(3);
v (1) *v(2)-b*v(3)-b*x(r+a)];

[t,v]=0ded5(f, [0 20],[1 1 1], options);%RK 4/5 order ODE solve
[t2,vTilde] = ode45(f,[0 20],[1 1 1+le-5], options);

Result: |v(0) — 7(0)| = 107° and |v(20) — ¥#(20)| ~ 15.7
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— V2
7{}2

16 15 16
t t t

If vi(s) = va(s) =0, then (v1,v2) = (0,0) for all later times: when v3 is
sufficiently negative, it is an unstable stationary point on the
(v1, v2)-subspace.

\71 = a(v2 — Vl)

VQ = —avi — Vo — V13

V3 = vivp — by — b(r + a) .



Overview

Well-posedness of smoothing
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Smoothing
Given dynamics

Vo ~ N(mo, Co)

and observations
Y; = h(V;)+mn;, n~N(QOT)

with h € C(RY,R¥) and Vp L {n;} L {&}.

Objectives: given y;.; € RF*J,
m derive the pdf for smoothing problem:

TVl Y1:J(V02J’)/1:J) = 7T(V0:J|}/1:J)

m verify that the smoothing problem is stable wrt perturbations in
Vi.g € R**J That is, show that

vy — Sl = O00) = du(n(-ly1:s), 7(-[71:4)) = O(6)
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The smoothing pdf
By Bayes’ rule and the Bayesian viewpoint
m(vo:s|y1:s) o< w(y1:slvo.s) m(vo.s)
—_——— ——
Likelihood Prior

Prior: Note that {V;} is a Markov chain, hence

m(vo.y) = 7T(VJ\Vo-J 1)m(vo.y—1) = m(vy|vy_1)m(vo.u—1)

H VJ+1|VJ Vo (vo)-

And
1
Vo ~ N(mo, Co) — 7T\/0(V0) XX eXp(—§’V0 — m0|2co),
and
Vial(Vi=v) = (W(V)+ m IV =v)~ NW(y), L)
~—
~N(0,X)

1
= m(vjr1lvy) o exp(—5[vjs1 — V(v)I%)
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Prior:

m(vo.y) = le exp(—R(v0.,))

where
J

1
R(vo.) := §‘V0 - m0|Co Z Vit — V()5

Next,
7T(V0:JD/1:J) X 7T()/1:J\V0:J) 7r(Vo:J)
N e, e’
Likelihood Prior
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Likelihood: Since Y; = h(V;) +n; and Vo L {n;} L {§}

Yisl(Vouy=vo.y) = Ml(Vi=w1), ..., Yil(Vu=w)))
= (h(v1) +n1,. .., h(vy) +nJ)
with independent components and h(v;) + n; ~ N(h(v;),T).

Hence,
J

m(y1ulvo.s) = HW(YJ\VJ) oc exp(—L(vi.s; y1.4))

with
1 J
L(Vl:J;yl:J) = Z|h(vj)_y,l’%
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Smoothing pdf

Theorem 1
For the dynamics-observation sequence (1) and (2) with Y1.; = y1.4, we
obtain

w(voly1s) = 5 (L 1) — Ro.1))

1 1<

2

:ZeXP<—2 §1|h(‘/j)—yj’r
J:

1

—§|V0—mo!2c0 Z\VJH (v \z)

where vy.; € RI*U+Y) and the normalizing constant Z depends on
RkXJ
Yig €

Next question: How stable is the pdf wrt perturbations in y;.,7
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Well-posedness of the smoothing pdf

Theorem 2 (LSZ 2.15)

Fix J € N, a pair of observation sequences y1., y1.; € RK*J

, and assume
that the dynamics V; satisfies

J
E |3+ [h(V)P)| < oc.

Jj=0

Then there exists a constant ¢ > 0 that depends on yi.; and 1.5 such that

dH(ﬂ-("yl:J)a W("ylzJ)) <c

J
> =3l
j=1
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Proof ideas:

70 l1s) = 3 exp(~L(vi-s 1)) — R(v0.1))

and i
m(voslF1:0) = 3 exp(—L(vi.y; y1.0) — R(vo.0))
Results follows from showing that
Z,2>K>0 and [Z—Z|=0(ys— jr.4])
and that

J
. 1 o
L 1) = L Jn)l = 5 D [Ih() = f? = 1) = 537
j=1
= O(|y1.s — J1.41)-
Hint for bounding the loss-term difference: for u, v € Rk,
Julf = v[f = (u+v,u—v)r
where (u, v)r := uT 1y,
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Overview

Smoothing for deterministic dynamics
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Smoothing problem — deterministic dynamics

Consider the simplified version of (1) where the dynamics is deterministic
(but with random initial data):

Vigr = V(V)), j=0,1,...
Vo ~ N(mo, Co)
with observations j = 1,2, ...
Yj = h(V;) +nj, n~ N(OT)
with h € C(R?,R¥) and Vo L {n;}.

)

Then, given Y1.; = y1.4, we now have that V{.; only is random in Vj,
since using that V; = WU)( ),

Vo.y = (V07 \U(VU)> \U(2)(V0), SERE) \U(J)(VO))
Consequently, we now seek to determine the pdf of Vp|Y1., = y1.
m(voly1.s) o< m(y1.4lv0) mvy(vo) -
—
Likelihood Prior
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Likelihood : Since
Yj = h(V}) + 15 = h(W (V) + 1
we obtain that
Y1l(Vo = vo) = (AWM (v0)) 4+, (WP (v0))+n2, . ., H(WH) (v0))411,).
This yields

J J
m(y1.5|v0) = Hﬂ'(yj|vo) X exp ( %Z ‘yj+1 - h(w(f)(vo))‘lz_>

Jj=1 Jj=1

=L(voiy1y)
and the posterior
w(volyres) o exp  — Lvoiy1) — 3o — mofZ, )
=R(w)
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Numerical study
For the dynamics

Vit1 = AV;
with Vo ~ N(mo,c3) and

Yi=V+m, n~ N0
it can be shown that

1
7T(V0|}/1:J)O<exp< > 2Z|yj+1 Nvol* = == |vo — mo|? )
Jj=1 \_\0 —_—
=R(wo)

and completing squares in the exponent yields that
VO‘(YI:J = y1:J) N(m7 Upost)
If [A| <1, then
2

lim o2 _ == il so uncertainty remains for large J).
JI Jpost Az/(l . A2) i ’72/08 ( y g )

But cases when either A?> ~ 1 and/or y =~ 0 reduce uncertainty (ubung 6).
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Numerical test with A =1/2,

0.25 T -
n " n
IR —— prior 8+ ——prior
) - - -J=1 -==J=1
0.2 I J=10 - --J=10
i - - -J=100 6l —J=100 | |
015 oy o V0 o V0
4 L
0.1
0.05 2y
0 0
-20 -2 -0.5 0

Figure: Numerical tests with mg = 3, 09 =5 from vop = —1 and [left A = 1/2 and
v =1], [right A =0.9 and v = 0.1].

See LSZ 2.8 for more illustrations of smoothing pdfs for Vg Yi.,.
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Next time

We will talk about the filtering pdf 7(v;|y1;j) and Kalman filtering —i.e.,
filtering in the Gaussian-linear setting.
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