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Summary of lecture 12

Monte Carlo methods for sampling π:

πMMC [f ] =
M∑
k=1

f (Uk)

M
, where Uk

iid∼ π

Sampling the target (exactly or approximately) π indirectly through
change of measure or an auxiliary/proposal distribution π̂.

Discrete-time continuous-space Markov chains

Metropolis Hastings MCMC method.
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Markov Chain Monte Carlo method (MCMC)
Input: target pdf π, a conditional proposal q(y |x) (i.e., q(·|x) ∈M for
every x ∈ Rd).

Output: Markov chain X0,X1, . . . with objective that
πMMCMC = 1

M

∑M
k=1 δXk

approximates measure associated to π.

Metropolis-Hastings algorithm

Given Xn,

1 generate proposal Yn ∼ q(·|Xn)

2 set

Xn+1 =

{
Yn with probability ρ(Xn,Yn)

Xn with probability 1− ρ(Xn,Yn)

where the M-H acceptance probability is defined by

ρ(x , y) = min

(
π(y)

π(x)

q(x |y)

q(y |x)
, 1

)
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Assumptions and properties of Metropolis Hastings
Assumptions

must be able to sample from q(·|x) for relevant x
π must be known up to a constant (i.e., relevant for posterior
densities with Z unknown),
q(·|x) must be known up to a constant that is independent of x .

Properties:

When q(x |y) = q(y |x) the test ratio becomes

π(y)

π(x)

q(x |y)

q(y |x)
=
π(y)

π(x)
.

If q(x |y) > q(y |x), then (compared to not having a q ratio in the
acceptance probability), the probability accepting transitions x 7→ y
increases. So transitions for which the reverse transition q(x |y) is
more often proposed than the transition itself, increases likelihood.
If q(x |y) < q(y |x), then (compared to not having a q ratio in the
acceptance probability), the probability accepting transitions x 7→ y
decreases.
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Effect of M-H acceptance
Top row: Markov chain with kernel density k(u, v) = q(v |u).

Bottom row: M-H transforms kernel density to new kernel “density”

p(u, v) = ρ(u, v)q(v |u), with ρ(u, v) = min

(
π(v)

π(u)

q(u|v)

q(v |u)
, 1

)

Figure: From Data Assimilation and Inverse Problems, Sanz-Alonso et al.
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M-H dynamics is associated to the transition kernel (ubung 5)

K (x ,A) =

∫
A
ρ(u, v)q(y |x)dy︸ ︷︷ ︸

r(x ,A)

+
(

1− r(x ,Rd)
)
δx(A)

Idea:

K (x ,A) = P(X1 ∈ A | X0 = x)

= P(Y0 ∈ A,X1 = Y0 | X0 = x) + P(x ∈ A,X1 = x | X0 = x)
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M-H properties
If q(·|x) dominates π for all x , then the M-H kernel satisfies detailed
balance wrt π:∫

A
K (x ,B)π(x)dx =

∫
B
K (x ,A)π(x)dx ∀A,B ∈ Bd ,

and π is an invariant pdf of the M-H Markov chain.

Sketch of proof: Assume that X0 ∼ π. Then

P1(A) =

∫
Rd

K (x ,A)PX0(dx)

=

∫
Rd

K (x ,A)π(x)dx

=

∫
A
K (x ,Rd)π(x) dx

=

∫
A
π(x)dx = P0(A)
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Remarks

Challenges in real applications: Choosing a proposal such that (1) one
achieves convergence πn → π, (2) the convergence is fast in n, and (3)
that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for π(·|y) in
combination with Gaussian proposal q(·|x) which ensures convergence of
the chain distribution.

If interested, “Monte Carlo Statistical Methods” by Robert and Casella is
a good book on Monte Carlo and MCMC methods.
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Dynamics and observation setting

Continuous state-space dynamics: A mapping Ψ ∈ C (Rd ,Rd) is
associated to the dynamics

Vj+1 = Ψ(Vj) + ξj , j = 0, 1, . . .

V0 ∼ N(m0,C0)
(1)

where {ξj} is iid ξ ∼ N(0,Σ)-distributed and V0 ⊥ {ξj}.

Observations:
Yj = h(Vj) + ηj , j = 1, 2, . . . , (2)

where h ∈ C (Rd ,Rk) and {ηj} is iid with η1 ∼ N(0, Γ).

Independence assumptions:

{ηj} ⊥ {ξj} and {ηj} ⊥ V0.

Objectives: Study the smoothing pdf of V0:J |Y1:J = y1:J .
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Examples of Ψ
In many applications, Ψ can be associated to a solution of a time-invariant
ODE:

v̇ = f (v), t ≥ 0

v(0) = v0
(3)

Viewing v0 as a variable, let us denote the solution of (3) at time s by
Ψ(v0; s).

For a fixed interval τ > 0 and any V ∈ Rd , we define

Ψ(V ) := Ψ(V ; τ).

For later reference, let us also introduce

Ψ(j)(V ) := Ψ ◦Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
j times

(V ) = Ψ(V ; jτ).
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Guiding examples
The scalar-valued ODE

v̇ = log(λ)v , t ≥ 0

v(0) = v0
(4)

and τ = 1 yields
Ψ(V ) = e log(λ)τV = λV .

The dynamics
Vj+1 = λVj + ξj , j = 0, 1, . . .

with ξ ∼ N(0, σ2) is fundamentally different when |λ| < 1 and |λ| > 1.

Using that

E [Vj+1] = λE [Vj ] , E
[
V 2
j+1

]
= λ2E

[
V 2
j

]
+ σ2,

one can show that when |λ| < 1,

PVn ⇒ N(0,
σ2

1− λ2
) as n→∞.
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Figure: Dynamics of Vj+1 = λVj + ξj with λ = 0.5 (left) and λ = 1.05 (right).
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Nonlinear dynamics
For

Ψ(v) = α sin(v)

the deterministic dynamics

Vj+1 = α sin(Vj)

is sensitive to the initial condition.
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Figure: Dynamics of with α = 2.5 and V0 = 1 (left) and V0 = −1 (right)
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The stochastic dynamics

Vj+1 = α sin(Vj) + ξj , ξ ∼ N(0, σ2).

is not sensitive to the initial condition, if one views

PV (·) := lim
J→∞

1

J

J∑
j=1

δVj
(·)

as the relevant feature (take as soft motivation, have not even shown that
this measure exists).
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Figure: α = 2.5, σ = 1/4 and V0 = 1 (left) and V0 = −1 (right)
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The stochastic dynamics

Vj+1 = α sin(Vj) + ξj , ξ ∼ N(0, σ2).

is not sensitive to the initial condition, if one views

PV (·) := lim
J→∞

1

J

J∑
j=1

δVj
(·)

as the relevant feature (take as soft motivation; we have not shown that
this measure exists).
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Figure: πV = PDF (PV ) for α = 2.5, σ = 1/4, J = 107, and V0 = 1 (left) and
V0 = −1 (right)
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Lorenz ’63
Is the system of ODE

v̇1 = a(v2 − v1)

v̇2 = −av1 − v2 − v1v3

v̇3 = v1v2 − bv3 − b(r + a)

 =: f (v), t ≥ 0,

where a, b, r > 0 and v(0) ∈ R3.

For some α, β > 0, depending on vector field, it can be shown that

f (v)T v ≤ α− β|v |2.

This ensures that [LSZ Example 1.22]

lim sup
t→∞

|v(t)|2 ≤ α

β

For any |v(0)| ≤ α/β there exists a unique solution, see ubung 6, but
v(t) is very sensitive to the initial condition!
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Integration in Matlab with parameter values (a, b, r) = (10, 8/3, 28)
v(0) = (1, 1, 1) and ṽ(0) = (1, 1, 1 + 10−5):

options = odeset(’RelTol’,1e-12,’AbsTol’,1e-10);

a = 10;

b = 8/3;

r = 28;

f = @(t,v) [a*(v(2)-v(1));

-a*v(1)-v(2)-v(1)*v(3);

v(1)*v(2)-b*v(3)-b*(r+a)];

[t,v]=ode45(f,[0 20],[1 1 1], options);%RK 4/5 order ODE solver

[t2,vTilde] = ode45(f,[0 20],[1 1 1+1e-5], options);

Result: |v(0)− ṽ(0)| = 10−5 and |v(20)− ṽ(20)| ≈ 15.7

20 / 37



21 / 37



0 10 20

t

-20

-10

0

10

20

0 10 20

t

-30

-20

-10

0

10

20

30

0 10 20

t

-30

-20

-10

0

10

22 / 37



15 16

t

-20

-10

0

10

15 16

t

-20

-10

0

10

20

15 16

t

-30

-20

-10

0

If v1(s) = v2(s) = 0, then (v1, v2) = (0, 0) for all later times: when v3 is
sufficiently negative, it is an unstable stationary point on the
(v1, v2)-subspace.

v̇1 = a(v2 − v1)

v̇2 = −av1 − v2 − v1v3

v̇3 = v1v2 − bv3 − b(r + a)
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Smoothing
Given dynamics

Vj+1 = Ψ(Vj) + ξj , ξ ∼ N(0,Σ)

V0 ∼ N(m0,C0)

and observations
Yj = h(Vj) + ηj , η ∼ N(0, Γ)

with h ∈ C (Rd ,Rk) and V0 ⊥ {ηj} ⊥ {ξj}.

Objectives: given y1:J ∈ Rk×J ,

derive the pdf for smoothing problem:

πV0:J |Y1:J
(v0:J |y1:J) =: π(v0:J |y1:J)

verify that the smoothing problem is stable wrt perturbations in
y1:J ∈ Rk×J . That is, show that

|y1:J − ỹ1:J | = O(δ) =⇒ dH(π(·|y1:J), π(·|ỹ1:J)) = O(δ)
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The smoothing pdf
By Bayes’ rule and the Bayesian viewpoint

π(v0:J |y1:J) ∝ π(y1:J |v0:J)︸ ︷︷ ︸
Likelihood

π(v0:J)︸ ︷︷ ︸
Prior

Prior: Note that {Vj} is a Markov chain, hence

π(v0:J) = π(vJ |v0:J−1)π(v0:J−1) = π(vJ |vJ−1)π(v0:J−1)

= . . . =
J−1∏
j=0

π(vj+1|vj)πV0(v0).

And

V0 ∼ N(m0,C0) =⇒ πV0(v0) ∝ exp(−1

2
|v0 −m0|2C0

),

and

Vj+1|(Vj = vj) = (Ψ(Vj) + ηj︸︷︷︸
∼N(0,Σ)

)|(Vj = vj) ∼ N(Ψ(vj),Σ)

=⇒ π(vj+1|vj) ∝ exp(−1

2
|vj+1 −Ψ(vj)|2Σ)
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Prior:

π(v0:J) =
1

ZP
exp(−R(v0:J))

where

R(v0:J) :=
1

2
|v0 −m0|2C0

+
1

2

J−1∑
j=0

|vj+1 −Ψ(vj)|2Σ.

Next,
π(v0:J |y1:J) ∝ π(y1:J |v0:J)︸ ︷︷ ︸

Likelihood

π(v0:J)︸ ︷︷ ︸
Prior
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Likelihood: Since Yj = h(Vj) + ηj and V0 ⊥ {ηj} ⊥ {ξj},

Y1:J |(V0:J = v0:J) = (Y1|(V1 = v1) , . . . , YJ |(VJ = vJ) )

= (h(v1) + η1, . . . , h(vJ) + ηJ)

with independent components and h(vj) + ηj ∼ N(h(vj), Γ).
Hence,

π(y1:J |v0:J) =
J∏

j=1

π(yj |vj) ∝ exp(−L(v1:J ; y1:J))

with

L(v1:J ; y1:J) :=
1

2

J∑
j=1

|h(vj)− yj |2Γ.
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Smoothing pdf

Theorem 1

For the dynamics-observation sequence (1) and (2) with Y1:J = y1:J , we
obtain

π(v0:J |y1:J) =
1

Z
exp(−L(v1:J ; y1:J)− R(v0:J))

=
1

Z
exp

(
− 1

2

J∑
j=1

|h(vj)− yj |2Γ

− 1

2
|v0 −m0|2C0

− 1

2

J−1∑
j=0

|vj+1 −Ψ(vj)|2Σ

)

where v0:J ∈ Rd×(J+1) and the normalizing constant Z depends on
y1:J ∈ Rk×J

Next question: How stable is the pdf wrt perturbations in y1:J?
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Well-posedness of the smoothing pdf

Theorem 2 (LSZ 2.15)

Fix J ∈ N, a pair of observation sequences y1:J , ỹ1:J ∈ Rk×J , and assume
that the dynamics Vj satisfies

E

 J∑
j=0

(1 + |h(Vj)|2)

 <∞.
Then there exists a constant c > 0 that depends on y1:J and ỹ1:J such that

dH(π(·|y1:J), π(·|ỹ1:J)) ≤ c

√√√√ J∑
j=1

|yj − ỹj |2
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Proof ideas:

π(v0:J |y1:J) =
1

Z
exp(−L(v1:J ; y1:J)− R(v0:J))

and

π(v0:J |ỹ1:J) =
1

Z̃
exp(−L(v1:J ; ỹ1:J)− R(v0:J))

Results follows from showing that

Z , Z̃ > K > 0 and |Z − Z̃ | = O(|y1:J − ỹ1:J |)
and that

|L(v1:J ; y1:J)− L(v1:J ; ỹ1:J)| =
1

2

J∑
j=1

∣∣∣|h(vj)− yj |2Γ − |h(vj)− ỹj |2Γ
∣∣∣

= O(|y1:J − ỹ1:J |).

Hint for bounding the loss-term difference: for u, v ∈ Rk ,

|u|2Γ − |v |2Γ = 〈u + v , u − v〉Γ
where 〈u, v〉Γ := uTΓ−1v .

31 / 37



Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space
Examples of dynamics

3 Well-posedness of smoothing

4 Smoothing for deterministic dynamics

32 / 37



Smoothing problem – deterministic dynamics
Consider the simplified version of (1) where the dynamics is deterministic
(but with random initial data):

Vj+1 = Ψ(Vj), j = 0, 1, . . . ,

V0 ∼ N(m0,C0)

with observations j = 1, 2, . . .

Yj = h(Vj) + ηj , η ∼ N(0, Γ)

with h ∈ C (Rd ,Rk) and V0 ⊥ {ηj}.

Then, given Y1:J = y1:J , we now have that V0:J only is random in V0,
since using that Vj = Ψ(j)(V0),

V0:J = (V0,Ψ(V0),Ψ(2)(V0), . . . ,Ψ(J)(V0)).

Consequently, we now seek to determine the pdf of V0|Y1:J = y1:J :

π(v0|y1:J) ∝ π(y1:J |v0)︸ ︷︷ ︸
Likelihood

πV0(v0)︸ ︷︷ ︸
Prior

.
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Likelihood : Since

Yj = h(Vj) + ηj = h(Ψ(j)(V0)) + ηj

we obtain that

Y1:J |(V0 = v0) = (h(Ψ(1)(v0))+η1, h(Ψ(2)(v0))+η2, . . . , h(Ψ(J)(v0))+ηJ).

This yields

π(y1:J |v0) =
J∏

j=1

π(yj |v0) ∝ exp

(
− 1

2

J∑
j=1

∣∣∣yj+1 − h(Ψ(j)(v0))
∣∣∣2
Γ︸ ︷︷ ︸

=L(v0;y1:J)

)

and the posterior

π(v0|y1:J) ∝ exp
(
− L(v0; y1:J)− 1

2
|v0 −m0|2C0︸ ︷︷ ︸

=R(v0)

)

34 / 37



Numerical study
For the dynamics

Vj+1 = λVj

with V0 ∼ N(m0, σ
2
0) and

Yj = Vj + ηj , η ∼ N(0, γ2)

it can be shown that

π(v0|y1:J) ∝ exp
(
− 1

2γ2

J∑
j=1

|yj+1 − λjv0|2 −
1

2σ2
0

|v0 −m0|2︸ ︷︷ ︸
=R(v0)

)

and completing squares in the exponent yields that

V0|(Y1:J = y1:J) ∼ N(m, σ2
post)

If |λ| < 1, then

lim
J→∞

σ2
post

a.s.
=

γ2

λ2/(1− λ2) + γ2/σ2
0

(so uncertainty remains for large J).

But cases when either λ2 ≈ 1 and/or γ ≈ 0 reduce uncertainty (ubung 6).
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Numerical test with λ = 1/2,
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Figure: Numerical tests with m0 = 3, σ0 = 5 from v0 = −1 and [left λ = 1/2 and
γ = 1], [right λ = 0.9 and γ = 0.1].

See LSZ 2.8 for more illustrations of smoothing pdfs for V0|Y1:J .
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Next time

We will talk about the filtering pdf π(vj |y1:j) and Kalman filtering – i.e.,
filtering in the Gaussian-linear setting.
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