Mathematics and numerics for data assimilation and

 state estimation - Lecture 13Summer semester 2020

Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space

- Examples of dynamics

3 Well-posedness of smoothing

4 Smoothing for deterministic dynamics

Summary of lecture 12

■ Monte Carlo methods for sampling π :

$$
\pi_{M C}^{M}[f]=\sum_{k=1}^{M} \frac{f\left(U_{k}\right)}{M}, \quad \text { where } \quad U_{k} \stackrel{i i d}{\sim} \pi
$$

■ Sampling the target (exactly or approximately) π indirectly through change of measure or an auxiliary/proposal distribution $\hat{\pi}$.

■ Discrete-time continuous-space Markov chains

■ Metropolis Hastings MCMC method.

Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space

- Examples of dynamics

3 Well-posedness of smoothing

4 Smoothing for deterministic dynamics

Markov Chain Monte Carlo method (MCMC)

Input: target pdf π, a conditional proposal $q(y \mid x)$ (i.e., $q(\cdot \mid x) \in \mathcal{M}$ for every $x \in \mathbb{R}^{d}$).

Output: Markov chain X_{0}, X_{1}, \ldots with objective that $\pi_{M C M C}^{M}=\frac{1}{M} \sum_{k=1}^{M} \delta_{X_{k}}$ approximates measure associated to π.

Metropolis-Hastings algorithm

Given X_{n},

1 generate proposal $Y_{n} \sim q\left(\cdot \mid X_{n}\right)$
2 set

$$
X_{n+1}=\left\{\begin{array}{lll}
Y_{n} & \text { with probability } & \rho\left(X_{n}, Y_{n}\right) \\
X_{n} & \text { with probability } & 1-\rho\left(X_{n}, Y_{n}\right)
\end{array}\right.
$$

where the $\mathrm{M}-\mathrm{H}$ acceptance probability is defined by

$$
\rho(x, y)=\min \left(\frac{\pi(y)}{\pi(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right)
$$

Assumptions and properties of Metropolis Hastings

Assumptions

- must be able to sample from $q(\cdot \mid x)$ for relevant x
- π must be known up to a constant (i.e., relevant for posterior densities with Z unknown),
- $q(\cdot \mid x)$ must be known up to a constant that is independent of x.

Properties:

- When $q(x \mid y)=q(y \mid x)$ the test ratio becomes

$$
\frac{\pi(y)}{\pi(x)} \frac{q(x \mid y)}{q(y \mid x)}=\frac{\pi(y)}{\pi(x)}
$$

- If $q(x \mid y)>q(y \mid x)$, then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions $x \mapsto y$ increases. So transitions for which the reverse transition $q(x \mid y)$ is more often proposed than the transition itself, increases likelihood.
- If $q(x \mid y)<q(y \mid x)$, then (compared to not having a q ratio in the acceptance probability), the probability accepting transitions $x \mapsto y$ decreases.

Effect of M-H acceptance

Top row: Markov chain with kernel density $k(u, v)=q(v \mid u)$.
Bottom row: M-H transforms kernel density to new kernel "density"

$$
p(u, v)=\rho(u, v) q(v \mid u), \quad \text { with } \quad \rho(u, v)=\min \left(\frac{\pi(v)}{\pi(ı)} \frac{q(u \mid v)}{q(v \mid u)}, 1\right)
$$

Figure: From Data Assimilation and Inverse Problems, Sanz-Alonso et al.

M-H dynamics is associated to the transition kernel (ubung 5)

$$
K(x, A)=\underbrace{\int_{A} \rho(u, v) q(y \mid x) d y}_{r(x, \boldsymbol{A})}+\left(1-r\left(x, \mathbb{R}^{d}\right)\right) \delta_{x}(A)
$$

Idea:

$$
\begin{aligned}
K(x, A) & =\mathbb{P}\left(X_{1} \in A \mid X_{0}=x\right) \\
& =\mathbb{P}\left(Y_{0} \in A, X_{1}=Y_{0} \mid X_{0}=x\right)+\mathbb{P}\left(x \in A, X_{1}=x \mid X_{0}=x\right)
\end{aligned}
$$

M-H properties

If $q(\cdot \mid x)$ dominates π for all x, then the M -H kernel satisfies detailed balance wrt π :

$$
\int_{A} K(x, B) \pi(x) d x=\int_{B} K(x, A) \pi(x) d x \quad \forall A, B \in \mathcal{B}^{d}
$$

and π is an invariant pdf of the M-H Markov chain.
Sketch of proof: Assume that $X_{0} \sim \pi$. Then

$$
\begin{aligned}
\mathbb{P}_{1}(A) & =\int_{\mathbb{R}^{d}} K(x, A) \mathbb{P}_{X_{0}}(d x) \\
& =\int_{\mathbb{R}^{d}} K(x, A) \pi(x) d x \\
& =\int_{A} K\left(x, \mathbb{R}^{d}\right) \pi(x) d x \\
& =\int_{A} \pi(x) d x=\mathbb{P}_{0}(A)
\end{aligned}
$$

Remarks

Challenges in real applications: Choosing a proposal such that (1) one achieves convergence $\pi^{n} \rightarrow \pi$, (2) the convergence is fast in n, and (3) that acceptance of the proposal is frequent (for efficiency of MCMC).

See SST 6.4.2 for assumptions on prior and likelihood for $\pi(\cdot \mid y)$ in combination with Gaussian proposal $q(\cdot \mid x)$ which ensures convergence of the chain distribution.

If interested, "Monte Carlo Statistical Methods" by Robert and Casella is a good book on Monte Carlo and MCMC methods.

Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space

- Examples of dynamics

3 Well-posedness of smoothing

4 Smoothing for deterministic dynamics

Dynamics and observation setting

Continuous state-space dynamics: A mapping $\Psi \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is associated to the dynamics

$$
\begin{align*}
V_{j+1} & =\Psi\left(V_{j}\right)+\xi_{j}, \quad j=0,1, \ldots \\
V_{0} & \sim N\left(m_{0}, C_{0}\right) \tag{1}
\end{align*}
$$

where $\left\{\xi_{j}\right\}$ is iid $\xi \sim N(0, \Sigma)$-distributed and $V_{0} \perp\left\{\xi_{j}\right\}$.
Observations:

$$
\begin{equation*}
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots, \tag{2}
\end{equation*}
$$

where $h \in C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right)$ and $\left\{\eta_{j}\right\}$ is iid with $\eta_{1} \sim N(0, \Gamma)$.
Independence assumptions:

$$
\left\{\eta_{j}\right\} \perp\left\{\xi_{j}\right\} \quad \text { and } \quad\left\{\eta_{j}\right\} \perp V_{0} .
$$

Objectives: Study the smoothing pdf of $V_{0: J} \mid Y_{1: J}=y_{1: J}$.

Examples of ψ

In many applications, Ψ can be associated to a solution of a time-invariant ODE:

$$
\begin{align*}
\dot{v} & =f(v), \quad t \geq 0 \tag{3}\\
v(0) & =v_{0}
\end{align*}
$$

Viewing v_{0} as a variable, let us denote the solution of (3) at time s by $\Psi\left(v_{0} ; s\right)$.

For a fixed interval $\tau>0$ and any $V \in \mathbb{R}^{d}$, we define

$$
\Psi(V):=\Psi(V ; \tau) .
$$

For later reference, let us also introduce

$$
\Psi^{(j)}(V):=\underbrace{\Psi \circ \psi \circ \ldots \circ \Psi}_{j \text { times }}(V)=\Psi(V ; j \tau) .
$$

Guiding examples

The scalar-valued ODE

$$
\begin{align*}
\dot{v} & =\log (\lambda) v, \quad t \geq 0 \\
v(0) & =v_{0} \tag{4}
\end{align*}
$$

and $\tau=1$ yields

$$
\Psi(V)=e^{\log (\lambda) \tau} V=\lambda V
$$

The dynamics

$$
V_{j+1}=\lambda V_{j}+\xi_{j}, \quad j=0,1, \ldots
$$

with $\xi \sim N\left(0, \sigma^{2}\right)$ is fundamentally different when $|\lambda|<1$ and $|\lambda|>1$.
Using that

$$
\mathbb{E}\left[V_{j+1}\right]=\lambda \mathbb{E}\left[V_{j}\right], \quad \mathbb{E}\left[V_{j+1}^{2}\right]=\lambda^{2} \mathbb{E}\left[V_{j}^{2}\right]+\sigma^{2}
$$

one can show that when $|\lambda|<1$,

$$
\mathbb{P}_{V_{n}} \Rightarrow N\left(0, \frac{\sigma^{2}}{1-\lambda^{2}}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Figure: Dynamics of $V_{j+1}=\lambda V_{j}+\xi_{j}$ with $\lambda=0.5$ (left) and $\lambda=1.05$ (right).

Nonlinear dynamics

For

$$
\Psi(v)=\alpha \sin (v)
$$

the deterministic dynamics

$$
V_{j+1}=\alpha \sin \left(V_{j}\right)
$$

is sensitive to the initial condition.

Figure: Dynamics of with $\alpha=2.5$ and $V_{0}=1$ (left) and $V_{0}=-1$ (right)

The stochastic dynamics

$$
V_{j+1}=\alpha \sin \left(V_{j}\right)+\xi_{j}, \quad \xi \sim N\left(0, \sigma^{2}\right)
$$

is not sensitive to the initial condition, if one views

$$
\mathbb{P}_{V}(\cdot):=\lim _{J \rightarrow \infty} \frac{1}{J} \sum_{j=1}^{J} \delta_{V_{j}}(\cdot)
$$

as the relevant feature (take as soft motivation, have not even shown that this measure exists).

Figure: $\alpha=2.5, \sigma=1 / 4$ and $V_{0}=1$ (left) and $V_{0}=-1$ (right)

The stochastic dynamics

$$
V_{j+1}=\alpha \sin \left(V_{j}\right)+\xi_{j}, \quad \xi \sim N\left(0, \sigma^{2}\right)
$$

is not sensitive to the initial condition, if one views

$$
\mathbb{P}_{V}(\cdot):=\lim _{J \rightarrow \infty} \frac{1}{J} \sum_{j=1}^{J} \delta_{V_{j}}(\cdot)
$$

as the relevant feature (take as soft motivation; we have not shown that this measure exists).

Figure: $\pi_{V}=\operatorname{PDF}\left(\mathbb{P}_{V}\right)$ for $\alpha=2.5, \sigma=1 / 4, J=10^{7}$, and $V_{0}=1$ (left) and $V_{0}=-1$ (right)

Lorenz '63

Is the system of ODE

$$
\left.\begin{array}{l}
\dot{v}_{1}=a\left(v_{2}-v_{1}\right) \\
\dot{v}_{2}=-a v_{1}-v_{2}-v_{1} v_{3} \\
\dot{v}_{3}=v_{1} v_{2}-b v_{3}-b(r+a)
\end{array}\right\}=: f(v), \quad t \geq 0
$$

where $a, b, r>0$ and $v(0) \in \mathbb{R}^{3}$.
For some $\alpha, \beta>0$, depending on vector field, it can be shown that

$$
f(v)^{T} v \leq \alpha-\beta|v|^{2} .
$$

This ensures that [LSZ Example 1.22]

$$
\lim _{t \rightarrow \infty} \sup _{t \rightarrow \infty}|v(t)|^{2} \leq \frac{\alpha}{\beta}
$$

For any $|v(0)| \leq \alpha / \beta$ there exists a unique solution, see ubung 6, but $v(t)$ is very sensitive to the initial condition!

Integration in Matlab with parameter values $(a, b, r)=(10,8 / 3,28)$
$v(0)=(1,1,1)$ and $\tilde{v}(0)=\left(1,1,1+10^{-5}\right)$:
options $=$ odeset('RelTol', 1e-12,'AbsTol', 1e-10);
a = 10;
b = 8/3;
r = 28;
$\mathrm{f}=$ @(t,v) [a*(v(2)-v(1));
$-\mathrm{a} * \mathrm{v}(1)-\mathrm{v}(2)-\mathrm{v}(1) * \mathrm{v}(3)$;
$\mathrm{v}(1) * \mathrm{v}(2)-\mathrm{b} * \mathrm{v}(3)-\mathrm{b} *(\mathrm{r}+\mathrm{a})]$;
[t,v]=ode45(f,[0 20],[$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$, options);\%RK 4/5 order ODE solve [t2,vTilde] $=$ ode45(f, [0 20], [1 1 1 1 1e-5], options);

Result: $|v(0)-\tilde{v}(0)|=10^{-5}$ and $|v(20)-\tilde{v}(20)| \approx 15.7$

If $v_{1}(s)=v_{2}(s)=0$, then $\left(v_{1}, v_{2}\right)=(0,0)$ for all later times: when v_{3} is sufficiently negative, it is an unstable stationary point on the (v_{1}, v_{2})-subspace.

$$
\begin{aligned}
& \dot{v}_{1}=a\left(v_{2}-v_{1}\right) \\
& \dot{v}_{2}=-a v_{1}-v_{2}-v_{1} v_{3} \\
& \dot{v_{3}}=v_{1} v_{2}-b v_{3}-b(r+a)
\end{aligned}
$$

Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space

- Examples of dynamics

3 Well-posedness of smoothing

4 Smoothing for deterministic dynamics

Smoothing

Given dynamics

$$
\begin{aligned}
V_{j+1} & =\Psi\left(V_{j}\right)+\xi_{j}, \quad \xi \sim N(0, \Sigma) \\
V_{0} & \sim N\left(m_{0}, C_{0}\right)
\end{aligned}
$$

and observations

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad \eta \sim N(0, \Gamma)
$$

with $h \in C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right)$ and $V_{0} \perp\left\{\eta_{j}\right\} \perp\left\{\xi_{j}\right\}$.
Objectives: given $y_{1: J} \in \mathbb{R}^{k \times J}$,

- derive the pdf for smoothing problem:

$$
\pi_{V_{0: J} \mid Y_{1: J}}\left(v_{0: J} \mid y_{1: J}\right)=: \pi\left(v_{0: J} \mid y_{1: J}\right)
$$

- verify that the smoothing problem is stable wrt perturbations in $y_{1: J} \in \mathbb{R}^{k \times J}$. That is, show that

$$
\left|y_{1: J}-\tilde{y}_{1: J}\right|=\mathcal{O}(\delta) \Longrightarrow d_{H}\left(\pi\left(\cdot \mid y_{1: J}\right), \pi\left(\cdot \mid \tilde{y}_{1: J}\right)\right)=\mathcal{O}(\delta)
$$

The smoothing pdf

By Bayes' rule and the Bayesian viewpoint

$$
\pi\left(v_{0: J} \mid y_{1: J}\right) \propto \underbrace{\pi\left(y_{1: J} \mid v_{0: J}\right)}_{\text {Likelihood }} \underbrace{\pi\left(v_{0: J)}\right)}_{\text {Prior }}
$$

Prior: Note that $\left\{V_{j}\right\}$ is a Markov chain, hence

$$
\begin{aligned}
\pi\left(v_{0: J}\right) & =\pi\left(v_{J} \mid v_{0: J-1}\right) \pi\left(v_{0: J-1}\right)=\pi\left(v_{J} \mid v_{J-1}\right) \pi\left(v_{0: J-1}\right) \\
& =\ldots=\prod_{j=0}^{J-1} \pi\left(v_{j+1} \mid v_{j}\right) \pi v_{0}\left(v_{0}\right) .
\end{aligned}
$$

And

$$
V_{0} \sim N\left(m_{0}, C_{0}\right) \Longrightarrow \pi_{V_{0}}\left(v_{0}\right) \propto \exp \left(-\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}\right)
$$

and

$$
\begin{aligned}
& V_{j+1}|\left(V_{j}=v_{j}\right)=(\Psi\left(V_{j}\right)+\underbrace{\eta_{j}}_{\sim N(0, \Sigma)})|\left(V_{j}=v_{j}\right) \sim N\left(\Psi\left(v_{j}\right), \Sigma\right) \\
& \Longrightarrow \pi\left(v_{j+1} \mid v_{j}\right) \propto \exp \left(-\frac{1}{2}\left|v_{j+1}-\Psi\left(v_{j}\right)\right|_{\Sigma}^{2}\right)
\end{aligned}
$$

Prior:

$$
\pi\left(v_{0: J}\right)=\frac{1}{Z_{P}} \exp \left(-\mathrm{R}\left(v_{0: J}\right)\right)
$$

where

$$
\mathrm{R}\left(v_{0: J}\right):=\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}+\frac{1}{2} \sum_{j=0}^{J-1}\left|v_{j+1}-\Psi\left(v_{j}\right)\right|_{\Sigma}^{2}
$$

Next,

$$
\pi\left(v_{0: J} \mid y_{1: J}\right) \propto \underbrace{\pi\left(y_{1: J} \mid v_{0: J}\right)}_{\text {Likelihood }} \underbrace{\pi\left(v_{0: J}\right)}_{\text {Prior }}
$$

Likelihood: Since $Y_{j}=h\left(V_{j}\right)+\eta_{j}$ and $V_{0} \perp\left\{\eta_{j}\right\} \perp\left\{\xi_{j}\right\}$,

$$
\begin{aligned}
Y_{1: J} \mid\left(V_{0: J}=v_{0: J}\right) & =\left(Y_{1}\left|\left(V_{1}=v_{1}\right), \ldots, Y_{J}\right|\left(V_{J}=v_{J}\right)\right) \\
& =\left(h\left(v_{1}\right)+\eta_{1}, \ldots, h\left(v_{J}\right)+\eta_{J}\right)
\end{aligned}
$$

with independent components and $h\left(v_{j}\right)+\eta_{j} \sim N\left(h\left(v_{j}\right), \Gamma\right)$. Hence,

$$
\pi\left(y_{1: J} \mid v_{0: J}\right)=\prod_{j=1}^{J} \pi\left(y_{j} \mid v_{j}\right) \propto \exp \left(-\mathrm{L}\left(v_{1: J ;} y_{1: J}\right)\right)
$$

with

$$
\mathrm{L}\left(v_{1: J} ; y_{1: J}\right):=\frac{1}{2} \sum_{j=1}^{J}\left|h\left(v_{j}\right)-y_{j}\right|_{\Gamma}^{2} .
$$

Smoothing pdf

Theorem 1

For the dynamics-observation sequence (1) and (2) with $Y_{1: J}=y_{1: J}$, we obtain

$$
\begin{aligned}
\pi\left(v_{0: J} \mid y_{1: J}\right)= & \frac{1}{Z} \exp \left(-L\left(v_{1: J} ; y_{1: J}\right)-R\left(v_{0: J}\right)\right) \\
= & \frac{1}{Z} \exp \left(-\frac{1}{2} \sum_{j=1}^{J}\left|h\left(v_{j}\right)-y_{j}\right|_{\Gamma}^{2}\right. \\
& \left.\quad-\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}-\frac{1}{2} \sum_{j=0}^{J-1}\left|v_{j+1}-\Psi\left(v_{j}\right)\right|_{\Sigma}^{2}\right)
\end{aligned}
$$

where $v_{0: J} \in \mathbb{R}^{d \times(J+1)}$ and the normalizing constant Z depends on $y_{1: J} \in \mathbb{R}^{k \times J}$

Next question: How stable is the pdf wrt perturbations in $y_{1: J}$?

Well-posedness of the smoothing pdf

Theorem 2 (LSZ 2.15)

Fix $J \in \mathbb{N}$, a pair of observation sequences $y_{1: J, ~}^{y_{1}: J} \in \mathbb{R}^{k \times J}$, and assume that the dynamics V_{j} satisfies

$$
\mathbb{E}\left[\sum_{j=0}^{J}\left(1+\left|h\left(V_{j}\right)\right|^{2}\right)\right]<\infty .
$$

Then there exists a constant $c>0$ that depends on $y_{1: J}$ and $\tilde{y}_{1: J}$ such that

$$
d_{H}\left(\pi\left(\cdot \mid y_{1: J}\right), \pi\left(\cdot \mid \tilde{y}_{1: J}\right)\right) \leq c \sqrt{\sum_{j=1}^{J}\left|y_{j}-\tilde{y}_{j}\right|^{2}}
$$

Proof ideas:

$$
\pi\left(v_{0: J} \mid y_{1: J}\right)=\frac{1}{Z} \exp \left(-\mathrm{L}\left(v_{1: J} ; y_{1: J}\right)-\mathrm{R}\left(v_{0: J}\right)\right)
$$

and

$$
\pi\left(v_{0: J} \mid \tilde{y}_{1: J}\right)=\frac{1}{\tilde{Z}} \exp \left(-\mathrm{L}\left(v_{1: J} ; \tilde{y}_{1: J}\right)-\mathrm{R}\left(v_{0: J}\right)\right)
$$

Results follows from showing that

$$
Z, \tilde{Z}>K>0 \quad \text { and } \quad|Z-\tilde{Z}|=\mathcal{O}\left(\left|y_{1: J}-\tilde{y}_{1: J}\right|\right)
$$

and that

$$
\begin{aligned}
\left|\mathrm{L}\left(v_{1: J} ; y_{1: J}\right)-\mathrm{L}\left(v_{1: J} ; \tilde{y}_{1: J}\right)\right| & =\frac{1}{2} \sum_{j=1}^{J}| | h\left(v_{j}\right)-\left.y_{j}\right|^{2}-\left|h\left(v_{j}\right)-\tilde{y}_{j}\right|^{2}| | \\
& =\mathcal{O}\left(\left|y_{1: J}-\tilde{y}_{1: J}\right|\right) .
\end{aligned}
$$

Hint for bounding the loss-term difference: for $u, v \in \mathbb{R}^{k}$,

$$
|u|_{\Gamma}^{2}-|v|_{\Gamma}^{2}=\langle u+v, u-v\rangle_{\Gamma}
$$

where $\langle u, v\rangle_{\Gamma}:=u^{T} \Gamma^{-1} v$.

Overview

1 Metropolis Hastings MCMC method

2 Smoothing in continuous state-space

- Examples of dynamics
(3) Well-posedness of smoothing

4 Smoothing for deterministic dynamics

Smoothing problem - deterministic dynamics

Consider the simplified version of (1) where the dynamics is deterministic (but with random initial data):

$$
\begin{aligned}
V_{j+1} & =\Psi\left(V_{j}\right), \quad j=0,1, \ldots \\
V_{0} & \sim N\left(m_{0}, C_{0}\right)
\end{aligned}
$$

with observations $j=1,2, \ldots$

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad \eta \sim N(0, \Gamma)
$$

with $h \in C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right)$ and $V_{0} \perp\left\{\eta_{j}\right\}$.
Then, given $Y_{1: J}=y_{1: J}$, we now have that $V_{0: J}$ only is random in V_{0}, since using that $V_{j}=\psi^{(j)}\left(V_{0}\right)$,

$$
V_{0: J}=\left(V_{0}, \Psi\left(V_{0}\right), \Psi^{(2)}\left(V_{0}\right), \ldots, \Psi^{(J)}\left(V_{0}\right)\right)
$$

Consequently, we now seek to determine the pdf of $V_{0} \mid Y_{1: J}=y_{1: J}$:

$$
\pi\left(v_{0} \mid y_{1: J}\right) \propto \underbrace{\pi\left(y_{1: J} \mid v_{0}\right)}_{\text {Likelihood }} \underbrace{\pi v_{0}\left(v_{0}\right)}_{\text {Prior }}
$$

Likelihood : Since

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}=h\left(\Psi^{(j)}\left(V_{0}\right)\right)+\eta_{j}
$$

we obtain that
$Y_{1: J} \mid\left(V_{0}=v_{0}\right)=\left(h\left(\Psi^{(1)}\left(v_{0}\right)\right)+\eta_{1}, h\left(\Psi^{(2)}\left(v_{0}\right)\right)+\eta_{2}, \ldots, h\left(\Psi^{(J)}\left(v_{0}\right)\right)+\eta_{J}\right)$.
This yields

$$
\pi\left(y_{1: J} \mid v_{0}\right)=\prod_{j=1}^{J} \pi\left(y_{j} \mid v_{0}\right) \propto \exp (-\underbrace{\frac{1}{2} \sum_{j=1}^{J}\left|y_{j+1}-h\left(\Psi^{(j)}\left(v_{0}\right)\right)\right|_{\Gamma}^{2}}_{=\mathrm{L}\left(v_{0} ; y_{1: J}\right)})
$$

and the posterior

$$
\pi\left(v_{0} \mid y_{1: J}\right) \propto \exp (-\mathrm{L}\left(v_{0} ; y_{1: J}\right)-\underbrace{\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}}_{=R\left(v_{0}\right)})
$$

Numerical study

For the dynamics

$$
V_{j+1}=\lambda V_{j}
$$

with $V_{0} \sim N\left(m_{0}, \sigma_{0}^{2}\right)$ and

$$
Y_{j}=V_{j}+\eta_{j}, \quad \eta \sim N\left(0, \gamma^{2}\right)
$$

it can be shown that

$$
\pi\left(v_{0} \mid y_{1: J}\right) \propto \exp (-\frac{1}{2 \gamma^{2}} \sum_{j=1}^{J}\left|y_{j+1}-\lambda^{j} v_{0}\right|^{2}-\underbrace{\frac{1}{2 \sigma_{0}^{2}}\left|v_{0}-m_{0}\right|^{2}}_{=R\left(v_{0}\right)})
$$

and completing squares in the exponent yields that

$$
V_{0} \mid\left(Y_{1: J}=y_{1: J}\right) \sim N\left(m, \sigma_{\text {post }}^{2}\right)
$$

If $|\lambda|<1$, then
$\lim _{J \rightarrow \infty} \sigma_{\text {post }}^{2} \stackrel{\text { a.s. }}{=} \frac{\gamma^{2}}{\lambda^{2} /\left(1-\lambda^{2}\right)+\gamma^{2} / \sigma_{0}^{2}} \quad$ (so uncertainty remains for large J).
But cases when either $\lambda^{2} \approx 1$ and/or $\gamma \approx 0$ reduce uncertainty (ubung 6).

Numerical test with $\lambda=1 / 2$,

Figure: Numerical tests with $m_{0}=3, \sigma_{0}=5$ from $v_{0}=-1$ and [left $\lambda=1 / 2$ and $\gamma=1]$, [right $\lambda=0.9$ and $\gamma=0.1$].

See LSZ 2.8 for more illustrations of smoothing pdfs for $V_{0} \mid Y_{1: J}$.

Next time

We will talk about the filtering pdf $\pi\left(v_{j} \mid y_{1: j}\right)$ and Kalman filtering - i.e., filtering in the Gaussian-linear setting.

