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Summary of lecture 13

® In additive Gaussian noise setting (both for dynamics and
observations), smoothing density for Vo.4| Y1.0 = y1.J:

1 1
m(vouslyrs) = 5 exp ( =52 Ih(v) =yl

1 2
—§|V0—mo!c0 Z‘V_H-l (vj \z

m Stability of the density wrt perturbations (under some assumptions on
the dynamics),

(g, 1ve, C L yes)s mveve, G | 710)) <

m For deterministic dynamics with uncertain initial condition, we derived
a smoothing density for Vp|Y1.; = y1.J.
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Overview

Filtering in continuous state-space
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Dynamics and observation setting
Continuous state-space dynamics: A mapping V¥ € C(R?, R9) is
associated to the dynamics

\/J+1:\U(\/j)+£p 1:0717

(1)
Vo ~ N(mo, Co)
with an iid sequence & ~ N(0,X).
Observations:
Yi=h(V))+mn, j=12,..., (2)

where h € C(RY,R¥) and iid sequence n; ~ N(0,T).
Independence assumptions:
{nj} L{g} L {Vo}
Objective: Derive iterative formulas for pdfs of V,|Y1., = y1., and

Vn+1|Y1:n = Y1:n for n > 1.
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Filtering — the prediction step

Setting: At time n > 0, we have observations Yi., = y1., and we have
computed 7y, |y, (Valy1:n) =: T(Va|y1:n) (for n =0, we mean by this
v, (v0))-

What is the distribution of V11| Y1.n = y1:n ?
Prediction: By the law of total probability

T(Vat1ly1n) =

= /d 7T(Vn-ﬁ-l‘Vnyylzn)ﬂ'(vnb/l:n) dv,
R

= /Rd T(Vas1|Va)T(Valy1:n) dvi

The last step follows from &, L {Yi.,} and
Vios1l(Vi = Vo, Yin = y1n) = V(Va) +&l(Vi = Va, Yiin = yimn)
= V(vp) + &nl (Vi = Vi, Yiin = y1:n)
= V(vn) + &nl(Va = va).
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Filtering — the analysis step

Setting: At time n+ 1, we have the old observations Yi., = y1., and we
have computed the prediction density 7(v,41|y1:n). Now we seek to
assimilate the new observation Y11 = y,4+1 into our state estimate.

What is the distribution of Vi11|(Yi:n = Yiin, Yor1 = Yni1) ?
Analysis step

T(Vat1, Ynr1lyin)
W(Yh+l‘yhn)

~ T(Ynt1|Var1, Yin)T(Vasa|yin)

B 7T(yn—&-l‘ylzn)

_ T(Ynt1|Var1)T(Vayalyin)

B ﬂ(y%+l‘yhn)

7T(Vn+1\y1:m)/n+1) =

Here we used that 7,11 L {Y1.0}:

Yn+l’(vn+1 = Vn+1, Yin = y1:n) = h(VnJrl) + 77n+1|(vn+1 = Vn+1, Yin = y1:n)
h(vnt1) + Nnt1l(Vat1 = Vat1)
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Summary filtering steps
Prediction step:

M(vmsalysn) = [ 7 (mtalvn)n(valysn) dvy
R

Analysis step:

ﬂ(y%+1’WHJ)W(Vn+lbﬁm)
7T(yn—o—l |y1:n)

7T(Vn+1 |y1:n+1) =

Remarks:

m 7(Vpt1|vs) is the transition kernel density :
T(Vat1|va) " =" prob density of going from v, to vpi1

m Generally, it is not easy to derive usable closed-form filtering densities
from the above steps, and they are rather a starting point for
approximation filtering algorithms.
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Relationship between smoothing and filtering pdfs
The derived equations are exact both for

m the updated filtering pdf 7y,|y,  (Valy1:n)

m and for the smoothing pdf 7TV0:n|y1:n(v0;,,|y1;,,).
Consequently,

ﬂvnym(vnyylm)_/ / Ty ve, (Vounlyin) dvo . V1. (3)
R4 R4

Explicit computations of either of them is often complicated when W
and/or h are nonlinear, following from their effects on the pdf

1 1<
7T(V0:n‘y1:n) = ? exp <_ E Z ’h(VJ) - yj‘lz_
=1

1 1 n—1
—5lvo - molg, — 52 [Vj+1 — W(‘G)\%)
j=0
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Well-posedness of the filter pdf

Corollary 1 (SST 7.7)

Fix n € N, a pair of observation sequences y1.p, V1:n € Rk*" and assume
that the dynamics V; satisfies

E |31+ [h(V)P)| < oc.

Jj=0

Then there exists a constant ¢ > 0 that depends on y;y., and 1., such that

drv(mv, vi, (-1Y1:n), TV, v, ([F1:)) < €

n
Dol — 5P
j=1
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Proof:

We will use

dH(TrVO:n‘ Yl:n(‘|-yl:n)’ 7TVO:nI»/l:n(. |-)71n)) S c

n
Iy —gil? (LSZ 2.15)
j=1

and that dry(#,%) < V2dy(#,%) for any #,% € M.
By definition

dv,

. 1 .
drv <7TV,,|Y1;,,('|)/1:n)a7TV,,|Y1;,,(")/1:n)> = 5 /Rd ‘W(an/l:n) - 7"'(Vn‘yl:n)

3) 1 )
® 5 / / .. / T(Vo:n|yi:n) — T(Vo:n|P1:n) dvo . . . dvip—1
R Rd

Rd
)
< — ..
- 2 Rd Rd
=d7v (WV0:H|Y1:,,('|)’1:n)a WVO;H\Yl;n(")N/l:n)>

S \/idH <7TV0:n|Y1:n('|y1:n)7 WVO:n‘Yl:n('U;l:n)) S \/ic‘y]-:n - .)71:”|

dvp,

d

dvg...dv,

7T(VO:n|}/1:n) - 71'(VO:n’)N/l:n)
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Overview

The Kalman filter
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Kalman filter

m Is the filtering problem with additive
Gaussian noise (all independent) and both
linear dynamics W(v) = Av and linear
observations h(v) = Hv.

m In this setting the filtering pdfs will remain
Gaussian for all times, and we obtain
surprisingly simple recursive formulas the

pdfs.

m Groundbreaking paper by Richard Kalman,
“A new approach to linear filtering and
prediction problems” J. Basic Engineering
1960, has, according to Google Scholar,
been cited more than 33000 times.
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Applications in control theory

In many real application, the state estimation and state prediction of
filtering is often combined with control

Vij1 = AV, + Buj + ¢ dynamics
Y; = HV +n; observations,
where u; belongs to set of admissible controls, e.g., u; € ol Yl:j).

For example, the linear quadratic Gaussian control problem

N
min E V,\700VN+Z(\/jTQl\/j+UJTQ2Uj) Yi.n = Yi:n

Unp,Un41,.--,UN )
J=n
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Applications:

m Guidance and navigation
systems [autopilots, driveless
cars, dynamical positioning
in ships , Apollo program,

]

missiles, ..

m econometric time-series
analysis and signal

processing

m and seed of many
approximate Gaussian
filtering methods.
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The linear-Gaussian setting
We consider the dynamics on R¢:

Vi =AVj+g,  j=01,...
Vo ~ N(mg, Cp)
with & % N(0, ), and the observations on R:
Yi=HVi+mn;, j=12,...
with n; % N(0,T).
Independence assuptions: Vo L {¢} L {n;}.
Objective: Show that, under assumption Cy, 2, > 0,
Vol Yiin = Yiin ~ N(m, Co), - Vos1|Yiin = yin ~ N(ips1, Crir)
for all n > 0, and describe recursive formulas for evolution of pdfs
(Mn, Co) = (Mns1, Cog1)  and (Mng1, Coga, yogr) = (Masa, Cog).
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Gaussianity of the filtering pdfs

Property 1: The dynamics Vj 1 = AV, + ¢ is Gaussian for any j > 0.

Motivation: Assuming V; is Gaussian, AV; + §; is a linear combination
of independent Gaussians, which again is a Gaussian (cf. LSZ 1.5 and
Ubung 6). Holds by induction, since V4 is Gaussian.
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Property 2: If V;|Yy; = yij o~ N(mj, G;), then
Viq1| Y1 = y1j ~ N(mjia, CJ+1) for computable moments with CJ+1 > 0.

Motivation: Writing Z; := Vj|( Y1 = y1.j), observe that

=yj) = AV +§l(Yiy =)
= A(Vil(Yss = 119)) + ¢
=AZ +§

Vj+1’(Y1:j

Hence, Vj;1|(Y1,j = y1.j) is linear combination of independent Gaussians

and thus itself Gaussian. Moreover,

ﬁ\?j+1 = E[ Vj-t,-l‘ Yl:j = yl:j]
=E[AV; + & Y1, = y1.)]
=AE[ V| Y1 =y, /] + E[§]

= Amj,
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and

A

j+1

E[(Vi1 = ) (Vion — )T Vi = vy

E [(AVJ +& = Am)(AV; + & — Amy)T| Yy = y1:j]

=E [A(Vj —m)(V; —m) AT Yy, = yw}
+E[§IE [(Vj —m)TAT |y = ylzj}

+E[A(Y; — m)| Y1y = il E [ ]| +E [ ¢ |
= AE [(Vj = m)(V; = my) |V = _)/1:11 AT +%
= AGAT +¥.
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Property 3: If Vi 1|Y1,j = y1j ~ N(Mjqq, €j+1) with 6j+1 > 0, then for
any yj1 € RK we have that Vi1 Y141 = Y141 ~ N(mjq1, Gi41) and
the moments are computable.

Motivation: By the previous derivations and using that

m(Vit1lyrj+1) < T(yjr1lvie)m(vivalysy)
1 , 1 o (4)
o exp ( - 5\)’1’+1 = Hvjjalr — §|Vj+1 - mj+1’@j+1)
where we used that

Yitsi|Visr = virn = Hyjpr +m5 ~ N(Hyjq,T)

Making the ansatz Vi, 1|Y1.j11 = y1.j+1 ~ N(mjt1, CGi4+1) and equating
same-order-term coefficients in the exponent of (4) the exponent of our
ansatz pdf

1 2
T(Vjg1|y1js1) o< exp ( - E‘Vj+1 — mj+1|cj+1>

verifies the claim.
20/34



Moreover, equating quadratic terms yields

CA=CA+HTTH (5)

and equating linear terms yields

-1 _ A1 & Tr—1
Crampp=Coamp+H Ty

(For more details on equating terms, see similar argument in Lecture 10.)
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Consequence of these properties:

Given a sequence y1, ¥, . . .,
m Starting from Vo ~ N(mg, Cp) it follows by Property 2 that
Vi~ N(Iﬁl, Cl) with

i =Amg and C; =AGAT +¥ >0, sinceX >0

m Property 3 then implies that V1|Y1 = y1 ~ N(my, C1) with
computable moments, where
CGl=C Y+ HTH

is positive definite since (.A"l, " > 0, and thus invertible.

m By induction, Vpi1|Yin = y1:n ~ N(fins1, Coy1) with Copr > 0
m and Vi1 Yinte1 = Yng1 ~ N(mpy1, Cop1) for computable moments
with
Cii=Clh+HTTH
which is positive definite since €n+1, [ > 0, and thus invertible.
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Theorem 2 (LSZ 4.1)

For the linear-Gaussian filtering problem with Cy, 2, > 0, it holds for any
observation sequence y1,y>,... and n > 1 that
Vn|Y1:n = Yi:n ™~ N(mm Cn) where

Cr=Cl1+HTIH

is positive definite and thus invertible, and

Colm, = Clm, + HTT Yy,

To avoid dealing with the inverse of C,,, we apply the Woodbury matrix
identity (LSZ 4.4) to obtain

Co=(Cr+HT ) =C - EHT(HECHT +T) T HE,

=K,

A

= (I - Ky,H)C,
and

mp = (I — KaH)iip + Knyn (ubung 7)
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Kalman filtering iteration algorithm

Given any sequence yi1,y2, ... and V,|Y1:n = y1.n ~ N(mp, C,) the
next-time filtering distributions are iteratively determined by

Prediction
rﬁn—i—l = Am,
Cop1 =ACGAT + X%
and
Analysis
dnt1 = Yn+1 — Hmpa innovation

Kni1 = Cop1HT(HE, 1 HT + )7 Kalman gain
Mpy1 = mn—l—l + Kn+1dn+1
Cop1 = (I — Kngp1H) Coi1
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Example
Dynamics on R?

Vi1 Boq i+
on(JL[4 )

where & % N(0,¥) with ¥ = [O 01 0 }

0 01

And observations on R:

Yi=[0 1) Vi+m,  n % N(O,1/4).

——
H

An observation sequence is generated from synthetic data:

yj =V} (@) + mj(w).
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% Dynamics parameters

A=1[1 0.1; 0 1];

Sigma = [0.01 0; 0 0.1];

m0 = [0; 1]; CO = [1/4 0; O 1/4];

%0bservation parameters
H = [0 1] ;Gamma = 1/4;

n =40;

%generate observation sequence

rng(12009) Y%set seed for reproducibility

v = zeros(2, n+l); y = zeros(l,n);

v(:,1) = mO+ sqrt(CO)*randn(2,1);

for j=1:n
v(:,j+1) = Axv(:,j) + sqrt(Sigma)*randn(2,1);
y(j) = H¥v(:,j+1) + sqrt(Gamma)*randn();

end
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Continuation of Matlab program

% Filtering distributions

m = zeros(2, n+1);

C = zeros(2,2,n+1);

m(:,1) = mO;

C(:,:,1) = CO;

for j=1:n
f%prediction step
m(:,j+1) = Axm(:, j);
C(:,:,j+1) = AxC(:,:, j)*A’ + Sigma;
%Analysis
K = C(:,:,j+1)*H’/(H*C(:,:,j+1)*H’ + Gamma) ;
m(:,j+1) =m(:,j+1) + Kx(y(j) - Hxm(:,j+1));
C(:,:,j*+1) = (eye(2)-K+#H)* C(:,:,j+1);

end
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Numerical results - noisy case
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Figure: Left pair of figures: Evolution of first component, mean and “one
standard deviation” grey uncertainty region in the right plot. Right pair of
figures: Same for the second component, but here also including measurements.

What is a good error measure? Isit |m — vi|| or |my2 — yul|, or
should we also rely on uncertainty regions?
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Numerical results - “noiseless case”

We consider the same problem, but now with almost no noise, except for
in V()’l:

C = [164

05 —)

Mp,1

0 [ Impa £ /G
e

-0.5

0 20 40
n

Note that uncertainty in first component remains for all times!
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Numerical results - “noiseless case 2"

We consider the same problem, but now with almost no noise, except for
in I
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Il > |Cy] = |Ky| < 1 = we do almost not take observations into

account, and then the problem is almost deterministic.
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Numerical results - “noiseless case 3"

We consider the same problem, but now with almost no noise, except for
in 222:

106 0 106 0 e
Co[o 10—6]’ 2[0 0.1}’ =10
5 5 3 —
4 4 o5 Pl ° ynv
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3 5 2 ¢ T dman +£24/Com| §
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T 5] o]
05[% | 9 0.5 4
Q q) D
0 0 x

o 20 0 o 20 0 o 20 w0 o 20 40
n n n n

Very accurate observations y, ~ V,, > means that by relying on the

observations (and not the model) in V,, >, we can track it very accurately.
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Numerical results - “noiseless case 4"

We consider the same problem, but now with almost no noise, except for
in 2o and I
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Both noisy dynamics and uncertain observations in the second component

introduces uncertainty in both components.
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Numerical results - “noiseless case 5"
We consider the same problem, but now with almost no noise, except for

in 211:
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Noisy dynamics in the first component, an unobserved component and
does not influence the dynamics of the second component, will (almost)

only introduce uncertainty in the first component.
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Summary

For a filtering problem
Visn =V¥(V)) +§;
Yi=h(V))+mn, j=12,...,
with Gaussian noise and initial condition and W and h linear mappings, we
have derived iterative formulas for the distribution V| Y1.n = yi:n-

m Theory extends straightforwardly to settings with time-dependence:
V,(v) = Ayv, h(v) = Hpv, £, Ty,

m Also possible to derive the moments for the Kalman smoother
distribution Vo.p| Y1:n = y1.n, Which also is a Gaussian, cf. LSZ 3.1

m Next time, we will look at Approximate Gaussian filters, which are
extensions of Kalman filtering to nonlinear settings.

m No lectures or ubung during Pentecost week. Next lecture on
Monday, June 8.
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