
Mathematics and numerics for data assimilation and
state estimation – Lecture 14
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Summary of lecture 13
In additive Gaussian noise setting (both for dynamics and
observations), smoothing density for V0:J |Y1:J = y1:J :

π(v0:J |y1:J) =
1

Z
exp

(
− 1

2

J∑
j=1

|h(vj)− yj |2Γ

− 1

2
|v0 −m0|2C0

− 1

2

J−1∑
j=0

|vj+1 −Ψ(vj)|2Σ

)

Stability of the density wrt perturbations (under some assumptions on
the dynamics),

dH(πV0:J |Y1:J
(· | y1:J), πV0:J |Y1:J

(· | ỹ1:J)) ≤ c

√√√√ J∑
j=1

|yj − ỹj |2

For deterministic dynamics with uncertain initial condition, we derived
a smoothing density for V0|Y1:J = y1:J .
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Dynamics and observation setting
Continuous state-space dynamics: A mapping Ψ ∈ C (Rd ,Rd) is
associated to the dynamics

Vj+1 = Ψ(Vj) + ξj , j = 0, 1, . . .

V0 ∼ N(m0,C0)
(1)

with an iid sequence ξj ∼ N(0,Σ).

Observations:
Yj = h(Vj) + ηj , j = 1, 2, . . . , (2)

where h ∈ C (Rd ,Rk) and iid sequence ηj ∼ N(0, Γ).

Independence assumptions:

{ηj} ⊥ {ξj} ⊥ {V0}

Objective: Derive iterative formulas for pdfs of Vn|Y1:n = y1:n and
Vn+1|Y1:n = y1:n for n ≥ 1.

5 / 34



Filtering – the prediction step
Setting: At time n ≥ 0, we have observations Y1:n = y1:n and we have
computed πVn|Y1:n

(vn|y1:n) =: π(vn|y1:n) (for n = 0, we mean by this
πV0(v0)).

What is the distribution of Vn+1|Y1:n = y1:n ?

Prediction: By the law of total probability

π(vn+1|y1:n) =

=

∫
Rd

π(vn+1|vn, y1:n)π(vn|y1:n) dvn

=

∫
Rd

π(vn+1|vn)π(vn|y1:n) dvn

The last step follows from ξn ⊥ {Y1:n} and

Vn+1|(Vn = vn,Y1:n = y1:n) = Ψ(Vn) + ξn|(Vn = vn,Y1:n = y1:n)

= Ψ(vn) + ξn|(Vn = vn,Y1:n = y1:n)

= Ψ(vn) + ξn|(Vn = vn).
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Filtering – the analysis step
Setting: At time n + 1, we have the old observations Y1:n = y1:n and we
have computed the prediction density π(vn+1|y1:n). Now we seek to
assimilate the new observation Yn+1 = yn+1 into our state estimate.

What is the distribution of Vn+1|(Y1:n = y1:n,Yn+1 = yn+1) ?

Analysis step

π(vn+1|y1:n, yn+1) =
π(vn+1, yn+1|y1:n)

π(yn+1|y1:n)

=
π(yn+1|vn+1, y1:n)π(vn+1|y1:n)

π(yn+1|y1:n)

=
π(yn+1|vn+1)π(vn+1|y1:n)

π(yn+1|y1:n)

Here we used that ηn+1 ⊥ {Y1:n}:

Yn+1|(Vn+1 = vn+1,Y1:n = y1:n) = h(vn+1) + ηn+1|(Vn+1 = vn+1,Y1:n = y1:n)

= h(vn+1) + ηn+1|(Vn+1 = vn+1)
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Summary filtering steps

Prediction step:

π(vn+1|y1:n) =

∫
Rd

π(vn+1|vn)π(vn|y1:n) dvn

Analysis step:

π(vn+1|y1:n+1) =
π(yn+1|vn+1)π(vn+1|y1:n)

π(yn+1|y1:n)

Remarks:

π(vn+1|vn) is the transition kernel density :

π(vn+1|vn) ” = ”prob density of going from vn to vn+1

Generally, it is not easy to derive usable closed-form filtering densities
from the above steps, and they are rather a starting point for
approximation filtering algorithms.
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Relationship between smoothing and filtering pdfs
The derived equations are exact both for

the updated filtering pdf πVn|Y1:n
(vn|y1:n)

and for the smoothing pdf πV0:n|Y1:n
(v0:n|y1:n).

Consequently,

πVn|Y1:n
(vn|y1:n) =

∫
Rd

. . .

∫
Rd

πV0:n|Y1:n
(v0:n|y1:n) dv0 . . . dvn−1. (3)

Explicit computations of either of them is often complicated when Ψ
and/or h are nonlinear, following from their effects on the pdf

π(v0:n|y1:n) =
1

Z
exp

(
− 1

2

n∑
j=1

|h(vj)− yj |2Γ

− 1

2
|v0 −m0|2C0

− 1

2

n−1∑
j=0

|vj+1 −Ψ(vj)|2Σ

)
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Well-posedness of the filter pdf

Corollary 1 (SST 7.7)

Fix n ∈ N, a pair of observation sequences y1:n, ỹ1:n ∈ Rk×n, and assume
that the dynamics Vj satisfies

E

 n∑
j=0

(1 + |h(Vj)|2)

 <∞.
Then there exists a constant c > 0 that depends on y1:n and ỹ1:n such that

dTV (πVn|Y1:n
(·|y1:n), πVn|Y1:n

(·|ỹ1:n)) ≤ c

√√√√ n∑
j=1

|yj − ỹj |2
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Proof:
We will use

dH(πV0:n|Y1:n
(·|y1:n), πV0:n|Y1:n

(·|ỹ1:n)) ≤ c

√√√√ n∑
j=1

|yj − ỹj |2 (LSZ 2.15)

and that dTV (π̂, π̌) ≤
√

2dH(π̂, π̌) for any π̂, π̌ ∈M.

By definition

dTV

(
πVn|Y1:n

(·|y1:n), πVn|Y1:n
(·|ỹ1:n)

)
=

1

2

∫
Rd

∣∣∣π(vn|y1:n)− π(vn|ỹ1:n)
∣∣∣dvn

(3)
=

1

2

∫
Rd

∣∣∣∣∣
∫
Rd

. . .

∫
Rd

π(v0:n|y1:n)− π(v0:n|ỹ1:n) dv0 . . . dvn−1

∣∣∣∣∣dvn
≤ 1

2

∫
Rd

. . .

∫
Rd

∣∣∣π(v0:n|y1:n)− π(v0:n|ỹ1:n)
∣∣∣ dv0 . . . dvn

= dTV

(
πV0:n|Y1:n

(·|y1:n), πV0:n|Y1:n
(·|ỹ1:n)

)
≤
√

2dH

(
πV0:n|Y1:n

(·|y1:n), πV0:n|Y1:n
(·|ỹ1:n)

)
≤
√

2c |y1:n − ỹ1:n|
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Kalman filter

Is the filtering problem with additive
Gaussian noise (all independent) and both
linear dynamics Ψ(v) = Av and linear
observations h(v) = Hv .

In this setting the filtering pdfs will remain
Gaussian for all times, and we obtain
surprisingly simple recursive formulas the
pdfs.

Groundbreaking paper by Richard Kalman,
“A new approach to linear filtering and
prediction problems” J. Basic Engineering
1960, has, according to Google Scholar,
been cited more than 33000 times.
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Applications in control theory

In many real application, the state estimation and state prediction of
filtering is often combined with control

Vj+1 = AVj + Buj + ξj dynamics

Yj = HVj + ηj observations,

where uj belongs to set of admissible controls, e.g., uj ∈ σ(Y1:j).

For example, the linear quadratic Gaussian control problem

min
un,un+1,...,uN

E

V T
N Q0VN +

N∑
j=n

(V T
j Q1Vj + uTj Q2uj)

∣∣∣ Y1:n = y1:n


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Applications:

Guidance and navigation
systems [autopilots, driveless
cars, dynamical positioning
in ships , Apollo program,
missiles, . . . ]

econometric time-series
analysis and signal
processing

and seed of many
approximate Gaussian
filtering methods.
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The linear-Gaussian setting
We consider the dynamics on Rd :

Vj+1 = AVj + ξj , j = 0, 1, . . .

V0 ∼ N(m0,C0)

with ξj
iid∼ N(0,Σ), and the observations on Rk :

Yj = HVj + ηj , j = 1, 2, . . .

with ηj
iid∼ N(0, Γ).

Independence assuptions: V0 ⊥ {ξj} ⊥ {ηj}.

Objective: Show that, under assumption C0,Σ, Γ > 0,

Vn|Y1:n = y1:n ∼ N(mn,Cn), Vn+1|Y1:n = y1:n ∼ N(m̂n+1, Ĉn+1)

for all n > 0, and describe recursive formulas for evolution of pdfs

(mn,Cn) 7→ (m̂n+1, Ĉn+1) and (m̂n+1, Ĉn+1, yn+1) 7→ (mn+1,Cn+1).
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Gaussianity of the filtering pdfs

Property 1: The dynamics Vj+1 = AVj + ξj is Gaussian for any j ≥ 0.

Motivation: Assuming Vj is Gaussian, AVj + ξj is a linear combination
of independent Gaussians, which again is a Gaussian (cf. LSZ 1.5 and
Ubung 6). Holds by induction, since V0 is Gaussian.

17 / 34



Property 2: If Vj |Y1:j = y1:j ∼ N(mj ,Cj), then

Vj+1|Y1:j = y1:j ∼ N(m̂j+1, Ĉj+1) for computable moments with Ĉj+1 > 0.

Motivation: Writing Zj := Vj |(Y1:j = y1:j), observe that

Vj+1|(Y1:j = y1:j) = AVj + ξj |(Y1:j = y1:j)

= A
(
Vj |(Y1:j = y1:j)

)
+ ξj

= AZj + ξj

Hence, Vj+1|(Y1:j = y1:j) is linear combination of independent Gaussians
and thus itself Gaussian. Moreover,

m̂j+1 = E [Vj+1|Y1:j = y1:j ]

= E [AVj + ξj |Y1:j = y1:j ]

= AE [Vj |Y1:j = y1:j ] + E [ ξj ]

= Amj ,
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and

Ĉj+1 = E
[

(Vj+1 − m̂j+1)(Vj+1 − m̂j+1)T |Y1:j = y1:j

]
= E

[
(AVj + ξj − Amj)(AVj + ξj − Amj)

T |Y1:j = y1:j

]
= E

[
A(Vj −mj)(Vj −mj)

TAT |Y1:j = y1:j

]
+ E [ ξj ]E

[
(Vj −mj)

TAT |Y1:j = y1:j

]
+ E [A(Vj −mj)|Y1:j = y1:j ]E

[
ξTj

]
+ E

[
ξjξ

T
j

]
= AE

[
(Vj −mj)(Vj −mj)

T |Y1:j = y1:j

]
AT + Σ

= ACjA
T + Σ.
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Property 3: If Vj+1|Y1:j = y1:j ∼ N(m̂j+1, Ĉj+1) with Ĉj+1 > 0, then for
any yj+1 ∈ Rk we have that Vj+1|Y1:j+1 = y1:j+1 ∼ N(mj+1,Cj+1) and
the moments are computable.

Motivation: By the previous derivations and using that

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j)

∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ −

1

2
|vj+1 − m̂j+1|2Ĉj+1

) (4)

where we used that

Yj+1|Vj+1 = vj+1 = Hvj+1 + ηj ∼ N(Hvj+1, Γ)

Making the ansatz Vj+1|Y1:j+1 = y1:j+1 ∼ N(mj+1,Cj+1) and equating
same-order-term coefficients in the exponent of (4) the exponent of our
ansatz pdf

π(vj+1|y1:j+1) ∝ exp
(
− 1

2
|vj+1 −mj+1|2Cj+1

)
verifies the claim.
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Moreover, equating quadratic terms yields

C−1
j+1 = Ĉ−1

j+1 + HTΓ−1H (5)

and equating linear terms yields

C−1
j+1mj+1 = Ĉ−1

j+1m̂j+1 + HTΓ−1yj+1

(For more details on equating terms, see similar argument in Lecture 10.)
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Consequence of these properties:
Given a sequence y1, y2, . . .,

Starting from V0 ∼ N(m0,C0) it follows by Property 2 that
V1 ∼ N(m̂1, Ĉ1) with

m̂1 = Am0 and Ĉ1 = AC0A
T + Σ > 0, sinceΣ > 0

Property 3 then implies that V1|Y1 = y1 ∼ N(m1,C1) with
computable moments, where

C−1
1 = Ĉ−1

1 + HTΓ−1H

is positive definite since Ĉ1, Γ > 0, and thus invertible.

By induction, Vn+1|Y1:n = y1:n ∼ N(m̂n+1, Ĉn+1) with Ĉn+1 > 0

and Vn+1|Y1:n+1 = yn+1 ∼ N(mn+1,Cn+1) for computable moments
with

C−1
n+1 = Ĉ−1

n+1 + HTΓ−1H

which is positive definite since Ĉn+1, Γ > 0, and thus invertible.
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Theorem 2 (LSZ 4.1)

For the linear-Gaussian filtering problem with C0,Σ, Γ > 0, it holds for any
observation sequence y1, y2, . . . and n ≥ 1 that
Vn|Y1:n = y1:n ∼ N(mn,Cn) where

C−1
n = Ĉ−1

n + HTΓ−1H

is positive definite and thus invertible, and

C−1
n mn = Ĉ−1

n m̂n + HTΓ−1yn.

To avoid dealing with the inverse of Cn, we apply the Woodbury matrix
identity (LSZ 4.4) to obtain

Cn = (Ĉ−1
n + HTΓ−1H)−1 = Ĉn − ĈnH

T (HĈnH
T + Γ)−1︸ ︷︷ ︸

=:Kn

HĈn

= (I − KnH)Ĉn

and

mn = (I − KnH)m̂n + Knyn (ubung 7)
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Kalman filtering iteration algorithm
Given any sequence y1, y2, . . . and Vn|Y1:n = y1:n ∼ N(mn,Cn) the
next-time filtering distributions are iteratively determined by

Prediction

m̂n+1 = Amn

Ĉn+1 = ACnA
T + Σ

and

Analysis

dn+1 = yn+1 − Hm̂n+1 innovation

Kn+1 = Ĉn+1H
T (HĈn+1H

T + Γ)−1 Kalman gain

mn+1 = m̂n+1 + Kn+1dn+1

Cn+1 = (I − Kn+1H)Ĉn+1
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Example
Dynamics on R2

Vj+1 =

[
1 0.1
0 1

]
Vj + ξj ,

V0 ∼ N
([0

1

]
,

[
1/4 0

0 1/4

])
where ξj

iid∼ N(0,Σ) with Σ =

[
0.01 0

0 0.1

]
.

And observations on R:

Yj =
[
0 1

]︸ ︷︷ ︸
H

Vj + ηj , ηj
iid∼ N(0, 1/4).

An observation sequence is generated from synthetic data:
yj = V †j (ω) + ηj(ω).
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% Dynamics parameters

A = [1 0.1; 0 1];

Sigma = [0.01 0; 0 0.1];

m0 = [0; 1]; C0 = [1/4 0; 0 1/4];

%Observation parameters

H = [0 1];Gamma = 1/4;

n =40;

%generate observation sequence

rng(12009) %set seed for reproducibility

v = zeros(2, n+1); y = zeros(1,n);

v(:,1) = m0+ sqrt(C0)*randn(2,1);

for j=1:n

v(:,j+1) = A*v(:,j) + sqrt(Sigma)*randn(2,1);

y(j) = H*v(:,j+1) + sqrt(Gamma)*randn();

end
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Continuation of Matlab program

% Filtering distributions

m = zeros(2, n+1);

C = zeros(2,2,n+1);

m(:,1) = m0;

C(:,:,1) = C0;

for j=1:n

%prediction step

m(:,j+1) = A*m(:, j);

C(:,:,j+1) = A*C(:,:, j)*A’ + Sigma;

%Analysis

K = C(:,:,j+1)*H’/(H*C(:,:,j+1)*H’ + Gamma);

m(:,j+1) = m(:,j+1) + K*(y(j) - H*m(:,j+1));

C(:,:,j+1) = (eye(2)-K*H)* C(:,:,j+1);

end
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Numerical results - noisy case

Figure: Left pair of figures: Evolution of first component, mean and “one
standard deviation” grey uncertainty region in the right plot. Right pair of
figures: Same for the second component, but here also including measurements.

What is a good error measure? Is it ‖m − v †‖ or ‖mn,2 − yn‖, or
should we also rely on uncertainty regions?
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Numerical results - “noiseless case”

We consider the same problem, but now with almost no noise, except for
in V0,1:

C0 =

[
1/4 0

0 10−6

]
, Σ =

[
10−6 0

0 10−6

]
, Γ = 10−6.

Note that uncertainty in first component remains for all times!
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Numerical results - “noiseless case 2”
We consider the same problem, but now with almost no noise, except for
in Γ:

C0 =

[
10−6 0

0 10−6

]
, Σ =

[
10−6 0

0 10−6

]
, Γ = 1/4.

|Γ| � |Cn| =⇒ |Kn| � 1 =⇒ we do almost not take observations into
account, and then the problem is almost deterministic.
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Numerical results - “noiseless case 3”
We consider the same problem, but now with almost no noise, except for
in Σ22:

C0 =

[
10−6 0

0 10−6

]
, Σ =

[
10−6 0

0 0.1

]
, Γ = 10−6.

Very accurate observations yn ≈ Vn,2 means that by relying on the
observations (and not the model) in Vn,2, we can track it very accurately.
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Numerical results - “noiseless case 4”
We consider the same problem, but now with almost no noise, except for
in Σ22 and Γ:

C0 =

[
10−6 0

0 10−6

]
, Σ =

[
10−6 0

0 0.1

]
, Γ = 1/4

Both noisy dynamics and uncertain observations in the second component
introduces uncertainty in both components.
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Numerical results - “noiseless case 5”
We consider the same problem, but now with almost no noise, except for
in Σ11:

C0 =

[
10−6 0

0 10−6

]
, Σ =

[
0.1 0
0 10−6

]
, Γ = 10−6

Noisy dynamics in the first component, an unobserved component and
does not influence the dynamics of the second component, will (almost)
only introduce uncertainty in the first component.
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Summary
For a filtering problem

Vj+1 = Ψ(Vj) + ξj

Yj = h(Vj) + ηj , j = 1, 2, . . . ,

with Gaussian noise and initial condition and Ψ and h linear mappings, we
have derived iterative formulas for the distribution Vn|Y1:n = y1:n.

Theory extends straightforwardly to settings with time-dependence:
Ψn(v) = Anv , h(v) = Hnv , Σn, Γn.

Also possible to derive the moments for the Kalman smoother
distribution V0:n|Y1:n = y1:n, which also is a Gaussian, cf. LSZ 3.1

Next time, we will look at Approximate Gaussian filters, which are
extensions of Kalman filtering to nonlinear settings.

No lectures or ubung during Pentecost week. Next lecture on
Monday, June 8.
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