
Mathematics and numerics for data assimilation and

state estimation – Lecture 14

Summer semester 2020

1 / 34



Overview

1 Filtering in continuous state-space

2 The Kalman filter

2 / 34



Summary of lecture 13

In additive Gaussian noise setting (both for dynamics and

observations), smoothing density for V0:J |Y1:J = y1:J :

⇡(v0:J |y1:J) =
1

Z
exp

 
� 1

2

JX

j=1

|h(vj)� yj |2�

� 1

2
|v0 �m0|2C0

� 1

2

J�1X

j=0

|vj+1 � (vj)|2⌃

!

Stability of the density wrt perturbations (under some assumptions on

the dynamics),

dH(⇡V0:J |Y1:J
(· | y1:J),⇡V0:J |Y1:J

(· | ỹ1:J))  c

vuut
JX

j=1

|yj � ỹj |2

For deterministic dynamics with uncertain initial condition, we derived

a smoothing density for V0|Y1:J = y1:J .
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Dynamics and observation setting

Continuous state-space dynamics: A mapping  2 C (Rd ,Rd
) is

associated to the dynamics

Vj+1 =  (Vj) + ⇠j , j = 0, 1, . . .

V0 ⇠ N(m0,C0)
(1)

with an iid sequence ⇠j ⇠ N(0,⌃).

Observations:

Yj = h(Vj) + ⌘j , j = 1, 2, . . . , (2)

where h 2 C (Rd ,Rk
) and iid sequence ⌘j ⇠ N(0, �).

Independence assumptions:

{⌘j} ? {⇠j} ? {V0}

Objective: Derive iterative formulas for pdfs of Vn|Y1:n = y1:n and

Vn+1|Y1:n = y1:n for n � 1.
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Filtering – the prediction step

Setting: At time n � 0, we have observations Y1:n = y1:n and we have

computed ⇡Vn|Y1:n
(vn|y1:n) =: ⇡(vn|y1:n) (for n = 0, we mean by this

⇡V0(v0)).

What is the distribution of Vn+1|Y1:n = y1:n ?

Prediction: By the law of total probability

⇡(vn+1|y1:n) =

=

Z

Rd

⇡(vn+1|vn, y1:n)⇡(vn|y1:n) dvn

=

Z

Rd

⇡(vn+1|vn)⇡(vn|y1:n) dvn

The last step follows from ⇠n ? {Y1:n} and

Vn+1|(Vn = vn,Y1:n = y1:n) =  (Vn) + ⇠n|(Vn = vn,Y1:n = y1:n)

=  (vn) + ⇠n|(Vn = vn,Y1:n = y1:n)

=  (vn) + ⇠n|(Vn = vn).
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Filtering – the analysis step

Setting: At time n + 1, we have the old observations Y1:n = y1:n and we

have computed the prediction density ⇡(vn+1|y1:n). Now we seek to

assimilate the new observation Yn+1 = yn+1 into our state estimate.

What is the distribution of Vn+1|(Y1:n = y1:n,Yn+1 = yn+1) ?

Analysis step

⇡(vn+1|y1:n, yn+1) =
⇡(vn+1, yn+1|y1:n)

⇡(yn+1|y1:n)

=
⇡(yn+1|vn+1, y1:n)⇡(vn+1|y1:n)

⇡(yn+1|y1:n)

=
⇡(yn+1|vn+1)⇡(vn+1|y1:n)

⇡(yn+1|y1:n)
Here we used that ⌘n+1 ? {Y1:n}:

Yn+1|(Vn+1 = vn+1,Y1:n = y1:n) = h(vn+1) + ⌘n+1|(Vn+1 = vn+1,Y1:n = y1:n)

= h(vn+1) + ⌘n+1|(Vn+1 = vn+1)
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Summary filtering steps

Prediction step:

⇡(vn+1|y1:n) =
Z

Rd

⇡(vn+1|vn)⇡(vn|y1:n) dvn

Analysis step:

⇡(vn+1|y1:n+1) =
⇡(yn+1|vn+1)⇡(vn+1|y1:n)

⇡(yn+1|y1:n)

Remarks:

⇡(vn+1|vn) is the transition kernel density :

⇡(vn+1|vn) ” = ”prob density of going from vn to vn+1

Generally, it is not easy to derive usable closed-form filtering densities

from the above steps, and they are rather a starting point for

approximation filtering algorithms.
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Relationship between smoothing and filtering pdfs

The derived equations are exact both for

the updated filtering pdf ⇡Vn|Y1:n
(vn|y1:n)

and for the smoothing pdf ⇡V0:n|Y1:n
(v0:n|y1:n).

Consequently,

⇡Vn|Y1:n
(vn|y1:n) =

Z

Rd

. . .

Z

Rd

⇡V0:n|Y1:n
(v0:n|y1:n) dv0 . . . dvn�1. (3)

Explicit computations of either of them is often complicated when  

and/or h are nonlinear, following from their e↵ects on the pdf

⇡(v0:n|y1:n) =
1

Z
exp

 
� 1

2

nX

j=1

|h(vj)� yj |2�

� 1

2
|v0 �m0|2C0

� 1

2

n�1X

j=0

|vj+1 � (vj)|2⌃

!
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Well-posedness of the filter pdf

Corollary 1 (SST 7.7)

Fix n 2 N, a pair of observation sequences y1:n, ỹ1:n 2 Rk⇥n
, and assume

that the dynamics Vj satisfies

E

2

4
nX

j=0

(1 + |h(Vj)|2)

3

5 < 1.

Then there exists a constant c > 0 that depends on y1:n and ỹ1:n such that

dTV (⇡Vn|Y1:n
(·|y1:n),⇡Vn|Y1:n

(·|ỹ1:n))  c

vuut
nX

j=1

|yj � ỹj |2
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Proof:

We will use

dH(⇡V1:n|Y1:n
(·|y1:J),⇡V1:n|Y1:n

(·|ỹ1:J))  c

vuut
nX

j=1

|yj � ỹj |2 (LSZ 2.15)

and that dTV (⇡̂, ⇡̌) 
p
2dH(⇡̂, ⇡̌) for any ⇡̂, ⇡̌ 2 M.

By definition

dTV

⇣
⇡Vn|Y1:n

(·|y1:J),⇡Vn|Y1:n
(·|ỹ1:J)

⌘
=

1

2

Z

Rd

���⇡(vn|y1:n)� ⇡(vn|ỹ1:n)
���dvn

(3)
=

1

2

Z

Rd

�����

Z

Rd

. . .

Z

Rd

⇡(v0:n|y1:n)� ⇡(v0:n|ỹ1:n) dv0 . . . dvn�1

�����dvn

 1

2

Z

Rd

. . .

Z

Rd

���⇡(v0:n|y1:n)� ⇡(v0:n|ỹ1:n)
��� dv0 . . . dvn

= dTV

⇣
⇡V0:n|Y1:n

(·|y1:n),⇡V0:n|Y1:n
(·|ỹ1:n)

⌘


p
2dH

⇣
⇡V0:n|Y1:n

(·|y1:J),⇡V0:n|Y1:n
(·|ỹ1:n)

⌘


p
2c |y1:n � ỹ1:n|
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Kalman filter

Is the filtering problem with additive

Gaussian noise (all independent) and both

linear dynamics  (v) = Av and linear

observations h(v) = Hv .

In this setting the filtering pdfs will remain

Gaussian for all times, and we obtain

surprisingly simple recursive formulas the

pdfs.

Groundbreaking paper by Richard Kalman,

“A new approach to linear filtering and

prediction problems” J. Basic Engineering

1960, has, according to Google Scholar,

been cited more than 33000 times.
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Applications in control theory

In many real application, the state estimation and state prediction of

filtering is often combined with control

Vj+1 = AVj + Buj + ⇠j dynamics

Yj = HVj + ⌘j observations,

where uj belongs to set of admissible controls, e.g., uj 2 �(Y1:j).

For example, the linear quadratic Gaussian control problem

min
un,un+1,...,uN

E

2

4V
T

N
Q0VN +

NX

j=n

(V
T

j Q1Vj + u
T

j Q2uj)

��� Y1:n = y1:n

3

5
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Applications:

Guidance and navigation

systems [autopilots, driveless

cars, dynamical positioning

in ships , Apollo program,

missiles, . . . ]

econometric time-series

analysis and signal

processing

and seed of many

approximate Gaussian

filtering methods.
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The linear-Gaussian setting

We consider the dynamics on Rd
:

Vj+1 = AVj + ⇠j , j = 0, 1, . . .

V0 ⇠ N(m0,C0)

with ⇠j
iid⇠ N(0,⌃), and the observations on Rk

:

Yj = HVj + ⌘j , j = 1, 2, . . .

with ⌘j
iid⇠ N(0, �).

Independence assuptions: V0 ? {⇠j} ? {⌘j}.

Objective: Show that, under assumption C0,⌃, � > 0,

Vn|Y1:n = y1:n ⇠ N(mn,Cn), Vn+1|Y1:n = y1:n ⇠ N(m̂n+1, Ĉn+1)

for all n > 0, and describe recursive formulas for evolution of pdfs

(mn,Cn) 7! (m̂n+1, Ĉn+1) and (m̂n+1, Ĉn+1, yn+1) 7! (mn+1,Cn+1).
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Gaussianity of the filtering pdfs

Property 1: The dynamics Vj+1 = AVj + ⇠j is Gaussian for any j � 0.

Motivation: Assuming Vj is Gaussian, AVj + ⇠j is a linear combination

of independent Gaussians, which again is a Gaussian (cf. LSZ 1.5 and

Ubung 6). Holds by induction, since V0 is Gaussian.
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Property 2: If Vj |Y1:j = y1:j ⇠ N(mj ,Cj), then

Vj+1|Y1:j = y1:j ⇠ N(m̂j+1, Ĉj+1) for computable moments with Ĉj+1 > 0.

Motivation: Writing Zj := Vj |(Y1:j = y1:j), observe that

Vj+1|(Y1:j = y1:j) = AVj + ⇠j |(Y1:j = y1:j)

= A

⇣
Vj |(Y1:j = y1:j)

⌘
+ ⇠j

= AZj + ⇠j

Hence, Vj+1|(Y1:j = y1:j) is linear combination of independent Gaussians

and thus itself Gaussian. Moreover,

m̂j+1 = E [Vj+1|Y1:j = y1:j ]

= E [AVj + ⇠j |Y1:j = y1:j ]

= AE [Vj |Y1:j = y1:j ] + E [ ⇠j ]

= Amj ,
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and

Ĉj+1 = E
h
(Vj+1 � m̂j+1)(Vj+1 � m̂j+1)

T |Y1:j = y1:j

i

= E
h
(AVj + ⇠j � Amj)(AVj + ⇠j � Amj)

T |Y1:j = y1:j

i

= E
h
A(Vj �mj)(Vj �mj)

T
A
T |Y1:j = y1:j

i

+ E [ ⇠j ]E
h
(Vj �mj)

T
A
T |Y1:j = y1:j

i

+ E [A(Vj �mj)|Y1:j = y1:j ]E
h
⇠Tj

i
+ E

h
⇠j⇠

T

j

i

= AE
h
(Vj �mj)(Vj �mj)

T |Y1:j = y1:j

i
A
T
+ ⌃

= ACjA
T
+ ⌃.
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Property 3: If Vj+1|Y1:j = y1:j ⇠ N(m̂j+1, Ĉj+1) with Ĉj+1 > 0, then for

any yj+1 2 Rk
we have that Vj+1|Y1:j+1 = y1:j+1 ⇠ N(mj+1,Cj+1) and

the moments are computable.

Motivation: By the previous derivations and using that

⇡(vj+1|y1:j+1) / ⇡(yj+1|vj+1)⇡(vj+1|y1:j)

/ exp

⇣
� 1

2
|yj+1 � Hvj+1|2� �

1

2
|vj+1 � m̂j+1|2

Ĉj+1

⌘ (4)

where we used that

Yj+1|Vj+1 = vj+1 = Hvj+1 + ⌘j ⇠ N(Hvj+1, �)

Making the ansatz Vj+1|Y1:j+1 = y1:j+1 ⇠ N(mj+1,Cj+1) and equating

same-order-term coe�cients in the exponent of (4) the exponent of our

ansatz pdf

⇡(vj+1|y1:j+1) / exp

⇣
� 1

2
|vj+1 �mj+1|2Cj+1

⌘

verifies the claim.
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Moreover, equating quadratic terms yields

C
�1
j+1 = Ĉ

�1
j+1 + H

T
�
�1

H (5)

and equating linear terms yields

C
�1
j+1mj+1 = Ĉ

�1
j+1m̂j+1 + H

T
�
�1

yj+1

(For more details on equating terms, see similar argument in Lecture 10.)
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Consequence of these properties:

Given a sequence y1, y2, . . .,

Starting from V0 ⇠ N(m0,C0) it follows by Property 2 that

V1 ⇠ N(m̂1, Ĉ1) with

m̂1 = Am0 and Ĉ1 = AC0A
T
+ ⌃ > 0, since⌃ > 0

Property 3 then implies that V1|Y1 = y1 ⇠ N(m1,C1) with

computable moments, where

C
�1
1 = Ĉ

�1
1 + H

T
�
�1

H

is positive definite since Ĉ1, � > 0, and thus invertible.

By induction, Vn+1|Y1:n = y1:n ⇠ N(m̂n+1, Ĉn+1) with Ĉn+1 > 0

and Vn+1|Y1:n+1 = yn+1 ⇠ N(mn+1,Cn+1) for computable moments

with

C
�1
n+1 = Ĉ

�1
n+1 + H

T
�
�1

H

which is positive definite since Ĉn+1, � > 0, and thus invertible.
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Theorem 2 (LSZ 4.1)

For the linear-Gaussian filtering problem with C0,⌃, �, it holds for any
observation sequence y1, y2, . . . and n � 1 that

Vn|Y1:n = y1:n ⇠ N(mn,Cn) where

C
�1
n = Ĉ

�1
n + H

T
�
�1

H

is positive definite and thus invertible, and

C
�1
n mn = Ĉ

�1
n m̂n + H

T
�
�1

yn.

To avoid dealing with the inverse of Cn, we apply the Woodbury matrix

identity (LSZ 4.4) to obtain

Cn = (Ĉ
�1
n + H

T
�
�1

H)
�1

= Ĉn � ĈnH
T
(HĈnH

T
+ �)

�1

| {z }
=:Kn

HĈn

= (I � KnH)Ĉn

and

mn = (I � KnH)m̂n + Knyn (ubung 7)
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Kalman filtering iteration algorithm

Given any sequence y1, y2, . . . and Vn|Y1:n = y1:n ⇠ N(mn,Cn) the

next-time filtering distributions are iteratively determined by

Prediction

m̂n+1 = Amn

Ĉn+1 = ACnA
T
+ ⌃

and

Analysis

dn+1 = yn+1 � Hm̂n+1 innovation

Kn+1 = Ĉn+1H
T
(HĈn+1H

T
+ �)

�1
Kalman gain

mn+1 = m̂n+1 + Kn+1dn+1

Cn+1 = (I � Kn+1H)Ĉn+1
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Example

Dynamics on R2

Vj+1 =


1 0.1
0 1

�
Vj + ⇠j ,

V0 ⇠ N

⇣
0

1

�
,


1/4 0

0 1/4

�⌘

where ⇠j
iid⇠ N(0,⌃) with ⌃ =


0.01 0

0 0.1

�
.

And observations on R:

Yj =
⇥
0 1

⇤
| {z }

H

Vj + ⌘j , ⌘j
iid⇠ N(0, 1/4).

An observation sequence is generated from synthetic data:

yj = V
†
j
(!) + ⌘j(!).
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% Dynamics parameters

A = [1 0.1; 0 1];

Sigma = [0.01 0; 0 0.1];

m0 = [0; 1]; C0 = [1/4 0; 0 1/4];

%Observation parameters

H = [0 1];Gamma = 1/4;

n =40;

%generate observation sequence

rng(12009) %set seed for reproducibility

v = zeros(2, n+1); y = zeros(1,n);

v(:,1) = m0+ sqrt(C0)*randn(2,1);

for j=1:n

v(:,j+1) = A*v(:,j) + sqrt(Sigma)*randn(2,1);

y(j) = H*v(:,j+1) + sqrt(Gamma)*randn();

end
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Continuation of Matlab program

% Filtering distributions

m = zeros(2, n+1);

C = zeros(2,2,n+1);

m(:,1) = m0;

C(:,:,1) = C0;

for j=1:n

%prediction step

m(:,j+1) = A*m(:, j);

C(:,:,j+1) = A*C(:,:, j)*A’ + Sigma;

%Analysis

K = C(:,:,j+1)*H’/(H*C(:,:,j+1)*H’ + Gamma);

m(:,j+1) = m(:,j+1) + K*(y(j) - H*m(:,j+1));

C(:,:,j+1) = (eye(2)-K*H)* C(:,:,j+1);

end
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Numerical results - noisy case

Figure: Left pair of figures: Evolution of first component, mean and “one

standard deviation” grey uncertainty region in the right plot. Right pair of

figures: Same for the second component, but here also including measurements.

What is a good error measure? Is it km � v
†k or kmn,2 � ynk, or

should we also rely on uncertainty regions?
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Numerical results - “noiseless case”

We consider the same problem, but now with almost no noise, except for

in V0,1:

C0 =


1/4 0

0 10
�6

�
, ⌃ =


10

�6
0

0 10
�6

�
, � = 10

�6.

Note that uncertainty in first component remains for all times!

29 / 34



Numerical results - “noiseless case 2”

We consider the same problem, but now with almost no noise, except for

in �:

C0 =


10

�6
0

0 10
�6

�
, ⌃ =


10

�6
0

0 10
�6

�
, � = 1/4.

|�| � |Cn| =) |Kn| ⌧ 1 =) we do almost not take observations into

account, and then the problem is almost deterministic.
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Numerical results - “noiseless case 3”

We consider the same problem, but now with almost no noise, except for

in ⌃22:

C0 =


10

�6
0

0 10
�6

�
, ⌃ =


10

�6
0

0 0.1

�
, � = 10

�6.

Very accurate observations yn ⇡ Vn,2 means that by relying on the

observations (and not the model) in Vn,2, we can track it very accurately.
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Numerical results - “noiseless case 4”

We consider the same problem, but now with almost no noise, except for

in ⌃22 and �:

C0 =


10

�6
0

0 10
�6

�
, ⌃ =


10

�6
0

0 0.1

�
, � = 1/4

Both noisy dynamics and uncertain observations in the second component

introduces uncertainty in both components.
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Numerical results - “noiseless case 5”

We consider the same problem, but now with almost no noise, except for

in ⌃11:

C0 =


10

�6
0

0 10
�6

�
, ⌃ =


0.1 0

0 10
�6

�
, � = 10

�6

Noisy dynamics in the first component, an unobserved component and

does not influence the dynamics of the second component, will (almost)

only introduce uncertainty in the first component.
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Summary

For a filtering problem

Vj+1 =  (Vj) + ⇠j

Yj = h(Vj) + ⌘j , j = 1, 2, . . . ,

with Gaussian noise and initial condition and  and h linear mappings, we

have derived iterative formulas for the distribution Vn|Y1:n = y1:n.

Theory extends straightforwardly to settings with time-dependence:

 n(v) = Anv , h(v) = Hnv , ⌃n, �n.

Also possible to derive the moments for the Kalman smoother

distribution V0:n|Y1:n = y1:n, which also is a Gaussian, cf. LSZ 3.1

Next time, we will look at Approximate Gaussian filters, which are

extensions of Kalman filtering to nonlinear settings.

No lectures or ubung during Pentecost week. Next lecture on

Monday, June 8.
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