Mathematics and numerics for data assimilation and state estimation - Lecture 14

Summer semester 2020

Overview

1 Filtering in continuous state-space

2 The Kalman filter

Summary of lecture 13

■ In additive Gaussian noise setting (both for dynamics and observations), smoothing density for $V_{0: J} \mid Y_{1: J}=y_{1: J}$:

$$
\begin{aligned}
\pi\left(v_{0: J} \mid y_{1: J}\right)=\frac{1}{Z} \exp (- & \frac{1}{2} \sum_{j=1}^{J}\left|h\left(v_{j}\right)-y_{j}\right|_{\Gamma}^{2} \\
& \left.-\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}-\frac{1}{2} \sum_{j=0}^{J-1}\left|v_{j+1}-\Psi\left(v_{j}\right)\right|_{\Sigma}^{2}\right)
\end{aligned}
$$

■ Stability of the density wrt perturbations (under some assumptions on the dynamics),

$$
d_{H}\left(\pi_{V_{0: J} \mid Y_{1: J}}\left(\cdot \mid y_{1: J}\right), \pi_{V_{0: J} \mid Y_{1: J}}\left(\cdot \mid \tilde{y}_{1: J}\right)\right) \leq c \sqrt{\sum_{j=1}^{J}\left|y_{j}-\tilde{y}_{j}\right|^{2}}
$$

■ For deterministic dynamics with uncertain initial condition, we derived a smoothing density for $V_{0} \mid Y_{1: J}=y_{1: \mathrm{J}}$.

Overview

1 Filtering in continuous state-space

2 The Kalman filter

Dynamics and observation setting

Continuous state-space dynamics: A mapping $\Psi \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is associated to the dynamics

$$
\begin{align*}
V_{j+1} & =\Psi\left(V_{j}\right)+\xi_{j}, \quad j=0,1, \ldots \tag{1}\\
V_{0} & \sim N\left(m_{0}, C_{0}\right)
\end{align*}
$$

with an iid sequence $\xi_{j} \sim N(0, \Sigma)$.
Observations:

$$
\begin{equation*}
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots, \tag{2}
\end{equation*}
$$

where $h \in C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right)$ and iid sequence $\eta_{j} \sim N(0, \Gamma)$.
Independence assumptions:

$$
\left\{\eta_{j}\right\} \perp\left\{\xi_{j}\right\} \perp\left\{V_{0}\right\}
$$

Objective: Derive iterative formulas for pdfs of $V_{n} \mid Y_{1: n}=y_{1: n}$ and $V_{n+1} \mid Y_{1: n}=y_{1: n}$ for $n \geq 1$.

Filtering - the prediction step

Setting: At time $n \geq 0$, we have observations $Y_{1: n}=y_{1: n}$ and we have computed $\pi_{V_{n} \mid Y_{1: n}}\left(v_{n} \mid y_{1: n}\right)=: \pi\left(v_{n} \mid y_{1: n}\right)$ (for $n=0$, we mean by this $\left.\pi_{V_{0}}\left(v_{0}\right)\right)$.

What is the distribution of $V_{n+1} \mid Y_{1: n}=y_{1: n}$?
Prediction: By the law of total probability

$$
\begin{aligned}
\pi\left(v_{n+1} \mid y_{1: n}\right) & =\int_{\mathbb{R}^{d}} \pi\left(v_{n+1}, v_{n} \mid y_{1: n}\right) d v_{n} \\
& =\int_{\mathbb{R}^{d}} \pi\left(v_{n+1} \mid v_{n}, y_{1: n}\right) \pi\left(v_{n} \mid y_{1: n}\right) d v_{n} \\
& =\int_{\mathbb{R}^{d}} \pi\left(v_{n+1} \mid v_{n}\right) \pi\left(v_{n} \mid y_{1: n}\right) d v_{n}
\end{aligned}
$$

The last step follows from $\xi_{n} \perp\left\{Y_{1: n}\right\}$ and

$$
\begin{aligned}
& V_{n+1}\left|\left(V_{n}=v_{n}, Y_{1: n}=y_{1: n}\right)=\Psi\left(V_{n}\right)+\xi_{n}\right|\left(V_{n}=v_{n}, Y_{1: n}=y_{1: n}\right) \\
& =\Psi\left(v_{n}\right)+\xi_{n} \mid\left(V_{n}=v_{n}, Y_{1: n}=y_{1: n}\right) \\
& =\Psi\left(v_{n}\right)+\xi_{n} \mid\left(V_{n}=v_{n}\right)
\end{aligned}
$$

Filtering - the analysis step

Setting: At time $n+1$, we have the old observations $Y_{1: n}=y_{1: n}$ and we have computed the prediction density $\pi\left(v_{n+1} \mid y_{1: n}\right)$. Now we seek to assimilate the new observation $Y_{n+1}=y_{n+1}$ into our state estimate.

What is the distribution of $V_{n+1} \mid\left(Y_{1: n}=y_{1: n}, Y_{n+1}=y_{n+1}\right)$?

Analysis step

$$
\begin{aligned}
\pi\left(v_{n+1} \mid y_{1: n}, y_{n+1}\right) & =\frac{\pi\left(v_{n+1}, y_{n+1} \mid y_{1: n}\right)}{\pi\left(y_{n+1} \mid y_{1: n}\right)} \\
& =\frac{\pi\left(y_{n+1} \mid v_{n+1}, y_{1: n}\right) \pi\left(v_{n+1} \mid y_{1: n}\right)}{\pi\left(y_{n+1} \mid y_{1: n}\right)} \\
& =\frac{\pi\left(y_{n+1} \mid v_{n+1}\right) \pi\left(v_{n+1} \mid y_{1: n}\right)}{\pi\left(y_{n+1} \mid y_{1: n}\right)}
\end{aligned}
$$

Here we used that $\eta_{n+1} \perp\left\{Y_{1: n}\right\}$:

$$
\begin{aligned}
Y_{n+1} \mid\left(V_{n+1}=v_{n+1}, Y_{1: n}=y_{1: n}\right) & =h\left(v_{n+1}\right)+\eta_{n+1} \mid\left(V_{n+1}=v_{n+1}, Y_{1: n}=y_{1: n}\right) \\
& =h\left(v_{n+1}\right)+\eta_{n+1} \mid\left(V_{n+1}=v_{n+1}\right)
\end{aligned}
$$

Summary filtering steps

Prediction step:

$$
\pi\left(v_{n+1} \mid y_{1: n}\right)=\int_{\mathbb{R}^{d}} \pi\left(v_{n+1} \mid v_{n}\right) \pi\left(v_{n} \mid y_{1: n}\right) d v_{n}
$$

Analysis step:

$$
\pi\left(v_{n+1} \mid y_{1: n+1}\right)=\frac{\pi\left(y_{n+1} \mid v_{n+1}\right) \pi\left(v_{n+1} \mid y_{1: n}\right)}{\pi\left(y_{n+1} \mid y_{1: n}\right)}
$$

Remarks:

- $\pi\left(v_{n+1} \mid v_{n}\right)$ is the transition kernel density :

$$
\pi\left(v_{n+1} \mid v_{n}\right) "=" \text { prob density of going from } v_{n} \text { to } v_{n+1}
$$

■ Generally, it is not easy to derive usable closed-form filtering densities from the above steps, and they are rather a starting point for approximation filtering algorithms.

Relationship between smoothing and filtering pdfs

The derived equations are exact both for

- the updated filtering pdf $\pi_{V_{n} \mid Y_{1: n}}\left(v_{n} \mid y_{1: n}\right)$

■ and for the smoothing pdf $\pi_{V_{0: n} \mid Y_{1: n}}\left(v_{0: n} \mid y_{1: n}\right)$.
Consequently,

$$
\begin{equation*}
\pi_{V_{n} \mid Y_{1: n}}\left(v_{n} \mid y_{1: n}\right)=\int_{\mathbb{R}^{d}} \ldots \int_{\mathbb{R}^{d}} \pi_{V_{0: n} \mid Y_{1: n}}\left(v_{0: n} \mid y_{1: n}\right) d v_{0} \ldots d v_{n-1} \tag{3}
\end{equation*}
$$

Explicit computations of either of them is often complicated when Ψ and/or h are nonlinear, following from their effects on the pdf

$$
\begin{aligned}
\pi\left(v_{0: n} \mid y_{1: n}\right)=\frac{1}{Z} \exp (- & \frac{1}{2} \sum_{j=1}^{n}\left|h\left(v_{j}\right)-y_{j}\right|_{\Gamma}^{2} \\
& \left.-\frac{1}{2}\left|v_{0}-m_{0}\right|_{c_{0}}^{2}-\frac{1}{2} \sum_{j=0}^{n-1}\left|v_{j+1}-\Psi\left(v_{j}\right)\right|_{\Sigma}^{2}\right)
\end{aligned}
$$

Well-posedness of the filter pdf

Corollary 1 (SST 7.7)

Fix $n \in \mathbb{N}$, a pair of observation sequences $y_{1: n}, \tilde{y}_{1: n} \in \mathbb{R}^{k \times n}$, and assume that the dynamics V_{j} satisfies

$$
\mathbb{E}\left[\sum_{j=0}^{n}\left(1+\left|h\left(V_{j}\right)\right|^{2}\right)\right]<\infty
$$

Then there exists a constant $c>0$ that depends on $y_{1: n}$ and $\tilde{y}_{1: n}$ such that

$$
d_{T V}\left(\pi_{V_{n} \mid Y_{1: n}}\left(\cdot \mid y_{1: n}\right), \pi_{V_{n} \mid Y_{1: n}}\left(\cdot \mid \tilde{y}_{1: n}\right)\right) \leq c \sqrt{\sum_{j=1}^{n}\left|y_{j}-\tilde{y}_{j}\right|^{2}}
$$

Proof:

We will use

$$
\begin{equation*}
d_{H}\left(\pi_{V_{d: n} \mid Y_{1: n}}\left(\cdot \mid y_{1: \boldsymbol{n}}\right), \pi_{V_{d: n} \mid Y_{1: n}}\left(\cdot \mid \tilde{y}_{1: \boldsymbol{\eta}}\right)\right) \leq c \sqrt{\sum_{j=1}^{n}\left|y_{j}-\tilde{y}_{j}\right|^{2}} \tag{LSZ2.15}
\end{equation*}
$$

and that $\quad d_{T V}(\hat{\pi}, \check{\pi}) \leq \sqrt{2} d_{H}(\hat{\pi}, \check{\pi}) \quad$ for any $\hat{\pi}, \check{\pi} \in \mathcal{M}$.
By definition

$$
\begin{aligned}
& d_{T V}\left(\pi_{V_{n} \mid Y_{1: n}}\left(\cdot \mid y_{1: n}\right), \pi_{V_{n} \mid Y_{1: n}}\left(\cdot \mid \tilde{y}_{1: n}\right)\right)=\frac{1}{2} \int_{\mathbb{R}^{d}}\left|\pi\left(v_{n} \mid y_{1: n}\right)-\pi\left(v_{n} \mid \tilde{y}_{1: n}\right)\right| d v_{n} \\
& \stackrel{(3)}{=} \frac{1}{2} \int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}} \ldots \int_{\mathbb{R}^{d}} \pi\left(v_{0: n} \mid y_{1: n}\right)-\pi\left(v_{0: n} \mid \tilde{y}_{1: n}\right) d v_{0} \ldots d v_{n-1}\right| d v_{n} \\
& \leq \frac{1}{2} \int_{\mathbb{R}^{d}} \ldots \int_{\mathbb{R}^{d}}\left|\pi\left(v_{0: n} \mid y_{1: n}\right)-\pi\left(v_{0: n} \mid \tilde{y}_{1: n}\right)\right| d v_{0} \ldots d v_{n} \\
& =d_{T V}\left(\pi_{V_{0: n} \mid Y_{1: n}}\left(\cdot \mid y_{1: n}\right), \pi_{V_{0: n} \mid Y_{1: n}}\left(\cdot \mid \tilde{y}_{1: n}\right)\right) \\
& \leq \sqrt{2} d_{H}\left(\pi_{V_{0: n} \mid Y_{1: n}}\left(\cdot \mid y_{1: n}\right), \pi_{V_{0: n} \mid Y_{1: n}}\left(\cdot \mid \tilde{y}_{1: n}\right)\right) \leq \sqrt{2} c\left|y_{1: n}-\tilde{y}_{1: n}\right|
\end{aligned}
$$

Overview

1 Filtering in continuous state-space

2 The Kalman filter

Kalman filter

- Is the filtering problem with additive Gaussian noise (all independent) and both linear dynamics $\Psi(v)=A v$ and linear observations $h(v)=H v$.

■ In this setting the filtering pdfs will remain Gaussian for all times, and we obtain surprisingly simple recursive formulas the pdfs.

■ Groundbreaking paper by Richard Kalman, "A new approach to linear filtering and
 prediction problems" J. Basic Engineering 1960, has, according to Google Scholar, been cited more than 33000 times.

Applications in control theory

In many real application, the state estimation and state prediction of filtering is often combined with control

$$
\begin{aligned}
V_{j+1} & =A V_{j}+B u_{j}+\xi_{j} & & \text { dynamics } \\
Y_{j} & =H V_{j}+\eta_{j} & & \text { observations }
\end{aligned}
$$

where u_{j} belongs to set of admissible controls, e.g., $u_{j} \in \sigma\left(Y_{1: j}\right)$.
For example, the linear quadratic Gaussian control problem

$$
\min _{u_{n}, u_{n+1}, \ldots, u_{N}} \mathbb{E}\left[V_{N}^{T} Q_{0} V_{N}+\sum_{j=n}^{N}\left(V_{j}^{T} Q_{1} V_{j}+u_{j}^{T} Q_{2} u_{j}\right) \mid Y_{1: n}=y_{1: n}\right]
$$

Applications:

■ Guidance and navigation systems [autopilots, driveless cars, dynamical positioning in ships, Apollo program, missiles, ...]

■ econometric time-series analysis and signal processing

- and seed of many approximate Gaussian filtering methods.

The linear-Gaussian setting

 We consider the dynamics on \mathbb{R}^{d} :$$
\begin{aligned}
V_{j+1} & =A V_{j}+\xi_{j}, \quad j=0,1, \ldots \\
V_{0} & \sim N\left(m_{0}, C_{0}\right)
\end{aligned}
$$

with $\xi_{j} \stackrel{\text { iid }}{\sim} N(0, \Sigma)$, and the observations on \mathbb{R}^{k} :

$$
Y_{j}=H V_{j}+\eta_{j}, \quad j=1,2, \ldots
$$

with $\eta_{j} \stackrel{i i d}{\sim} N(0, \Gamma)$.
Independence assuptions: $\quad V_{0} \perp\left\{\xi_{j}\right\} \perp\left\{\eta_{j}\right\}$.
Objective: Show that, under assumption $C_{0}, \Sigma, \Gamma>0$,

$$
V_{n}\left|Y_{1: n}=y_{1: n} \sim N\left(m_{n}, C_{n}\right), \quad V_{n+1}\right| Y_{1: n}=y_{1: n} \sim N\left(\hat{m}_{n+1}, \hat{C}_{n+1}\right)
$$

for all $n>0$, and describe recursive formulas for evolution of pdfs

$$
\left(m_{n}, C_{n}\right) \mapsto\left(\hat{m}_{n+1}, \hat{C}_{n+1}\right) \quad \text { and } \quad\left(\hat{m}_{n+1}, \hat{C}_{n+1}, y_{n+1}\right) \mapsto\left(m_{n+1}, C_{n+1}\right)
$$

Gaussianity of the filtering pdfs

Property 1: The dynamics $V_{j+1}=A V_{j}+\xi_{j}$ is Gaussian for any $j \geq 0$.
Motivation: Assuming V_{j} is Gaussian, $A V_{j}+\xi_{j}$ is a linear combination of independent Gaussians, which again is a Gaussian (cf. LSZ 1.5 and Ubung 6). Holds by induction, since V_{0} is Gaussian.

Property 2: If $V_{j} \mid Y_{1: j}=y_{1: j} \sim N\left(m_{j}, C_{j}\right)$, then
$V_{j+1} \mid Y_{1: j}=y_{1: j} \sim N\left(\hat{m}_{j+1}, \hat{C}_{j+1}\right)$ for computable moments with $\hat{C}_{j+1}>0$.
Motivation: Writing $Z_{j}:=V_{j} \mid\left(Y_{1: j}=y_{1: j}\right)$, observe that

$$
\begin{aligned}
V_{j+1} \mid\left(Y_{1: j}=y_{1: j}\right) & =A V_{j}+\xi_{j} \mid\left(Y_{1: j}=y_{1: j}\right) \\
& =A\left(V_{j} \mid\left(Y_{1: j}=y_{1: j}\right)\right)+\xi_{j} \\
& =A Z_{j}+\xi_{j}
\end{aligned}
$$

Hence, $V_{j+1} \mid\left(Y_{1: j}=y_{1: j}\right)$ is linear combination of independent Gaussians and thus itself Gaussian. Moreover,

$$
\begin{aligned}
\hat{m}_{j+1} & =\mathbb{E}\left[V_{j+1} \mid Y_{1: j}=y_{1: j}\right] \\
& =\mathbb{E}\left[A V_{j}+\xi_{j} \mid Y_{1: j}=y_{1: j}\right] \\
& =A \mathbb{E}\left[V_{j} \mid Y_{1: j}=y_{1: j}\right]+\mathbb{E}\left[\xi_{j}\right] \\
& =A m_{j},
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{C}_{j+1}=\mathbb{E}\left[\left(V_{j+1}-\hat{m}_{j+1}\right)\left(V_{j+1}-\hat{m}_{j+1}\right)^{T} \mid Y_{1: j}=y_{1: j}\right] \\
& =\mathbb{E}\left[\left(A V_{j}+\xi_{j}-A m_{j}\right)\left(A V_{j}+\xi_{j}-A m_{j}\right)^{T} \mid Y_{1: j}=y_{1: j}\right] \\
& =\mathbb{E}\left[A\left(V_{j}-m_{j}\right)\left(V_{j}-m_{j}\right)^{T} A^{T} \mid Y_{1: j}=y_{1: j}\right] \\
& +\mathbb{E}\left[\xi_{j}\right] \mathbb{E}\left[\left(V_{j}-m_{j}\right)^{T} A^{T} \mid Y_{1: j}=y_{1: j}\right] \\
& +\mathbb{E}\left[A\left(V_{j}-m_{j}\right) \mid Y_{1: j}=y_{1: j}\right] \mathbb{E}\left[\xi_{j}^{T}\right]+\mathbb{E}\left[\xi_{j} \xi_{j}^{T}\right] \\
& =A \mathbb{E}\left[\left(V_{j}-m_{j}\right)\left(V_{j}-m_{j}\right)^{T} \mid Y_{1: j}=y_{1: j}\right] A^{T}+\Sigma \\
& =\underbrace{A C_{j} A^{T}}+\sum_{L^{\prime}}>0 \\
& \geq 0>0
\end{aligned}
$$

Property 3: If $V_{j+1} \mid Y_{1: j}=y_{1: j} \sim N\left(\hat{m}_{j+1}, \hat{C}_{j+1}\right)$ with $\hat{C}_{j+1}>0$, then for any $y_{j+1} \in \mathbb{R}^{k}$ we have that $V_{j+1} \mid Y_{1: j+1}=y_{1: j+1} \sim N\left(m_{j+1}, C_{j+1}\right)$ and the moments are computable.

Motivation: By the previous derivations and using that

$$
\begin{align*}
\pi\left(v_{j+1} \mid y_{1: j+1}\right) & \propto \pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid y_{1: j}\right) \\
& \propto \exp \left(-\frac{1}{2}\left|y_{j+1}-H v_{j+1}\right|_{\Gamma}^{2}-\frac{1}{2}\left|v_{j+1}-\hat{m}_{j+1}\right|_{\hat{c}_{j+1}}^{2}\right) \tag{4}
\end{align*}
$$

where we used that

$$
Y_{j+1} \mid V_{j+1}=v_{j+1}=H v_{j+1}+\eta_{j} \sim N\left(H v_{j+1}, \Gamma\right)
$$

Making the ansatz $V_{j+1} \mid Y_{1: j+1}=y_{1: j+1} \sim N\left(m_{j+1}, C_{j+1}\right)$ and equating same-order-term coefficients in the exponent of (4) the exponent of our ansatz pdf

$$
\pi\left(v_{j+1} \mid y_{1: j+1}\right) \propto \exp \left(-\frac{1}{2}\left|v_{j+1}-m_{j+1}\right|_{c_{j+1}}^{2}\right)
$$

verifies the claim.

$$
C_{j+1}^{-1} m_{j+1}=\hat{C}_{j+1}^{-1} \hat{m}_{j+1}+H^{\top} \Gamma^{-1} y_{j+1}
$$

(For more details on equating terms, see similar argument in Lecture 10.)

Consequence of these properties: $v_{l}=A v_{0}+\xi_{0}$ Given a sequence y_{1}, y_{2}, \ldots,

■ Starting from $V_{0} \sim N\left(m_{0}, C_{0}\right)$ it follows by Property 2 that $V_{1} \sim N\left(\hat{m}_{1}, \hat{C}_{1}\right)$ with

$$
\hat{m}_{1}=A m_{0} \quad \text { and } \quad \hat{C}_{1}=A C_{0} A^{T}+\Sigma>0, \quad \text { since } \Sigma>0
$$

■ Property 3 then implies that $V_{1} \mid Y_{1}=y_{1} \sim N\left(m_{1}, C_{1}\right)$ with computable moments, where

$$
C_{1}^{-1}=\hat{C}_{1}^{-1}+H^{T} \Gamma^{-1} H
$$

is positive definite since $\hat{C}_{1}, \Gamma>0$, and thus invertible.

$$
V_{n} \mid \Psi_{1: n}=Y_{1: n} \sim \alpha\left(m_{n}, C_{n}\right), C_{n} \gg
$$

- By induction, $V_{n+1} \mid Y_{1: n}=y_{1: n} \sim N\left(\hat{m}_{n+1}, \hat{C}_{n+1}\right)$ with $\hat{C}_{n+1}>0$

■ and $V_{n+1} \mid Y_{1: n+1}=y_{n+1} \sim N\left(m_{n+1}, C_{n+1}\right)$ for computable moments with

$$
C_{n+1}^{-1}=\hat{C}_{n+1}^{-1}+H^{T} \Gamma^{-1} H
$$

which is positive definite since $\hat{C}_{n+1}, \Gamma>0$, and thus invertible.

Theorem 2 (LSZ 4.1)

For the linear-Gaussian filtering problem with $C_{0}, \Sigma, \Gamma_{\text {c }}$ it holds for any observation sequence y_{1}, y_{2}, \ldots and $n \geq 1$ that >0 $V_{n} \mid Y_{1: n}=y_{1: n} \sim N\left(m_{n}, C_{n}\right)$ where

$$
C_{n}^{-1}=\hat{C}_{n}^{-1}+H^{T} \Gamma^{-1} H
$$

is positive definite and thus invertible, and

$$
C_{n}^{-1} m_{n}=\hat{C}_{n}^{-1} \hat{m}_{n}+H^{T} \Gamma^{-1} y_{n} .
$$

To avoid dealing with the inverse of C_{n}, we apply the Woodbury matrix identity (LSZ 4.4) to obtain

$$
\begin{aligned}
C_{n} & =\left(\hat{C}_{n}^{-1}+H^{T} \Gamma^{-1} H\right)^{-1}=\hat{C}_{n}-\underbrace{\hat{C}_{n} H^{T}\left(H \hat{C}_{n} H^{T}+\Gamma\right)^{-1}}_{=: K_{n}} H \hat{C}_{n} \\
& =\left(I-K_{n} H\right) \hat{C}_{n}
\end{aligned}
$$

and

$$
\left.m_{n}=\left(I-K_{n} H\right) \hat{m}_{n}+K_{n} y_{n} \quad \text { (ubung } 7\right)
$$

Kalman filtering iteration algorithm

Given any sequence y_{1}, y_{2}, \ldots and $V_{n} \mid Y_{1: n}=y_{1: n} \sim N\left(m_{n}, C_{n}\right)$ the next-time filtering distributions are iteratively determined by

Prediction

$$
\begin{aligned}
& U_{u+1}\left(\mathbb{I}_{l: n}=Y_{l: n} \sim N\left(\tilde{m}_{n+1}, \tilde{C}_{u+1}\right)\right. \\
& \hat{m}_{n+1}=A m_{n} \\
& \hat{C}_{n+1}=A C_{n} A^{T}+\Sigma
\end{aligned}
$$

and

Analysis

$$
\begin{aligned}
& d_{n+1}=y_{n+1}-H \hat{m}_{n+1} \quad \text { innovation } \\
& K_{n+1}=\hat{C}_{n+1} H^{T}\left(H \hat{C}_{n+1} H^{T}+\Gamma\right)^{-1} \quad \text { Kalman gain } \\
& m_{n+1}=\hat{m}_{n+1}+K_{n+1} d_{n+1}=\left(I-K_{n+1} H\right) \hat{M}_{n+1}+K_{n+1} Y_{n+1} \\
& C_{n+1}=\left(I-K_{n+1} H\right) \hat{C}_{n+1}
\end{aligned}
$$

Example

Dynamics on \mathbb{R}^{2}
where $\xi_{j} \stackrel{\text { iid }}{\sim} N(0, \Sigma)$ with $\Sigma=\left[\begin{array}{cc}0.01 & 0 \\ 0 & 0.1\end{array}\right]$.
And observations on \mathbb{R} :

$$
Y_{j}=\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}_{H} V_{j}+\eta_{j}, \quad \eta_{j} \stackrel{i i d}{\sim} N\left(0, \frac{1 / 4)}{\Gamma} .\right.
$$

An observation sequence is generated from synthetic data: $y_{j}=V_{j_{2}}^{\dagger}(\omega)+\eta_{j}(\omega)$.
\% Dynamics parameters

```
A = [1 0.1; 0 1];
Sigma = [0.01 0; 0 0.1];
m0 = [0; 1]; C0 = [1/4 0; 0 1/4];
```

\%Observation parameters
H = [0 1]; Gamma = 1/4;
n $=40$;
\%generate observation sequence rng(12009) \%set seed for reproducibility
$\mathrm{v}=\operatorname{zeros}(2, \mathrm{n}+1)$; $\mathrm{y}=\operatorname{zeros}(1, \mathrm{n})$;
$\mathrm{v}(:, 1)=\mathrm{m} 0+\operatorname{sqrt}(\mathrm{CO}) * r \operatorname{randn}(2,1)$;
for $\mathrm{j}=1: \mathrm{n}$
$\mathrm{v}(:, j+1)=A * v(:, j)+\operatorname{sqrt}($ Sigma $) * r a n d n(2,1) ;$
$y(j)=H * v(:, j+1)+\operatorname{sqrt}(G a m m a) * r a n d n() ;$
end

Continuation of Matlab program

\% Filtering distributions
m = zeros(2, n+1);
C = zeros ($2,2, \mathrm{n}+1$);

```
m(:,1) = m0;
C(:,:,1) = C0;
for j=1:n
\%prediction step
\[
m(:, j+1)=A * m(:, j) ;
\]
\[
C(:,:, j+1)=A * C(:,:, j) * A^{\prime}+\text { Sigma } ;
\]
```

\%Analysis
K $\quad=\mathrm{C}(:,:, j+1) * H^{\prime} /\left(H * C(:,:, j+1) * H^{\prime}+\right.$ Gamma $)$;
$m(:, j+1)=m(:, j+1)+K *(y(j)-H * m(:, j+1))$;
$C(:,:, j+1)=(\operatorname{eye}(2)-K * H) * C(:,:, j+1)$;
end

Numerical results - noisy case

Figure: Left pair of figures: Evolution of first component, mean and "one standard deviation" grey uncertainty region in the right plot. Right pair of figures: Same for the second component, but here also including measurements.

What is a good error measure? Is it $\left\|m-v^{\dagger}\right\|$ or $\left\|m_{n, 2}-y_{n}\right\|$, or should we also rely on uncertainty regions?

Numerical results - "noiseless case"

We consider the same problem, but now with almost no noise, except for in $V_{0,1}$:

$$
C_{0}=\left[\begin{array}{cc}
1 / 4 & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Gamma=10^{-6} .
$$

Note that uncertainty in first component remains for all times!

Numerical results - "noiseless case 2"

We consider the same problem, but now with almost no noise, except for in 「:

$$
C_{0}=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Gamma=1 / 4
$$

$|\Gamma| \gg\left|C_{n}\right| \Longrightarrow\left|K_{n}\right| \ll 1 \Longrightarrow$ we do almost not take observations into account, and then the problem is almost deterministic.

Numerical results - "noiseless case 3"

We consider the same problem, but now with almost no noise, except for in Σ_{22} :

$$
C_{0}=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 0.1
\end{array}\right], \quad \Gamma=10^{-6}
$$

Very accurate observations $y_{n} \approx V_{n, 2}$ means that by relying on the observations (and not the model) in $V_{n, 2}$, we can track it very accurately.

Numerical results - "noiseless case 4"

We consider the same problem, but now with almost no noise, except for in Σ_{22} and Γ :

$$
C_{0}=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 0.1
\end{array}\right], \quad \Gamma=1 / 4
$$

Both noisy dynamics and uncertain observations in the second component introduces uncertainty in both components.

Numerical results - "noiseless case 5"

We consider the same problem, but now with almost no noise, except for in Σ_{11} :

$$
C_{0}=\left[\begin{array}{cc}
10^{-6} & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 10^{-6}
\end{array}\right], \quad \Gamma=10^{-6}
$$

Noisy dynamics in the first component, an unobserved component and does not influence the dynamics of the second component, will (almost) only introduce uncertainty in the first component.

Summary

For a filtering problem

$$
\begin{aligned}
V_{j+1} & =\Psi\left(V_{j}\right)+\xi_{j} \\
Y_{j} & =h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots
\end{aligned}
$$

with Gaussian noise and initial condition and Ψ and h linear mappings, we have derived iterative formulas for the distribution $V_{n} \mid Y_{1: n}=y_{1: n}$.

■ Theory extends straightforwardly to settings with time-dependence: $\Psi_{n}(v)=A_{n} v, h(v)=H_{n} v, \Sigma_{n}, \Gamma_{n}$.

- Also possible to derive the moments for the Kalman smoother distribution $V_{0: n} \mid Y_{1: n}=y_{1: n}$, which also is a Gaussian, cf. LSZ 3.1
- Next time, we will look at Approximate Gaussian filters, which are extensions of Kalman filtering to nonlinear settings.

■ No lectures or ubung during Pentecost week. Next lecture on Monday, June 8.

