
Mathematics and numerics for data assimilation and
state estimation – Lecture 15

Summer semester 2020
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On the course’s oral exam

Time and place: between 10:00 and 18:00 on July 31, Kackertstrasse
9, room C301,

Preparation: Will give you a list of 20-25 topics for you to prepare on
on July 17.

The exam: Will randomly draw 5 topics from list which you will be
asked to expand upon.

Duration: Roughly 20 minutes.
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Information on the student presentation

Presentations planned on Thursday 02.07 and Friday 03.07.

Structure: Roughly 20 minutes presentation, most likely over Zoom,
either alone or in pairs.

Please email me before 21.06 with information on:

1 What paper/topic you would like to present
2 your preferred time for presenting
3 and possibly, whom you’d like to present together with.

I will try to avoid multiple presentations on the same topic, so email
me early if you have found an interesting topic.
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Summary lecture 14 and plan for today

For a linear-Gaussian filtering problem

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = h(Vj+1) + ηj+1, j = 1, 2, . . . ,

we described iterative formulas for the pdf of Vn|Y1:n = y1:n.

Plan for today: develop Approximate Gaussian filters for settings
where Ψ is nonlinear.
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Summary of Kalman filtering

For linear-Gaussian dynamics

Vj+1 = AVj + ξj , j = 0, 1, . . .

V0 ∼ N(m0,C0)
(1)

with ξj
iid∼ N(0,Σ).

Observations:
Yj = HVj + ηj , j = 1, 2, . . . , (2)

with ηj
iid∼ N(0, Γ).

And independence assumptions:

{ηj} ⊥ {ξj} ⊥ {V0}

We derived the . . .
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Kalman filtering algorithm

Given any sequence y1, y2, . . . and Vj |Y1:j = y1:j ∼ N(mj ,Cj) the
next-time filtering distributions are iteratively determined by

Prediction step

m̂j+1 = Amj

Ĉj+1 = ACjA
T + Σ

Analysis step

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ)−1 Kalman gain

mj+1 = (I − Kj+1H)m̂j+1 + Kj+1yj+1

Cj+1 = (I − Kj+1H)Ĉj+1
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Alternative Bayesian view of Kalman filtering
In Lecture 14, using that

Vj+1|Y1:j = y1:j ∼ N(m̂j+1, Ĉj+1)

and
Yj+1|Vj+1 = vj+1 ∼ N(h(vj+1), Γ)

the analysis step of Kalman filtering was derived throught the posterior

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j)

∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ −

1

2
|vj+1 − m̂j+1|2Ĉj+1

)
.

(3)

Viewing the minus log-posterior as a cost/objective function,

J(u) :=
1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉj+1

the analysis mean can be derived through variational principles:

mj+1 = arg min
u∈Rd

J(u).
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Kalman filter evolution of mean

In other words, the evolution of mj 7→ mj+1 in Kalman filtering can be
described by

m̂j+1 = Ψ(mj)

J(u) :=
1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉj+1

mj+1 = arg min
u∈Rd

J(u).

(4)

implicitly depending on Ĉj+1 and yj+1.

Equation (4) will be the basis for motivating three approximate Gaussian
filtering algorithms.
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Filtering setting
Dynamics: Initial condition V0 ∼ N(m0,C0) and for j = 0, 1, . . .

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = HVj+1 + ηj+1, j = 0, 1, . . .
(5)

with

ξj
iid∼ N(0,Σ), ηj

iid∼ N(0, Γ) and {ηj} ⊥ {ξj} ⊥ {V0}.

3DVAR: Fix the prediction covariance Ĉj+1 := Ĉ for all j ≥ 0, and apply
variational principle

m̂j+1 = Ψ(mj)

J(u) :=
1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉ

mj+1 = arg min
u∈Rd

J(u).

(6)
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3DVAR
Alternatively, we may write,

m̂j+1 = Ψ(mj)

K = ĈHT (HĈHT + Γ)−1

mj+1 = (I − KH)m̂j+1 + Kyj+1

(7)

Properties:

The gain K is time-independent!
3D – model physical space is typically three dimensional (vn being a
discretized representation of the state over 3D physical space, e.g.
pressure, temperature, wind direction).
VAR – method is derived from variational principle over 3D physical
space.
In numerical weather prediction, typcially d ≥ 106, and
”sparsification” from the true Ĉj to Ĉ is needed to construct a
feasible filtering method.
Gaussian approximation: Vj+1|Y1:j = y1:j ∼ N(m̂j+1, Ĉ ) and

Vj+1|Y1:j+1 = y1:j+1 ∼ N(mj+1, (I − KH)Ĉ ), with poor tracking of
the covariance. 12 / 37



Example
Dynamics:

Vj+1 = 2.5 sin(Vj) + ξj

V0 ∼ N(0, 1)
(8)

where ξj ∼ N(0, 0.09)

Observations:
Yj = Vj + ηj , j = 1, 2, . . . ,

with ηj ∼ N(0, 1).

3DVAR: We have that Ψ(v) = 2.5 sin(v), H = 1 and Γ = 1.
1. Fix Ĉ = 2, for example, and off-line/pre compute

K = ĈHT (HĈHT + Γ)−1 =
2

3
.

2. iterate mj 7→ mj+1.

A guess for Ĉ may be motivated from Kalman filtering:

Ĉj+1 = ATCjA+ Σ = AT (I −KH)ĈjA+ Σ, AAT ≈ |Ψ′(v)|2 ≈ (2.5)2/2?
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Test
for one observation sequence y1:J = v †1:J + η1:J generated from synthetic

data v †1:J .

Error measure: MSE approximating the “truth” for different values of Ĉ .

1

J + 1

J∑
k=0

|v †k −mk |2

Implementation: The 3DVAR iteration

K = ĈHT (HĈHT + Γ)−1

m̂j+1 = Ψ(mj)

mj+1 = (I − KH)m̂j+1 + Kyj+1

(9)

becomes

K=(cHat*H’)/(H*cHat*H’+gamma^2);

for j=1:J

mHat=2.5*sin(m(j)); m(j+1)=(1 - K*H)*mHat+K*y(j+1);

end
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Test with Ĉ = 0.2

0 10 20 30

j

-5

-4

-3

-2

-1

0

1
3DVAR Filter

0 200 400 600 800 1000

j

0

5

10

15

20

25
3DVAR Filter Error

1

J + 1

J∑
k=0

|v †k −mk |2 ≈ 6.4866

15 / 37



Numerical test, Ĉ = 2
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Test with Ĉ = 20
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Illustration of high dimensional filtering problem
Weather prediction1: for (t, x) ∈ [0,T ]× R3,

dv

dt
= −α∇p −∇φ+ F− 2Ω× v Cons. momentum

∂ρ

∂t
= −∇ · (ρv) Cons. mass

p/ρ = RT Eq. of state

Q = Cp
dT

dt
− ρ−1 dp

dt
Cons. energy

∂ρq

∂t
= −∇ · (ρvq) + ρ(E − C ) Cons. water vapor mixing ratio

v(t, x) - wind velocity field, ρ(t, x) - air density, p - pressure, T -
temperature, q - vapor mixing ratio.

Observations:

Y (tn+1) = h(v , ρ, p,T , q)(tn+1) + ηn+1.

1E. Kalnay, Atmospheric data assimilation and applications.
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Rough idea of numerical weather prediction

Introduce a mesh

I = {(xi , xj , xk) ∈ R3 | (xi , xj , xk) is a point in (a subset of) the atmosphere}.

3DVAR prediction: Numerical solution of the weather model with
filtering conditional mean mj ≈ E [ {(v , ρ, p,T , q)(tj , x)}x∈I | Y1:j = y1:j ]
as initial condition. That is,

mj
Ψ̄(mn)7→ m̂j+1 ≈ E [ {(v , ρ, p,T , q)(tj+1, x)}x∈I | Y1:j = y1:j ] .

Note: State-space dimension d = |I| × 7.

Analysis: Apply 3DVAR principle with a typically low-bandwith, fixed
Ĉ ≈ Cov[{(v , ρ, p,T , q)(tj+1, x)}x∈I |Y1:j = y1:j ],

mj+1 = (I − KH)m̂j+1 + Kyj+1.
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Recovery of true signal by 3DVAR

Theorem 1 (LSZ 4.10)

Assume the true signal is given by

v †j+1 = Ψ(v †j )

and observations by

yj+1 = Hv †j+1 + εj+1, with sup
j≥0
‖εj‖ ≤ ε.

For 3DVAR with any value of m0 ∈ Rd , if Ĉ is chosen such that it holds
for all u, v ∈ Rd and some a < 1 that

‖(I − KH)Ψ(u)− (I − KH)Ψ(v)‖ ≤ a‖u − v‖,

then

lim sup
j≥0
‖v †j −mj‖ ≤

‖K‖
1− a

ε.
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Proof idea:
Write

mj+1 = (I − KH)Ψ(mj) + K (HΨ(v †j ) + εj+1)︸ ︷︷ ︸
yj+1

v †j+1 = (I − KH)Ψ(v †j ) + KHΨ(v †j ).

Then for

‖mj+1 − v †j+1‖ ≤ ‖(I − KH)Ψ(mj)− (I − KH)Ψ(v †j )‖+ ‖Kεj+1‖

≤ a‖mj − v †j ‖+ ‖K‖‖εj+1‖

≤ a‖mj − v †j ‖+ ‖K‖ε

≤ . . . ≤ aj+1‖m0 − v †0‖+ ‖K‖ε
j∑

k=0

ak

and aj+1‖m0 − v †0‖ → 0 as j →∞.
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Remarks on Theorem 1

Note that the asymptotic tracking ability holds regardless of the
magnitude of ‖m0 − v †0‖ as long as a < 1.

Not that interesting result if H = I , since if one were to choose the
filtering approach of total reliance on observations: mj = yj , then one
would anyway achieve

‖v †j −mj‖ = ‖εj‖ ≤ ε.

Relevant in partial observation settings H ∈ Rk×d with k < d .
Then it shows that accurate observations of unstable components
may lead to good tracking of the state of all components.

(SST Theorem 9.2) extends result from deterministic upper bound on

noise error |εj | < ε to Gaussian random noise setting yj = Hv †j + εj
with εj ∼ N(0, γ2I ), and

lim sup
j→∞

E
[
‖mj − v †j ‖

]
≤ ‖K‖

1− a
γ,
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Choice of Ĉ guided by the preceding result.

3DVAR applied to a filtering problem with fixed H = I and Γ = γ2I ,
and Ĉ = σ2I with adjustable parameter σ2 yields

K =
γ2

σ2 + γ2
I and (I − KH)Ψ(v) =

(γ/σ)2

1 + (γ/σ)2
Ψ(v)

Choosing σ2 so large that

(γ/σ)2

1 + (γ/σ)2
‖DΨ(v)‖ < 1 ∀v ∈ Rd

will lead stability in the form Theorem 1 (when other assumptions
hold).

In the example with Ψ(v) = 2.5 sin(v) and γ2 = 1,

(γ/σ)2

1 + (γ/σ)2
‖DΨ‖∞ < 1 ⇐⇒ 2.5

σ2 + 1
< 1 ⇐⇒ σ2 > 1.5.

Interpretation: model variance inflation of σ2 may help ensure stability
of tracking (effectively it means putting more trust on observations).
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Tracking of truth under partial observations
Consider now partial observations H = (Ik , 0)T ∈ Rk×d , fixed Γ = γ2Ik
and Ĉ = σ2Id . Then

Id − KH =

[
η2

1+η2 Ik 0

0 Id−k

]
with η = γ/σ.
For a linear dynamics mapping Ψ(u) = Lu with

DΨ = L =

[
b1Ik 0

0 b2Id−k

]
we obtain

(Id − KH)DΨ =

[
b1η

2

1+η2 Ik 0

0 b2Id−k

]
Conclusion: ‖(Id − KH)DΨ‖ < 1 is only possible to achieve when
|b2| < 1. (This is a stability condition in dynamics of unobserved
components.) Whatever the magnitude of |b1|, on the other hand, this
can be controlled by appropriately inflating σ2.
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4DVAR
Is an extension of 3DVAR in the analyisis step applying the variational
principle over both 3D space and time (i.e., allowing for measurements
scattered also over a time window)
Given dynamics:

Vj+1 = Ψ(Vj) + ξj ,

with ξj
iid∼ N(0,Σ) and observations y1:J as before,

w4DVAR weak constraint 4DVAR is for stochastic dynamics Σ > 0. Then
assimilation is done over the time window 0 : J in one step:

m0:J = arg min
v0:J∈Rd(J+1)

1

2
|v0−m0|2C0

+
1

2

J−1∑
j=0

|vj+1−Ψ(vj)|2Σ+
1

2

J∑
j=1

|yj−Hvj |2Γ

If Ψ is bounded and continuous, then a minimizer m0:J exists and
corresponds to a MAP estimator for the very same smoothing problem
over the same time-window [SST 9.3].
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4DVAR is for settings with deterministic dynamics, i.e., Σ = 0, when
w4DVAR turns into a minimization problem

m0:J = arg min
v0:J

1

2
|v0 −m0|2C0

+
1

2

J∑
j=1

|yj − Hvj |2Γ

subject to the strong constraint

vj+1 = Ψ(vj), j = 0, 1, . . . , J − 1.

Comparisons 4DVAR vs 3DVAR

4DVAR is a minimization problem in typically higher-dimensional
space than 3DVAR

Both methods originally developed for numerical weather prediction,
with emphasis on an efficient method for high-dimensional state space
analysis/update.

We focus here on one, but there exist many hybrid versions of
3D/4DVAR combined with other filtering techniques for the
prediction step, cf., E. Kalnay “Atmospheric modeling, data
assimilation and predictability”.
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Filtering setting

Initial condition V0 ∼ N(m0,C0) and for j = 0, 1, . . .

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = HVj+1 + ηj+1,
(10)

and Gaussian noise assumptions as before.

Extened Kalman filtering (ExKF): At time j and given state (mj ,Cj),
linearize dynamics around mj :

ΨL(v ;mj) := Ψ(mj) + DΨ(mj)(v −mj).

And apply Kalman filtering one prediction-update step to the linearized
dynamics

Vj+1 = Ψ(mj) + DΨ(mj)(Vj −mj) + ξj ,
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Extended Kalman filtering algorithm
Given any sequence y1, y2, . . . and Vj |Y1:j = y1:j ∼ N(mj ,Cj),

Prediction step

m̂j+1 = Ψ(mj)

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T + Σ

Analysis step

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ)−1

mj+1 = (I − Kj+1H)m̂j+1 + Kj+1yj+1

Cj+1 = (I − Kj+1H)Ĉj+1

Motiation for prediction step: We have the following approximations:

mj ≈ E [Vj |Y1:j = y1:j ] , Cj ≈ E
[

(Vj −mj)(Vj −mj)
T |Y1:j = y1:j

]
Note further that the ExKF moments mj and Cj are not random (given
y1:j).
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Motivation for the ExKF algorihtm

Using that Ψ(mj) and DΨ(mj) are deterministic (given y1:j), the following
approimations motivate the ExKF prediciton steps:

m̂j+1 = E [ Ψ(mj) + DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= Ψ(mj) + DΨ(mj)
(
E [Vj |Y1:j = y1:j ]−mj

)
≈ Ψ(mj)

and (similar derivation as for Kalman filtering with A = DΨ(mj)),

Ĉj+1 = Cov[Ψ(mj) + DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= Cov[DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= DΨ(mj)E
[

(Vj −mj)(Vj −mj)
T |Y1:j = y1:j

]
DΨ(mj)

T + Σ

≈ DΨ(mj)CjDΨ(mj)
T + Σ.
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Example
Dynamics:

Vj+1 = 2.5 sin(Vj) + ξj

V0 ∼ N(0, 1)
(11)

where ξj ∼ N(0, 0.09) Observations:

Yj = Vj + ηj , j = 1, 2, . . . ,

with ηj ∼ N(0, 1).

ExKF: linearized dynamics mapping becomes

ΨL(v ;mj) = 2.5 sin(mj) + 2.5 cos(mj)(v −mj),

Starting with (m0,C0) = (0, 1) apply linearized mapping ΨL(v ; 0) and
Kalman filtering to transition (m0,C0) 7→ (m1,C1), apply linearized
mapping ΨL(v ;m1) to and KF to transition (m1,C1) 7→ (m2,C2) . . .
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Test
for one observation sequence y1:J = v †1:J + η1:J generated from synthetic

data v †1:J .
Implementation: The ExKF given mj and Cj :

Psi = @(v) 2.5*sin(v); %Dynamics mapping

DPsi = @(v) 2.5*cos(v); %Jacobian

for j=1:J

%ExKF filtering

mHat = Psi(m(j));

cHat = DPsi(m(j))*C(j)*DPsi(m(j))’ + Sigma;

K = (cHat*H’)/(H*cHat*H’+Gamma);

m(j+1) = (1-K*H)*mHat+K*y(j);

C(j+1) = (1-K*H)*cHat;

end
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For comparison with the 3DVAR fixed prediction covariance Ĉ , plot of
evolution of Cj for ExKF:
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Remarks on errors of ExKF and 3DVAR

It generally does hold that

E [ Ψ(V ) + ξ] = Ψ(E [V ]) =⇒ m̂j = Ψ(mj)
in general

6= E [ Ψ(Vj)|Y1:j = y1:j ] .

Nor does it generally hold that Vj |Y1:j = y1:j is Gaussian when Ψ is
nonlinear, and the analysis step, being derived under the assumption
of Gaussian posterior

π(vj |y1:j) ∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ −

1

2
|vj+1 − m̂j+1|2Ĉj+1

)
.

which, may only approximately hold, and the consecutive variational
principle

mj+1 = arg min
u∈Rd

1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉj+1

is thus also only an approximation.
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Best filtering method measured in terms of accuracy and
efficiency

Figure from talk by Mattias Katzfuss on“Extended ensemble Kalman filters for
high-dimensional hierarchical state-space models”. 36 / 37



Plan for next lecture

Implementation and convergence properties of EnKF in large
ensemble limit.

Particle filtering.
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