Mathematics and numerics for data assimilation and state estimation – Lecture 15

Summer semester 2020

1 3DVAR

2 Extended Kalman filtering

On the course's oral exam

 Time and place: between 10:00 and 18:00 on July 31, Kackertstrasse 9, room C301,

- Preparation: Will give you a list of 20-25 topics for you to prepare on on July 17.
- The exam: Will randomly draw 5 topics from list which you will be asked to expand upon.
- Duration: Roughly 20 minutes.

Information on the student presentation

- Presentations planned on Thursday 02.07 and Friday 03.07.
- Structure: Roughly 20 minutes presentation, most likely over Zoom, either alone or in pairs.
- Please email me before 21.06 with information on:
 - 1 What paper/topic you would like to present
 - 2 your preferred time for presenting
 - **3** and possibly, whom you'd like to present together with.
- I will try to avoid multiple presentations on the same topic, so email me early if you have found an interesting topic.

Summary lecture 14 and plan for today

For a linear-Gaussian filtering problem

$$V_{j+1} = \Psi(V_j) + \xi_j,$$

 $Y_{j+1} = h(V_{j+1}) + \eta_{j+1}, \quad j = 1, 2, \dots,$

we described iterative formulas for the pdf of $V_n|Y_{1:n} = y_{1:n}$.

 Plan for today: develop Approximate Gaussian filters for settings where Ψ is nonlinear.

Summary of Kalman filtering

For linear-Gaussian dynamics

$$V_{j+1} = AV_j + \xi_j, \quad j = 0, 1, \dots$$

 $V_0 \sim N(m_0, C_0)$
(1)

with $\xi_j \stackrel{iid}{\sim} N(0, \Sigma)$.

Observations:

$$Y_j = HV_j + \eta_j, \quad j = 1, 2, ...,$$
 (2)

with $\eta_j \stackrel{iid}{\sim} N(0,\Gamma)$.

And independence assumptions:

$$\{\eta_j\} \perp \{\xi_j\} \perp \{V_0\}$$

We derived the ...

Kalman filtering algorithm

Given any sequence $y_1, y_2, ...$ and $V_j | Y_{1:j} = y_{1:j} \sim N(m_j, C_j)$ the next-time filtering distributions are iteratively determined by

Prediction step

$$\hat{m}_{j+1} = Am_j$$

 $\hat{C}_{j+1} = AC_jA^T + \Sigma$

Analysis step

$$K_{j+1} = \hat{C}_{j+1} H^T (H\hat{C}_{j+1} H^T + \Gamma)^{-1}$$
 Kalman gain

$$m_{j+1} = (I - K_{j+1} H) \hat{m}_{j+1} + K_{j+1} y_{j+1}$$

$$C_{j+1} = (I - K_{j+1} H) \hat{C}_{j+1}$$

Alternative Bayesian view of Kalman filtering In Lecture 14, using that

$$V_{j+1}|Y_{1:j} = y_{1:j} \sim N(\hat{m}_{j+1}, \hat{C}_{j+1})$$

and

$$Y_{j+1}|V_{j+1} = v_{j+1} \sim N(h(v_{j+1}), \Gamma)$$

the analysis step of Kalman filtering was derived throught the posterior

$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j}) \\ \propto \exp\left(-\frac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^2 - \frac{1}{2}|v_{j+1} - \hat{m}_{j+1}|_{\hat{\mathcal{L}}_{j+1}}^2\right).$$
(3)

Viewing the minus log-posterior as a cost/objective function,

$$\mathsf{J}(u) := \frac{1}{2} |y_{j+1} - Hu|_{\mathsf{F}}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{\mathcal{C}}_{j+1}}^2$$

the analysis mean can be derived through variational principles:

$$m_{j+1} = \arg\min_{u\in\mathbb{R}^d} \mathsf{J}(u).$$

Kalman filter evolution of mean

In other words, the evolution of $m_j\mapsto m_{j+1}$ in Kalman filtering can be described by

$$\hat{m}_{j+1} = \Psi(m_j) \mathsf{J}(u) := \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2$$

$$m_{j+1} = \arg\min_{u \in \mathbb{R}^d} \mathsf{J}(u).$$

$$(4)$$

implicitly depending on \hat{C}_{j+1} and y_{j+1} .

Equation (4) will be the basis for motivating three approximate Gaussian filtering algorithms.

Overview

1 3DVAR

2 Extended Kalman filtering

Filtering setting

Dynamics: Initial condition $V_0 \sim N(m_0, C_0)$ and for j = 0, 1, ...

$$V_{j+1} = \Psi(V_j) + \xi_j,$$

$$Y_{j+1} = HV_{j+1} + \eta_{j+1}, \quad j = 0, 1, \dots$$
(5)

with

$$\xi_j \stackrel{\textit{iid}}{\sim} N(0, \Sigma), \quad \eta_j \stackrel{\textit{iid}}{\sim} N(0, \Gamma) \quad \text{and} \quad \{\eta_j\} \perp \{\xi_j\} \perp \{V_0\}.$$

3DVAR: Fix the prediction covariance $\hat{C}_{j+1} := \hat{C}$ for all $j \ge 0$, and apply variational principle

$$\hat{m}_{j+1} = \Psi(m_j)$$

$$J(u) := \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}}^2$$

$$m_{j+1} = \arg\min_{u \in \mathbb{R}^d} J(u).$$
(6)

3DVAR

Alternatively, we may write,

$$\hat{m}_{j+1} = \Psi(m_j)
K = \hat{C}H^T (H\hat{C}H^T + \Gamma)^{-1}
m_{j+1} = (I - KH)\hat{m}_{j+1} + Ky_{j+1}$$
(7)

Properties:

- The gain *K* is time-independent!
- 3D model physical space is typically three dimensional (*v_n* being a discretized representation of the state over 3D physical space, e.g. pressure, temperature, wind direction).
- VAR method is derived from variational principle over 3D physical space.
- In numerical weather prediction, typcially $d \ge 10^6$, and "sparsification" from the true \hat{C}_j to \hat{C} is needed to construct a feasible filtering method.
- Gaussian approximation: $V_{j+1}|Y_{1:j} = y_{1:j} \sim N(\hat{m}_{j+1}, \hat{C})$ and $V_{j+1}|Y_{1:j+1} = y_{1:j+1} \sim N(m_{j+1}, (I KH)\hat{C})$, with poor tracking of the covariance.

Example Dynamics:

 $egin{aligned} V_{j+1} &= 2.5 \sin(V_j) + \xi_j \ V_0 &\sim N(0,1) \end{aligned}$

(8)

where $\xi_j \sim N(0, 0.09)$

Observations:

$$Y_j = V_j + \eta_j, \quad j = 1, 2, \ldots,$$

with $\eta_j \sim N(0,1)$.

3DVAR: We have that $\Psi(v) = 2.5 \sin(v)$, H = 1 and $\Gamma = 1$. 1. Fix $\hat{C} = 2$, for example, and off-line/pre compute

$$K = \hat{C}H^{\mathsf{T}}(H\hat{C}H^{\mathsf{T}} + \Gamma)^{-1} = \frac{2}{3}.$$

2. iterate $m_j \mapsto m_{j+1}$.

A guess for \hat{C} may be motivated from Kalman filtering: $\hat{C}_{j+1} = A^T C_j A + \Sigma = A^T (I - KH) \hat{C}_j A + \Sigma$, $AA^T \approx |\Psi'(v)|^2 \approx (2.5)^2/2?$

Test

for one observation sequence $y_{1:J} = v_{1:J}^{\dagger} + \eta_{1:J}$ generated from synthetic data $v_{1:J}^{\dagger}$.

Error measure: MSE approximating the "truth" for different values of \hat{C} .

$$rac{1}{J+1}\sum_{k=0}^{J}|\mathbf{v}_{k}^{\dagger}-m_{k}|^{2}$$

Implementation: The 3DVAR iteration

$$K = \hat{C}H^{T}(H\hat{C}H^{T} + \Gamma)^{-1}$$

$$\hat{m}_{j+1} = \Psi(m_{j})$$

$$m_{j+1} = (I - KH)\hat{m}_{j+1} + Ky_{j+1}$$
(9)

becomes

```
K=(cHat*H')/(H*cHat*H'+gamma^2);
for j=1:J
    mHat=2.5*sin(m(j));    m(j+1)=(1 - K*H)*mHat+K*y(j+1);
end
```

Test with
$$\hat{C} = 0.2$$

$$\frac{1}{J+1}\sum_{k=0}^{J}|v_{k}^{\dagger}-m_{k}|^{2}\approx 6.4866$$

Numerical test, $\hat{C} = 2$

$$\frac{1}{J+1}\sum_{k=0}^{J}|v_{k}^{\dagger}-m_{k}|^{2}pprox 0.6023$$

Test with
$$\hat{C} = 20$$

$$\frac{1}{J+1}\sum_{k=0}^{J}|v_{k}^{\dagger}-m_{k}|^{2}\approx0.9373$$

Illustration of high dimensional filtering problem Weather prediction¹: for $(t, x) \in [0, T] \times \mathbb{R}^3$,

$$\begin{aligned} \frac{d\mathbf{v}}{dt} &= -\alpha \nabla p - \nabla \phi + \mathbf{F} - 2\Omega \times \mathbf{v} & \text{Cons. momentum} \\ \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{v}) & \text{Cons. mass} \\ p/\rho &= RT & \text{Eq. of state} \\ Q &= C_p \frac{dT}{dt} - \rho^{-1} \frac{dp}{dt} & \text{Cons. energy} \\ \frac{\partial \rho q}{\partial t} &= -\nabla \cdot (\rho \mathbf{v} q) + \rho (E - C) & \text{Cons. water vapor mixing ratio} \end{aligned}$$

 $\mathbf{v}(t,x)$ - wind velocity field, $\rho(t,x)$ - air density, p - pressure, T - temperature, q - vapor mixing ratio.

Observations:

$$Y(t_{n+1}) = h(v, \rho, p, T, q)(t_{n+1}) + \eta_{n+1}.$$

¹E. Kalnay, Atmospheric data assimilation and applications.

Rough idea of numerical weather prediction

Introduce a mesh

 $\mathcal{I} = \{(x_i, x_j, x_k) \in \mathbb{R}^3 \mid (x_i, x_j, x_k) \text{ is a point in (a subset of) the atmosphere} \}$

3DVAR prediction: Numerical solution of the weather model with filtering **conditional mean** $m_j \approx \mathbb{E} \left[\{ (v, \rho, p, T, q)(t_j, x) \}_{x \in \mathcal{I}} \mid Y_{1:j} = y_{1:j} \right]$ as initial condition. That is,

$$m_j \stackrel{\Psi(m_n)}{\mapsto} \hat{m}_{j+1} \approx \mathbb{E}\left[\left\{(v, \rho, p, T, q)(t_{j+1}, x)\right\}_{x \in \mathcal{I}} \mid Y_{1:j} = y_{1:j}\right].$$

Note: State-space dimension $d = |\mathcal{I}| \times 7$.

Analysis: Apply 3DVAR principle with a typically low-bandwith, fixed $\hat{C} \approx \text{Cov}[\{(v, \rho, p, T, q)(t_{j+1}, x)\}_{x \in \mathcal{I}} | Y_{1:j} = y_{1:j}],$

$$m_{j+1} = (I - KH)\hat{m}_{j+1} + Ky_{j+1}.$$

Recovery of true signal by 3DVAR

Theorem 1 (LSZ 4.10)

Assume the true signal is given by

$$v_{j+1}^{\dagger} = \Psi(v_j^{\dagger})$$

and observations by

$$y_{j+1} = Hv_{j+1}^{\dagger} + \epsilon_{j+1}, \quad with \sup_{j\geq 0} \|\epsilon_j\| \leq \epsilon.$$

For 3DVAR with any value of $m_0 \in \mathbb{R}^d$, if \hat{C} is chosen such that it holds for all $u, v \in \mathbb{R}^d$ and some a < 1 that

$$\|(I-KH)\Psi(u)-(I-KH)\Psi(v)\|\leq a\|u-v\|,$$

then

$$\limsup_{j\geq 0}\|v_j^\dagger-m_j\|\leq \frac{\|K\|}{1-a}\epsilon.$$

Proof idea:

Write

$$m_{j+1} = (I - KH)\Psi(m_j) + K \underbrace{(H\Psi(v_j^{\dagger}) + \epsilon_{j+1})}_{y_{j+1}}$$
$$v_{j+1}^{\dagger} = (I - KH)\Psi(v_j^{\dagger}) + KH\Psi(v_j^{\dagger}).$$

Then for

$$\begin{split} \|m_{j+1} - v_{j+1}^{\dagger}\| &\leq \|(I - KH)\Psi(m_{j}) - (I - KH)\Psi(v_{j}^{\dagger})\| + \|K\epsilon_{j+1}\| \\ &\leq a\|m_{j} - v_{j}^{\dagger}\| + \|K\|\|\epsilon_{j+1}\| \\ &\leq a\|m_{j} - v_{j}^{\dagger}\| + \|K\| \epsilon \\ &\leq \ldots \leq a^{j+1}\|m_{0} - v_{0}^{\dagger}\| + \|K\|\epsilon \sum_{k=0}^{j} a^{k} \end{split}$$

and $a^{j+1} \| m_0 - v_0^{\dagger} \|
ightarrow 0$ as $j
ightarrow \infty$.

Remarks on Theorem 1

- Note that the asymptotic tracking ability holds regardless of the magnitude of ||m₀ v₀[†]|| as long as a < 1.</p>
- Not that interesting result if H = I, since if one were to choose the filtering approach of total reliance on observations: $m_j = y_j$, then one would anyway achieve

$$\|v_j^{\dagger}-m_j\|=\|\epsilon_j\|\leq\epsilon.$$

- Relevant in partial observation settings H ∈ ℝ^{k×d} with k < d. Then it shows that accurate observations of unstable components may lead to good tracking of the state of all components.
- (SST Theorem 9.2) extends result from deterministic upper bound on noise error $|\epsilon_j| < \epsilon$ to Gaussian random noise setting $y_j = Hv_j^{\dagger} + \epsilon_j$ with $\epsilon_j \sim N(0, \gamma^2 I)$, and

$$\lim \sup_{j \to \infty} \mathbb{E}\left[\| m_j - v_j^{\dagger} \| \right] \leq \frac{\| K \|}{1 - a} \gamma,$$

Choice of \hat{C} guided by the preceding result.

• 3DVAR applied to a filtering problem with fixed H = I and $\Gamma = \gamma^2 I$, and $\hat{C} = \sigma^2 I$ with adjustable parameter σ^2 yields

$$\mathcal{K} = rac{\gamma^2}{\sigma^2 + \gamma^2} \mathcal{I} \quad ext{and} \quad (\mathcal{I} - \mathcal{K}\mathcal{H}) \Psi(\mathbf{v}) = rac{(\gamma/\sigma)^2}{1 + (\gamma/\sigma)^2} \Psi(\mathbf{v})$$

• Choosing σ^2 so large that

$$rac{(\gamma/\sigma)^2}{1+(\gamma/\sigma)^2}\|D\Psi(m{v})\| < 1 \quad orall m{v} \in \mathbb{R}^d$$

will lead stability in the form Theorem 1 (when other assumptions hold).

• In the example with $\Psi(v) = 2.5 \sin(v)$ and $\gamma^2 = 1$,

$$\frac{(\gamma/\sigma)^2}{1+(\gamma/\sigma)^2}\|D\Psi\|_{\infty} < 1 \iff \frac{2.5}{\sigma^2+1} < 1 \iff \sigma^2 > 1.5.$$

Interpretation: model variance inflation of σ² may help ensure stability of tracking (effectively it means putting more trust on observations).

Tracking of truth under partial observations

Consider now **partial** observations $H = (I_k, 0)^T \in \mathbb{R}^{k \times d}$, fixed $\Gamma = \gamma^2 I_k$ and $\hat{C} = \sigma^2 I_d$. Then

$$I_d - KH = \begin{bmatrix} \frac{\eta^2}{1+\eta^2} I_k & 0\\ 0 & I_{d-k} \end{bmatrix}$$

with $\eta = \gamma / \sigma$.

For a linear dynamics mapping $\Psi(u) = Lu$ with

$$D\Psi = L = \begin{bmatrix} b_1 I_k & 0\\ 0 & b_2 I_{d-k} \end{bmatrix}$$

we obtain

$$(I_d - KH)D\Psi = egin{bmatrix} rac{b_1\eta^2}{1+\eta^2}I_k & 0 \ 0 & b_2I_{d-k} \end{bmatrix}$$

Conclusion: $||(I_d - KH)D\Psi|| < 1$ is only possible to achieve when $|b_2| < 1$. (This is a stability condition in dynamics of unobserved components.) Whatever the magnitude of $|b_1|$, on the other hand, this can be controlled by appropriately inflating σ^2 .

4DVAR

Is an extension of 3DVAR in the analysis step applying the variational principle over both 3D space and **time** (i.e., allowing for measurements scattered also over a time window) **Given dynamics:**

$$V_{j+1}=\Psi(V_j)+\xi_j,$$

with $\xi_j \stackrel{iid}{\sim} N(0, \Sigma)$ and observations $y_{1:J}$ as before,

w4DVAR weak constraint 4DVAR is for stochastic dynamics $\Sigma > 0$. Then assimilation is done over the time window 0 : *J* in one step:

$$m_{0:J} = \arg\min_{\mathbf{v}_{0:J} \in \mathbb{R}^{d(J+1)}} \frac{1}{2} |v_0 - m_0|_{C_0}^2 + \frac{1}{2} \sum_{j=0}^{J-1} |v_{j+1} - \Psi(v_j)|_{\Sigma}^2 + \frac{1}{2} \sum_{j=1}^{J} |y_j - Hv_j|_{\Gamma}^2$$

If Ψ is bounded and continuous, then a minimizer $m_{0:J}$ exists and corresponds to a MAP estimator for the very same smoothing problem over the same time-window [SST 9.3].

4DVAR is for settings with deterministic dynamics, i.e., $\Sigma = 0$, when w4DVAR turns into a minimization problem

$$m_{0:J} = \arg\min_{v_{0:J}} \frac{1}{2} |v_0 - m_0|_{C_0}^2 + \frac{1}{2} \sum_{j=1}^J |y_j - Hv_j|_{\Gamma}^2$$

subject to the strong constraint

$$v_{j+1} = \Psi(v_j), \quad j = 0, 1, \dots, J-1.$$

Comparisons 4DVAR vs 3DVAR

- 4DVAR is a minimization problem in typically higher-dimensional space than 3DVAR
- Both methods originally developed for numerical weather prediction, with emphasis on an efficient method for high-dimensional state space analysis/update.
- We focus here on one, but there exist many hybrid versions of 3D/4DVAR combined with other filtering techniques for the prediction step, cf., E. Kalnay "Atmospheric modeling, data assimilation and predictability".

Overview

1 3DVAR

2 Extended Kalman filtering

Filtering setting

Initial condition $V_0 \sim N(m_0, C_0)$ and for j = 0, 1, ...

$$V_{j+1} = \Psi(V_j) + \xi_j,$$

$$Y_{j+1} = HV_{j+1} + \eta_{j+1},$$
(10)

and Gaussian noise assumptions as before.

Extende Kalman filtering (ExKF): At time *j* and given state (m_j, C_j) , linearize dynamics around m_j :

$$\Psi_L(v; m_j) := \Psi(m_j) + D\Psi(m_j)(v - m_j).$$

And apply Kalman filtering one prediction-update step to the linearized dynamics

$$V_{j+1} = \Psi(m_j) + D\Psi(m_j)(V_j - m_j) + \xi_j,$$

Extended Kalman filtering algorithm

Given any sequence y_1, y_2, \ldots and $V_j | Y_{1:j} = y_{1:j} \sim N(m_j, C_j)$,

Prediction step

$$\begin{split} \hat{m}_{j+1} &= \Psi(m_j) \\ \hat{C}_{j+1} &= D \Psi(m_j) C_j D \Psi(m_j)^T + \Sigma \end{split}$$

Analysis step

$$K_{j+1} = \hat{C}_{j+1}H^{T}(H\hat{C}_{j+1}H^{T} + \Gamma)^{-1}$$

$$m_{j+1} = (I - K_{j+1}H)\hat{m}_{j+1} + K_{j+1}y_{j+1}$$

$$C_{j+1} = (I - K_{j+1}H)\hat{C}_{j+1}$$

Motiation for prediction step: We have the following approximations:

$$m_j \approx \mathbb{E} \left[V_j | Y_{1:j} = y_{1:j} \right], \quad C_j \approx \mathbb{E} \left[(V_j - m_j) (V_j - m_j)^T | Y_{1:j} = y_{1:j} \right]$$

Note further that the ExKF moments m_j and C_j are **not random** (given $y_{1:j}$).

Motivation for the ExKF algorihtm

Using that $\Psi(m_j)$ and $D\Psi(m_j)$ are deterministic (given $y_{1:j}$), the following approximations motivate the ExKF prediciton steps:

$$egin{aligned} \hat{m}_{j+1} &= \mathbb{E} \left[\Psi(m_j) + D \Psi(m_j) (V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j}
ight] \ &= \Psi(m_j) + D \Psi(m_j) \Big(\mathbb{E} \left[V_j | Y_{1:j} = y_{1:j}
ight] - m_j \Big) \ &pprox \Psi(m_j) \end{aligned}$$

and (similar derivation as for Kalman filtering with $A = D\Psi(m_j)$),

$$\begin{split} \hat{C}_{j+1} &= \text{Cov}[\Psi(m_j) + D\Psi(m_j)(V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j}] \\ &= \text{Cov}[D\Psi(m_j)(V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j}] \\ &= D\Psi(m_j)\mathbb{E}\left[(V_j - m_j)(V_j - m_j)^T | Y_{1:j} = y_{1:j} \right] D\Psi(m_j)^T + \Sigma \\ &\approx D\Psi(m_j)C_j D\Psi(m_j)^T + \Sigma. \end{split}$$

Example Dynamics:

 $V_{j+1} = 2.5 \sin(V_j) + \xi_j$ $V_0 \sim N(0, 1)$ (11)

where $\xi_j \sim N(0, 0.09)$ **Observations:**

$$Y_j = V_j + \eta_j, \quad j = 1, 2, \ldots,$$

with $\eta_j \sim N(0,1)$.

ExKF: linearized dynamics mapping becomes

$$\Psi_L(v; m_j) = 2.5 \sin(m_j) + 2.5 \cos(m_j)(v - m_j),$$

Starting with $(m_0, C_0) = (0, 1)$ apply linearized mapping $\Psi_L(v; 0)$ and Kalman filtering to transition $(m_0, C_0) \mapsto (m_1, C_1)$, apply linearized mapping $\Psi_L(v; m_1)$ to and KF to transition $(m_1, C_1) \mapsto (m_2, C_2) \dots$

Test

for one observation sequence $y_{1:J} = v_{1:J}^{\dagger} + \eta_{1:J}$ generated from synthetic data $v_{1:J}^{\dagger}$.

Implementation: The ExKF given m_j and C_j :

```
Psi = @(v) 2.5*sin(v); %Dynamics mapping
DPsi = Q(v) 2.5*cos(v); %Jacobian
for j=1:J
   %ExKF filtering
   mHat = Psi(m(j));
    cHat = DPsi(m(j))*C(j)*DPsi(m(j))' + Sigma;
           = (cHat*H')/(H*cHat*H'+Gamma):
   K
   m(j+1) = (1-K*H)*mHat+K*v(j);
   C(j+1) = (1-K*H)*cHat;
```

end

$$rac{1}{1001}\sum_{k=0}^{1000}|v_k^{\dagger}-m_k|^2pprox 0.9969 \quad ext{and} \quad rac{1}{10001}\sum_{k=0}^{10000}|v_k^{\dagger}-m_k|^2pprox 0.6169.$$

(MSE \approx 0.9969 is not very impressive, this is roughly same error as one would get for _ _ _

$$rac{1}{J}\sum_{k=1}^{\infty}|v_k^{\dagger}-y_k|^2, \quad ext{since} \quad y_k=v_k^{\dagger}+\eta_k ext{ and } \eta_k\sim \mathcal{N}(0,1).)$$

For comparison with the 3DVAR fixed prediction covariance \hat{C} , plot of evolution of C_i for ExKF:

Remarks on errors of ExKF and 3DVAR

It generally does hold that

 $\mathbb{E}\left[\Psi(V)+\xi\right]=\Psi(\mathbb{E}\left[V\right])\implies \hat{m}_{j}=\Psi(m_{j})\stackrel{in\,general}{\neq}\mathbb{E}\left[\Psi(V_{j})|Y_{1:j}=y_{1:j}\right].$

• Nor does it generally hold that $V_j | Y_{1:j} = y_{1:j}$ is Gaussian when Ψ is nonlinear, and the analysis step, being derived under the assumption of Gaussian posterior

$$\pi(v_j|y_{1:j}) \propto \exp\Big(-rac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^2 - rac{1}{2}|v_{j+1} - \hat{m}_{j+1}|_{\hat{\mathcal{L}}_{j+1}}^2\Big).$$

which, may only approximately hold, and the consecutive variational principle

$$m_{j+1} = \arg\min_{u \in \mathbb{R}^d} \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2$$

is thus also only an approximation.

Best filtering method measured in terms of accuracy and efficiency

$$\label{eq:KF} \begin{split} \mathsf{KF} &= \mathsf{Kalman} \ \mathsf{filter}; \ \mathsf{PF} = \mathsf{particle} \ \mathsf{filter}; \ \mathsf{EKF} = \mathsf{extended} \ \mathsf{KF}; \\ \mathsf{UKF} &= \mathsf{unscented} \ \mathsf{KF}; \ \mathsf{EnKF} = \mathsf{ensemble} \ \mathsf{KF} \end{split}$$

Figure from talk by Mattias Katzfuss on "Extended ensemble Kalman filters for high-dimensional hierarchical state-space models".

Plan for next lecture

 Implementation and convergence properties of EnKF in large ensemble limit.

Particle filtering.