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Summary lecture 15 and plan for today

Described two approximate filtering methods for the nonlinear problem

Vj+1 = Ψ(Vj) + ξj , ξj
iid∼ N(0,Σ)

Yj+1 = HVj+1 + ηj+1, ηj
iid∼ N(0, Γ)

i.e., 3DVAR and Extended Kalman filtering.

Plan for today:

More on Extended Kalman filtering

Approximation error and study of why the filter distribution typically
is non-Gaussian when Ψ is nonlinear

The Ensemble Kalman filtering method.

EnKF applied to nonlinear observations.
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Key variational princple for extenstions of Kalman filtering

We recall that for Kalman filtering, we have the posterior

π(vj+1|y1:j+1) ∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ −

1

2
|vj+1 − m̂j+1|2Ĉj+1

)
,

which implies that the filtering iteration mj 7→ mj+1 can be described by
the variational principle

m̂j+1 = Ψ(mj)

J(u) :=
1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉj+1

mj+1 = arg min
u∈Rd

J(u).

(1)
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3DVAR

Fix the prediction covariance Ĉj+1 := Ĉ for all j ≥ 0, and apply variational
principle

m̂j+1 = Ψ(mj)

J(u) :=
1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉ

mj+1 = arg min
u∈Rd

J(u).

(2)

. . . which by the derivations for Kalman filtering yield

m̂j+1 = Ψ(mj)

K = ĈHT (HĈHT + Γ)−1

mj+1 = (I − KH)m̂j+1 + Kyj+1.

(3)
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Filtering setting

Initial condition V0 ∼ N(m0,C0) and for j = 0, 1, . . .

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = HVj+1 + ηj+1,
(4)

and Gaussian noise assumptions as before.

Extened Kalman filtering (ExKF): At time j and given state (mj ,Cj),
linearize dynamics around mj :

ΨL(v ;mj) := Ψ(mj) + DΨ(mj)(v −mj).

And apply Kalman filtering one prediction-update step to the linearized
dynamics

Vj+1 = Ψ(mj) + DΨ(mj)(Vj −mj) + ξj ,
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Extended Kalman filtering algorithm

Prediction step

m̂j+1 = Ψ(mj)

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T + Σ

Analysis step

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ)−1

mj+1 = (I − Kj+1H)m̂j+1 + Kj+1yj+1

Cj+1 = (I − Kj+1H)Ĉj+1

Motiation for prediction step: We have the following approximations:

mj ≈ E [Vj |Y1:j = y1:j ] , Cj ≈ E
[

(Vj −mj)(Vj −mj)
T |Y1:j = y1:j

]
Note further that the ExKF moments mj and Cj are not random (given
y1:j).
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Motivation for the ExKF algorihtm

Using that Ψ(mj) and DΨ(mj) are deterministic (given y1:j), we obtain
the approximation

m̂j+1 = E [ Ψ(mj) + DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= Ψ(mj) + DΨ(mj)
(
E [Vj |Y1:j = y1:j ]−mj

)
≈ Ψ(mj)

and (similar derivation as for Kalman filtering with A = DΨ(mj)),

Ĉj+1 = Cov[Ψ(mj) + DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= Cov[DΨ(mj)(Vj −mj) + ξj |Y1:j = y1:j ]

= DΨ(mj)E
[

(Vj −mj)(Vj −mj)
T |Y1:j = y1:j

]
DΨ(mj)

T + Σ

≈ DΨ(mj)CjDΨ(mj)
T + Σ.
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Remarks on errors of ExKF and 3DVAR

It generally does hold that

E [ Ψ(V ) + ξ] = Ψ(E [V ]) =⇒ m̂j+1 = Ψ(mj)
in general

6= E [ Ψ(Vj)|Y1:j = y1:j ] .

Nor does it generally hold that Vj |Y1:j = y1:j is Gaussian when Ψ is
nonlinear, and the analysis step, being derived under the assumption
of Gaussian posterior

π(vj |y1:j) ∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ −

1

2
|vj+1 − m̂j+1|2Ĉj+1

)
,

which, may only approximately hold, and the consecutive variational
principle

mj+1 = arg min
u∈Rd

1

2
|yj+1 − Hu|2Γ +

1

2
|u − m̂j+1|2Ĉj+1

is thus also only an approximation.
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Ensemble Kalman filtering

We again consider the problem with V0 ∼ N(m0,C0) and for j = 0, 1, . . .

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = HVj+1 + ηj+1,
(5)

and Gaussian noise assumptions as before.

EnKF initial condition is ensemble of iid “particles” v
(i)
0

iid∼ PV0 for
i = 1, 2, . . . ,M and whose empirical measure approximates the true initial
distribution:

PV0(dv) ≈ 1

M

M∑
i=1

δ
v

(i)
0

(dv)
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EnKF Prediction at time j = 1

To approximate the prediction PV1 , all particles are simulated one step
ahead:

v̂
(i)
1 = Ψ(v

(i)
0 ) + ξ

(i)
1 , i = 1, 2, . . . ,M

where {ξ(i)
1 } are iid N(0,Σ)-distributed and

PV1(dv) ≈ 1

M

M∑
i=1

δ
v̂

(i)
1

(dv).

Sample prediction mean and covariance

m̂1 :=
1

M

M∑
i=1

v̂
(i)
1 , Ĉ1 :=

1

M − 1

M∑
i=1

(v̂
(i)
1 − m̂1)(v̂

(i)
1 − m̂1)T .
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EnKF analysis at time j = 1

The Kalman gain is computed using Ĉ1:

K1 = Ĉ1H
T (HĈ1H

T + Γ)−1

and the observation y1 is assimilated into each particle by

y
(i)
1 = y1 + η

(i)
1 perturbed observations

v
(i)
1 = (I − K1H)v̂

(i)
1 + K1y

(i)
1

}
for i = 1, 2, . . . ,M,

with η
(i)
j

iid∼ N(0, Γ).

As before, the empirical measure of {v (i)
1 } approximates V1|Y1 = y1:

PV1|Y1=y1
(dv) ≈ 1

M

M∑
i=1

δ
v

(i)
1

(dv)
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Iterated EnKF formulas
Given any y1, y2, . . . and {v (i)

j }Mi=1, the EnKF iterations are

Prediction step

v̂
(i)
j+1 = Ψ(v

(i)
j ) + ξ

(i)
j , i = 1, 2, . . . ,M

Ĉj+1 =
1

M − 1

M∑
i=1

(v̂
(i)
j+1 − m̂j+1)(v̂

(i)
j+1 − m̂j+1)T︸ ︷︷ ︸

=:CovM [v̂
(·)
j+1]

, m̂j+1 =
1

M

M∑
i=1

v̂
(i)
j+1︸ ︷︷ ︸

=:EM [v̂
(·)
j+1]

Analysis step

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ)−1

and
y

(i)
j+1 = yj+1 + η

(i)
j+1

v
(i)
j+1 = (I − Kj+1H)v̂

(i)
j+1 + Kj+1y

(i)
j+1

 for i = 1, 2, . . . ,M,
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Comments
In settings when Ĉj is non-singular, the analysis step can be viewed as
the variational principle

v
(i)
j := arg min

u∈Rd

1

2
|y (i)

j − Hu|2Γ +
1

2
|u − m̂j |2Ĉj

(see [SST Chp 9] for an extension of this argument when Ĉj is
singular).

A random perturbation η
(i)
j is added to the observation in the analysis

step for each particle for the purpose of consistency: in the setting
with linear dynamics Ψ(v) = Av ,

lim
M→∞

E
[
CEnKF
j

]{6= CKalman
j without perturbed obs

= CKalman
j with perturbed obs

see Ubung 8.

It can be shown that v
(i)
j+1 ∈ Span({v̂ (i)

j+1}Mi=1) (see Ubung 8).
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Comments

The EnKF empirical measure is of course an approximation, but the
method has obvious advantages over other in terms of robustness and
storage.

Storage: EnKF needs to store O(M×d) values (v
(1)
j , . . . , v

(M)
j ∈ Rd).

The Kalman filter needs to store O(d × d) (the covariance
Cj ∈ Rd×d).

If the true dimension of problem is much smaller than d , then EnKF
is often successful in tracking the truth at a storage constraint than
d × d .

EnKF is more directly applicable to nonlinear problems than ExKF,
and better at handling nonlinearities than both ExKF and 3DVAR.

As for other nonlinear filtering methods, PV0 need not be Gaussian for
EnKF.

17 / 41



Animation of EnKF
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Animation of EnKF
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Example implementation of EnKF

Dynamics:

Vj+1 = 2.5 sin(Vj) + ξj

V0 ∼ N(0, 1)
(6)

where ξj ∼ N(0, 0.09) Observations:

Yj = Vj + ηj , j = 1, 2, . . . ,

with ηj ∼ N(0, 1).

EnKF:

1. Sample iid v
(i)
0 ∼ N(0, 1) for i = 1, 2, . . . ,M

2. Simulate v̂
(i)
1 = 2.5 sin(v

(i)
0 ) + ξ

(i)
0 for i = 1, 2, . . . ,M.
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EnKF continued
EnKF:

3. Compute

Ĉ1 = CovM [v̂
(·)
1 ]

and

4.
K1 = Ĉ1H

T (HĈ1H
T + Γ)−1

and

y
(i)
1 = y1 + η

(i)
1

v
(i)
1 = (I − K1H)v̂

(i)
1 + K1y

(i)
1

}
for i = 1, 2, . . . ,M,

5. Simulate

v̂
(i)
2 = 2.5 sin(v

(i)
1 ) + ξ

(i)
1 for i = 1, 2, . . . ,M,

and so forth.
20 / 41



Matlab code:

Psi = @(v) 2.5*sin(v);

v = m0 + sqrt(C0)*randn(M,1); %initial condition

m(1) = mean(v); C(1) = cov(v);

for j=1:J

% EnKF filtering

vHat = Psi(v) + sqrt(Sigma)*randn(M,1);

cHat = cov(vHat);

K = (cHat*H’)/(H*cHat*H’+Gamma);

yPerturbed = y(j) + sqrt(Gamma)*randn(M,1);

v = (1-K*H)*vHat+K*yPerturbed;

% for plotting puropses

m(j+1) = mean(v); C(j+1)= cov(v);

end
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Numerical results EnKF for M = 10

An observation sequence y1:J = v †1:J + η1:J is generated from synthetic
data for J = 1000.
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Numerical results EnKF for M = 100
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Numerical results EnKF for M = 1000 (very similar to
M = 100)
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Why does not the error converge towards 0?
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Comparison of time-averaged errors

EnKF M = (10, 100, 1000):

1

1001

1000∑
k=0

|v †k −mk |2 ≈ (0.4950, 0.3902, 0.3799),

ExKF
1

1001

1000∑
k=0

|v †k −mk |2 = .9969

3DVAR (best try, with Ĉ = 2)

1

1001

1000∑
k=0

|v †k −mk |2 = 0.6023.
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Comparison of covariances
EnKF with ensemble size M = 10
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Variation in ExKF covariance relates to linearization around different
points mj in prediction step: Ĉj+1 = DΨ(mj)CjDΨ(mj)

T + Σ

Variation in EnKF covariance relates to variations in the ensemble:
Cj+1 = CovM [v

(·)
j+1].
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Exact vs approximate filtering methods
For the nonlinear filtering problem

Vj+1 = Ψ(Vj) + ξj , ξj
iid∼ N(0,Σ)

Yj+1 = HVj+1 + ηj+1, ηj
iid∼ N(0, Γ),

with same independence assumptions as before, we derived in Lecture 14
that if we know the pdf of Vj |Y1:j = y1:j then

Prediction step

The prediction rv Vj+1|Y1:j = y1:j equals rv Ψ(Vj) + ξj |Y1:j = y1:j .

3DVAR: Approximated by N(Ψ(mj), Ĉ ).

ExKF: Approximated by N(Ψ(mj), Ĉj+1), linearized covariance.

EnKF: Approximated by empirical distribution of {Ψ(v
(i)
j ) + ξ

(i)
j }Mi=1.

Will be a good approximation asymptotically (provided {v (i)
j }Mi=1 is a good

approximation of analysis distribution at time j).
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Analysis step:

π(vj+1|y1:j+1) ∝ exp
(
− 1

2
|yj+1 − Hvj+1|2Γ

)
π(vj+1|y1:j)

∝ πN(0,Γ)(yj+1 − Hvj+1)π(vj+1|y1:j)

3DVAR and ExKF: The analysis step for these methods is, after
linearization, a carbon copy of Kalman filtering. Using that
Vj+1|Y1:j = y1:j ∼ N(Ψ(mj), Ĉj+1) for these methods, we have that

π(vj+1|y1:j+1) ∝ πN(0,Γ)(yj+1 − Hvj+1)πN(Ψ(mj ),Ĉj+1)(vj+1)

(with Ĉj+1 = Ĉ for 3DVAR).

Conclusion: Approximation errors enter in prediction step for these two
methods.

EnKF: Is more subtle to study as the particles correlate/mix in the
analysis step. We will look at the simplified setting when M =∞.
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Mean-field limit

Pr

{
v̂

(i)
j+1 = Ψ(v

(i)
j ) + ξ

(i)
j

Ĉj+1 = CovM [v̂
(·)
j+1]

Anl


Kj+1 = Ĉj+1H

T (HĈj+1H
T + Γ)−1

y
(i)
j+1 = yj+1 + η

(i)
j+1

v
(i)
j+1 = (I − Kj+1H)v̂

(i)
j+1 + Kj+1y

(i)
j+1

M =∞ yields iid mean-field EnKF (MFEnKF) particles with dynamics

Pr

{
v̂
MF,(i)
j+1 = Ψ(v

MF,(i)
j ) + ξ

(i)
j

ĈMF
j+1 = Cov[v̂MF

j+1 ]
Anl


KMF
j+1 = ĈMF

j+1 H
T (HĈMF

j+1 H
T + Γ)−1

y
(i)
j+1 = yj+1 + η

(i)
j+1

v
MF,(i)
j+1 = (I − KMF

j+1 H)v̂
MF,(i)
j+1 + KMF

j+1 y
(i)
j+1

Note: v
MF,(i)
j+1 are all iid.
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Bayes filter vs mean-field EnKF
Assuming that for some j ≥ 0,

π
v
MF,(i)
j

= πVj |Y1:j=y1:j

then, since

vMF
j+1 = Ψ(vMF

j ) + ξj
D
= Ψ(Vj) + ξj |(Y1:j = y1:j) = V̂j+1|Y1:j = y1:j

the next-time prediction pdfs of BF and MFEnKF will agree:

π
v̂
MF,(i)
j+1

= πVj+1|Y1:j=y1:j

However, by v
MF,(i)
j+1 = v̂

MF,(i)
j+1 + KMF

j+1

(
y

(i)
j+1 − Hv̂

MF,(i)
j+1

)
︸ ︷︷ ︸

Y

we obtain

π
v
MF,(i)
j+1

(v) =

∫
ρ
Y |v̂MF,(i)

j+1

(v − x)π
v̂
MF,(i)
j+1

(x) dx = π
Y |vMF,(i)

j+1

∗ π
v
MF,(i)
j

(v).

with

Y |v̂MF,(i)
j+1 = KMF

j+1

(
y

(i)
j+1−Hv̂

MF,(i)
j+1

)
|v̂MF,(i)

j+1 ∼ KMF
j+1N(yj+1−Hv̂

MF,(i)
j+1 , Γ).
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Bayes filter vs mean-field measure

BF: π(vj+1|y1:j+1) ∝ πN(yj+1,Γ)(vj+1)π(vj+1|y1:j)

MFEnKF: ππ
vMF
j+1

(vj+1) ∝ πKMF
j+1 N(yj+1−Hv̂MF

j+1 ,Γ) ∗ πv̂MF
j+1

(vj+1).

Conclusion: EnKF has two types of approximation errors:

1. Prediction error due to a finite ensemble, and
2. analysis error due to the particle-wise Gaussian variational principle.
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Convergence of EnKF
Notation: Let

πEnKF,M
j (dv) :=

1

M

M∑
i=1

δ
v

(i)
j

(dv),

and let πMF
j denote the distribution for a mean-field particle at time j :

v
MF,(i)
j ∼ πMF

j and πMF
j [f ] = Eπ

MF
j [f ].

For a QoI f : Rd → R, let

πEnKF,M
j [f ] :=

1

M

M∑
i=1

f (v
(i)
j ) = Eπ

EnKF,M
j [f ]

and
πMF
j [f ] := Eπ

MF
j [f ].

We describe two kinds of large-ensemble limit types of convergence:

convergence of EnKF to the Kalman filter when Ψ is linear, and

πEnKF,M
j [f ]→ πMF

j [f ] when Ψ is nonlinear.
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Theorem 1 (Mandel et al. “On the convergence of the ensemble
Kalman filter” (2011))

Consider the linear-Gaussian filter problem

Vj+1 = AVj + ξj , ξj ∼ N(0,Σ),

Yj+1 = HVj+1 + ηj+1, ηj+1 ∼ N(0, Γ),

and assume that V0 ∼ N(m0,C0).
Then, for any observation sequence y1, y2, . . ., it holds that

πMF
j = PVj |Y1:j=y1:j

= N(mj ,Cj)

with (mj ,Cj) determined through the Kalman filtering iterative formulas,

and as M →∞, we have for the EnKF ensemble {v (i)
j }Mi=1 that

EM [v
(·)
j ]

L2(Ω)→ mj , CovM [v
(·)
j ]

L2(Ω)→ Cj .

Application: EnKF may be a sound choice in linear-Gaussian settings when
d � 1, because then Kalman filtering becomes infeasible due to storage
constraints.

34 / 41



Theorem 2 (Le Gland et al., (2009))

Consider the dynamics and observations,

Vj+1 = Ψ(Vj) + ξj , ξj ∼ N(0,Σ),

Vj+1 = HVj+1 + ηj+1, ηj+1 ∼ N(0, Γ),

and assume that V0 ∈ Lp(Ω) for any order p ≥ 1, and that for the drift
mapping Ψ and a QoI f : Rd → R,

max(|f (x)−f (y)|, |Ψ(x)−Ψ(y)|) ≤ C |x−y |(1+|x |s+|u|s), for some s ≥ 0.

Then, for any fixed observation sequence y1, y2, . . ., it holds for any p ≥ 1
that

‖πEnKF ,Mj [f ]− πMF
j [f ]‖Lp(Ω) ≤

C (p, j , y1:j)√
M

,

(which also can be writtenE

 ∣∣∣∣∣∣
M∑
i=1

f (v
(i)
j )

M
−
∫
Rd

f (x)πMF
j (dx)

∣∣∣∣∣∣
p1/p

≤
C (p, j , y1:j)√

M
).
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Computing sample moments in the ambient space Rk

A crucial step in the EnKF iteration is the computation of the prediction
sample covariance:

Ĉj = CovM [v
(·)
j ].

and its usage in the Kalman gain:

Kj = ĈjH
T (HĈjH

T + Γ)−1.

Note that rather than the full matrix Ĉj , what one needs for computing
the gain is

HĈjH
T = H

( 1

M − 1

M∑
i=1

(v̂
(i)
j − m̂j)(v̂

(i)
j − m̂j)

T
)
HT

=
1

M − 1

M∑
i=1

H(v̂
(i)
j − m̂j)

(
H(v̂

(i)
j − m̂j)

)T
= CovM [Hv̂

(·)
j ] ∈ Rk×k .

and
ĈjH

T = CovM [v̂
(·)
j ,Hv̂

(·)
j ] ∈ Rd×k .

When d � 1 it is best to do computations in the ambient space.
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Extension to nonlinear filtering settings
The resulting EnKF formulas

Prediction
{
v̂

(i)
j+1 = Ψ(v

(i)
j ) + ξ

(i)
j

Analysis


Kj+1 = CovM [v̂

(·)
j+1,Hv̂

(·)
j+1](CovM [Hv̂

(·)
j+1] + Γ)−1

y
(i)
j+1 = yj+1 + η

(i)
j+1

v
(i)
j+1 = v̂

(i)
j+1 + Kj+1

(
y

(i)
j+1 − Hv̂

(i)
j+1

)
may also be viewed as a motivation for the following extension to
nonlinear observation mappings1 h : Rd → Rk :

Prediction
{
v̂

(i)
j+1 = Ψ(v

(i)
j ) + ξ

(i)
j

Analysis


Kj+1 = CovM [v̂

(·)
j+1, h(v̂

(·)
j+1)](CovM [h(v̂

(·)
j+1)] + Γ)−1

y
(i)
j+1 = yj+1 + η

(i)
j+1

v
(i)
j+1 = v̂

(i)
j+1 + Kj+1

(
y

(i)
j+1 − h(v̂

(i)
j+1)

)
.

1Evensen, “Data Assimilation, The Ensemble Kalman Filter”, (2009).
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Rough idea of alternative approach to nonlinear
observations in EnKF

Prediction


v̂

(i)
j+1 = Ψ(v

(i)
j ) + ξ

(i)
j

m̂j+1 = EM [v̂
(·)
j+1]

Ĉj+1 = CovM [v̂
(·)
j+1]

And solve the following minimization problem by iterated solver for each
particle i = 1, 2, . . . ,M 2:

Analysis

{
y

(i)
j+1 = yj+1 + η

(i)
j+1

v
(i)
j+1 = arg minu∈Rd

1
2 |y

(i)
j+1 − h(u)|2Γ + 1

2 |u − m̂j+1|2Ĉj+1

2Oliver and Gu, “An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow
Data Assimilation” (2007)
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Summary

We have introduced three nonlinear filtering methods based on
Gaussian approximation in the update step (3DVAR, ExKF and
EnKF).

The methods do not generally converge to the Bayes filter when Ψ is
nonlinear, but should not for that reason alone be excluded from
practical use.

EnKF offers the most robust prediction-step approach, it converges in
weak sense to the mean-field EnKF when h is linear, and it may be
extended to settings with nonlinear h.
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Best filtering method measured in terms of accuracy and
efficiency

Figure from talk by Mattias Katzfuss on“Extended ensemble Kalman filters for
high-dimensional hierarchical state-space models”. 41 / 41
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