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Overview

Extended Kalman filtering

Ensemble Kalman filtering

Approximation errors for Gaussian-based nonlinear filter methods

Efficient implementation of EnKF and extensions to nonlinear
observations
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Summary lecture 15 and plan for today

m Described two approximate filtering methods for the nonlinear problem

iid

Vir = V(V)) + &, & ~ N(0,X)
iid
Y/’—i—l - H\/_j—|—1 + nj—‘,—la 77_] ~ N(Oa r)

i.e., 3DVAR and Extended Kalman filtering.

Plan for today:

m More on Extended Kalman filtering

m Approximation error and study of why the filter distribution typically
is non-Gaussian when WV is nonlinear

m The Ensemble Kalman filtering method.

m EnKF applied to nonlinear observations.
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Key variational princple for extenstions of Kalman filtering

We recall that for Kalman filtering, we have the posterior

1 1 X
m(Viralyrje1) <exp ( — 5yt — H‘/j+1|% = 5lvjt1 — m.i+1|2“. )
2 2 Ci1

which implies that the filtering iteration m; — mj;; 1 can be described by
the variational principle

Mj1 = V(mj)

1 2 1 o 2
J(w) = Slyjr = Hulp + Slu = Mjafe | (1)

m;y1 = arg min J(u).
j+1 gueRd ()
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3DVAR

Fix the prediction covariance CAJ-H = C for all J >0, and apply variational
principle

Mj1 = V(m;)
1 2 ]- A 2
J(u) == 5’)/1'+1—Hufr+§‘“—mj+1 ¢ (2)
m;1 1 = arg min J(u).
j+1 gueRd (u)
... which by the derivations for Kalman filtering yield

M1 = V(mj)
K=CHT(HEHT + 1)1 (3)
mjs1 = (I = KH)Mj11 + Kyja.
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Overview

Extended Kalman filtering
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Filtering setting

Initial condition Vg ~ N(mg, Cp) and for j =0,1,...
Vipr =V(V)) +§,
Yit1 = HVjy1 + mjta,
and Gaussian noise assumptions as before.

Extened Kalman filtering (ExKF): At time j and given state (mj, (),
linearize dynamics around m;:

Vi (v; mj) == W(mj) + DV(m;)(v — m;).

And apply Kalman filtering one prediction-update step to the linearized
dynamics

Vir1 = V(mj) + DV(m)(V; — mj) + &,
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Extended Kalman filtering algorithm
Prediction step

Mjp1 = V(m;)

Ce1 = DV(m) DV (m))T + X

Analysis step
Kit1 = GraHT(HGaHT +1)7!
mjt1 = (I — K1 H)Mjp1 + Kipayj4

A

G1= (I — KitaiH) G

Motiation for prediction step: We have the following approximations:
T
mi = E[ViIY1j=y15], G=RE|[(Vi—m)(V;—m) V1= Y1:j]
Note further that the ExKF moments m; and C; are not random (given

yl:j)-
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Motivation for the ExKF algorihtm

Using that W(mj) and DW(mj) are deterministic (given y1.;), we obtain
the approximation

Mjy1 = E[V(mj) + DV(m;)(V; — m;) + ;| Y1 = y1,]
= W(m)) + DW(my) (E[V;|Ya) = i) — m))
~ V(m))

and (similar derivation as for Kalman filtering with A = DWV(m;)),

A

Cit1 = Cov[W(m)) + DV(m;)(V; — m;) + &;| Y1, = y1y]
= Cov[DV(m;)(V} — mj) + & Y1j = y1]
= DY(m))E [ (V; = m)(V; — m))T|Yaj =y | DW(my)T + £
~ DV (m;)G;DV(m;)T + %
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Remarks on errors of ExXKF and 3DVAR
m It generally does hold that
in general

E[W(V)+£{ = V(E[V]) = M =V(m) # E[V(V))Y =yl

m Nor does it generally hold that Vj|Y1.; = yi1.j is Gaussian when W is
nonlinear, and the analysis step, being derived under the assumption
of Gaussian posterior

1 2 1 A2
m(vjlyrs) oc exp < = 51 = Al = Sl — i c“,-H)v
which, may only approximately hold, and the consecutive variational
principle

mj 1 = arg min 1|y 1—Hu\2+1\u—rﬁ- 1%
Jt+ ueRd 2 J+ r 2 J+ Cin

is thus also only an approximation.
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Overview

Ensemble Kalman filtering
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Ensemble Kalman filtering

We again consider the problem with Vo ~ N(mg, Cp) and for j =0,1,...

Vipr = V(V)) + ¢,

(5)
Yis1 = HVj11 + njta,
and Gaussian noise assumptions as before.
EnKEF initial condition is ensemble of iid “particles” () ~ ]P’V for
i=1,2,..., M and whose empirical measure approxmates the true initial

distribution:

Py, (dv) 25 (dv)
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EnKF Prediction at time j =1

To approximate the prediction Py, all particles are simulated one step
ahead:

o) =wig)+el), =12

where {di)} are iid N(0, X)-distributed and
M
Py, (dv) Z

Sample prediction mean and covariance

T M1«
=1
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EnKF analysis at time j =1

m The Kalman gain is computed using Ci:

Ki = CGHT(HGHT 1)t

m and the observation y; is assimilated into each particle by

yl(’) =y + ngi) perturbed observations

. . . fori=1,2,..., M,
v = (1= K)o + Koy }

. (i) iid
with ;7 ~ N(O,T).
m As before, the empirical measure of {vl(i)} approximates V4|Y7 = y1:

M

1
Py vimy (dV) & > 5, 0(dv)
i=1
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Iterated EnKF formulas
Given any y1,yo, ... and {vj(')}i"il, the EnKF iterations are

Prediction step

oj(Ql :W(\/J.("))Jrg}"), i=1,2,....M
1 & ; 1 &
Ci+1 = 7 S = )08 = )T, A = 72 o
= i—1
—_——
::COVM[OJ-(QI] ::EM[oj(Ql]

Analysis step
Kiv1 = GaHT(HGHT + 1)

and Q) ()
1 1
Yili = Yi+1 +0;
J(f)l R 0 o fori=12..m,
Vifgn = (/- Kj-i-lH)Vj+1 + Kj—l—l}/J'+1




Comments

m In settings when 61 is non-singular, the analysis step can be viewed as
the variational principle
() ._ L0 gz Yy, a2
v; .—argume]llgdzb/j Hu||—+2|u mj\éj
(see [SST Chp 9] for an extension of this argument when C; is
singular).
m A random perturbation n}i) is added to the observation in the analysis
step for each particle for the purpose of consistency: in the setting
with linear dynamics W(v) = Av,

lim F [C_EnKF:| # CjK"’ma” without perturbed obs
Moo = CJ-Ka/ma” with perturbed obs
see Ubung 8.

m It can be shown that J(Jr)l € Span({?¥ +1} 1) (see Ubung 8).
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Comments

m The EnKF empirical measure is of course an approximation, but the
method has obvious advantages over other in terms of robustness and
storage.

m Storage: EnKF needs to store O(M x d) values (vj(l), ce vj(M)
The Kalman filter needs to store O(d x d) (the covariance

Cj c Rdxd)_

€ R9).

If the true dimension of problem is much smaller than d, then EnKF
is often successful in tracking the truth at a storage constraint than
dxd.

m EnKF is more directly applicable to nonlinear problems than ExKF,
and better at handling nonlinearities than both ExKF and 3DVAR.

m As for other nonlinear filtering methods, P, need not be Gaussian for
EnKF.
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Animation of EnKF
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Animation of EnKF
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Example implementation of EnKF

Dynamics:

Vi1 = 2.5sin(V)) + & (6)
V() ~ N(07 ]')

where & ~ N(0,0.09) Observations:

Yi=Vi+mn, j=12,...,
with 7; ~ N(0,1).
EnKF:
1. Sample iid v{") ~ N(0,1) for i =1,2,...,M
2. Simulate 9" = 2.5sin(y{") + &l for i =1,2,..., M.
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EnKF continued

EnKF:
3. Compute
61 = COVM[\,}l(A)]
and
4.
Ki= CGHT(HGHT + 1)1
and
(i) (1)
=y+
yl(,-) no (i (,->} fori=1,2....M,
vl = (/ — f(lff)ﬁﬁ_ + f(l}ﬁ
5. Simulate

o) =25sin(V) +¢) for i=1,2....m,

and so forth.
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Matlab code:

Psi = @(v) 2.5*sin(v);

v = m0 + sqrt(CO)*randn(M,1); %initial condition
m(1) = mean(v); C(1) = cov(v);

for j=1:J

% EnKF filtering

vHat = Psi(v) + sqrt(Sigma)*randn(M,1);
cHat = cov(vHat);
K = (cHat*H’)/(H*xcHat*H’+Gamma) ;

yPerturbed = y(j) + sqrt(Gamma)*randn(M,1);
(1-K*xH) *vHat+K*yPerturbed;

v

% for plotting puropses
m(j+1) = mean(v); C(j+1)= cov(v);
end
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Numerical results EnKF for M = 10

An observation sequence y;.; = VI:J + n1.4 is generated from synthetic
data for J = 1000.

EnKF filter EnKF Error
20 ) :
‘Uj - m]‘z
— s Y o — muf?
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E |v, — my| =~ 0.4950 and
1001 £~
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Numerical results EnKF for M = 100

‘EnKF filter l . EnKF Error
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Numerical results EnKF for M = 1000 (very similar to

M = 100)

EnKF filter

EnKF Error
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Comparison of time-averaged errors

EnKF M = (10,100, 1000):

1000
1001 Z\ — mi[? ~ (0.4950,0.3902,0.3799),

ExKF
1000

1001 Z v} — mi[? = .9969
3DVAR (best try, with C = 2)
1000

1
1001 Z ’VIJE — my|? = 0.6023.
k=0
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Comparison of covariances
EnKF with ensemble size M = 10

15 EnKF Covariance ’ ‘ ExKF Covariance
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Variation in ExKF covariance relates to linearization around different
points m; in prediction step: Cj+1 = DW(m;)GDV(m;)" + X
Variation in EnKF covariance relates to variations in the ensemble:
Gi+1 = Covm[v +1]
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Overview

Approximation errors for Gaussian-based nonlinear filter methods
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Exact vs approximate filtering methods
For the nonlinear filtering problem

iid

Vien =V (V) +§, i~ N(0,X)
Yit1 = HVja1 +nj, j ’f’i’ N(O,T),

with same independence assumptions as before, we derived in Lecture 14

that if we know the pdf of Vj|Y1.,j = y1.j then

Prediction step

The prediction rv Vj1|Y1j = y1j equals rv V(V}) + &| Y1) = y1.

3DVAR: Approximated by N(W(m;), C).

ExKF: Approximated by N(W(m;), €;.1), linearized covariance.

EnKF: Approximated by empirical distribution of {\Il(v(i)) ot S(i) i

Will be a good approximation asymptotically (provided {v( )} Y, is a good

approximation of analysis distribution at time j).

v
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Analysis step:

1
T(Vig1ly1j+1) o< exp ( - §DO‘+1 - H‘/j+1|%>77(‘/j+1|yl:j)

o< o,y (Yj+1 — HV41)m(vitalyey)

3DVAR and ExKF: The analysis step for these methods is, after
linearization, a carbon copy of Kalman filtering. Using that

A~

Vi1 Y1 = y1.j ~ N(W(m;j), Cj11) for these methods, we have that
m(vit1lysirn) o Tngo,ry (Vi1 = HV )Ty w(my), ¢,0) (V1)

(with ;11 = C for 3DVAR).

Conclusion: Approximation errors enter in prediction step for these two
methods.

EnKF: |s more subtle to study as the particles correlate/mix in the
analysis step. We will look at the simplified setting when M = oo.

pu



Mean-field limit

00— () 4 O Kipn = GuH (HGuHT +1)7
prd i+t T Y i Ay =y )

Cy1 = COVM[\/}-(‘) ] yJ(J'r)l AR () ()
! . Vier = (I - Kj+1H)‘7j+1 + Kj+1yj+1

M = oo yields iid mean-field EnKF (MFEnKF) particles with dynamics

MF  _ AMF Ty AMF YT -1
POy, ME0) 4 ) M = G BTG HEAT)
—+ 1 _ 1
P éMf = Covj[ﬁ.MIf b A y’ﬁ% 0 Vi1t T MF, (i) )
o " Vi = (= KETH) O + Ky
Note: v;\ﬁ};’(i) are all iid.
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Bayes filter vs mean-field EnKF
Assuming that for some j > 0,

7T\/J.MF’(i) = 7TVJ| Yl:j:y1:j

then, since
D A
vt = V() + & =WV + 41V = y1y) = Vil Yy = ny
the next-time prediction pdfs of BF and MFEnKF will agree:

TOME,() = TV 1| Yij=y1;)
J+1

ME(7) _ pME() () o MF, (i)
However, by Vit1 Vit1 KJ+1 Yit1— HY Vit1
Y
we obtain
T MF V)= ~MFE,(NVV — TFMF X)ax =m MF,(i) * T MF,(i)\ V).
peo(v) /wajﬂo( X)oae o (X) dx =7y o+ T er o (V)
with

~MF ~MF ~MF ~MF,
Y|j+1() KJ+1(J(+)1 HJ+1())|J+1() KMEN (41— HOX O T)
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Bayes filter vs mean-field measure

BF:  m(vit1lyrje1) < gy . n) (Vir)m(vitalyay)
MFEnKF: Wwvjpﬁlp(‘/jﬂ) O T RME Ny~ HOME 1) * Taptr (Vj41)-

o Bayes Filter

0 0 Mean-field
® Yj+1 oy
1 m(vjlyr) 1E (D41 ly1) 1 m(vjslyi) TMF 1 Tour 1 TF
J gl g+l
0.8 0.8 0.8 08 08
0.6 0.6 0.6 0.6 06
0.4 0.4 0.4 04 04
0.2 0.2 0.2 0.2 0.2
0 0 0
2 0 2 20 2 20 2 2 0 2 20 2 0
Conclusion: EnKF has two types of approximation errors:

1. Prediction error due to a finite ensemble, and
2. analysis error due to the particle-wise Gaussian variational principleéz/41



Convergence of EnKF
Notation: Let

minKEM gy = = Z 6 om(dv),

and let 7TJMF denote the distribution for a mean-field particle at time j:

MF, (i MF
IO aME and oME[F] = BT[],

For a Qol f:RY — R, let

ﬂ_EnKF M Z f )) . EnKF M [f’]

J

and -
7TJMF[f] =E"% [f].

We describe two kinds of large-ensemble limit types of convergence:
m convergence of EnKF to the Kalman filter when W is linear, and

WJ.EHKF’M[f] — 7TJMF[f] when V is nonlinear.
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Theorem 1 (Mandel et al. “On the convergence of the ensemble
Kalman filter" (2011))

Consider the linear-Gaussian filter problem

‘/j+1:A\/j+£j7 SJNN(Ovz)v
Vi1 = HVj1r + 41, mjs1 ~ N(O,T),

and assume that Vo ~ N(mg, Gp).
Then, for any observation sequence y1, y», - .., it holds that

MF __ — . C:
o= IP)Vj|Y1:j:y1:j = N(m;, )

with (m;, C;) determined through the Kalman filtering iterative formulas,
and as M — oo, we have for the EnKF ensemble {vj(')},M1 that

EM[VJ-(')] ngl)

2
m;, COVM[VJ-(')] L G.

v

Application: EnKF may be a sound choice in linear-Gaussian settings when
d > 1, because then Kalman filtering becomes infeasible due to storage34

...........
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Theorem 2 (Le Gland et al., (2009))

Consider the dynamics and observations,

\/j+1 = H\/j+l & Nj+1,  Mj+1 o~ N(Oa r)7

and assume that Vo € LP(QQ) for any order p > 1, and that for the drift
mapping WV and a Qol f : RY 5 R,

max(|f(x)=f(y)l, W)=V (y)]) < Clx=y|(1+[x|*+[ul*), for some s > 0.

Then, for any fixed observation sequence yi, y», . .., it holds for any p > 1
that Clp.j )
EnKF,M MF P;J, Y1
I L]~ ey < <P,
(which also can be written

P\ /P

M f(\/j(i)) - C(p,J, y1;j)
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Overview

Efficient implementation of EnKF and extensions to nonlinear
observations
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Computing sample moments in the ambient space R*

A crucial step in the EnKF iteration is the computation of the prediction
sample covariance:

(.A'J- = COVM[VJ-(')].
and its usage in the Kalman gain:
Ki=GHT(HGHT +1)~L.

Note that rather than the full matrix éj what one needs for computing
the gain is

M
A 1 NOTPSYINO I
HCJHT:H(WE (07 — y)( j()_mj)T>HT
i=1

1 < (i) (i) T
:mZH(Vj *'ﬁj)(H(Aj *'ﬁj)>
i=1

= Covy[HV!)] € RF*K,
and
GHT = Covu[o!), HO] € RI*K,
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Extension to nonlinear filtering settings
The resulting EnKF formulas
Prediction {oj(jl = (v’ )+g
Kj'-i-l = COVM[ J+1 Jr1](COVM[H J+1] + F)
Anabe X&% :ﬁﬁ31+_%+l (7) (7)
N A
Visr = Ut Kin (y1+1 - HV_H-1>

may also be viewed as a motivation for the following extension to
nonlinear observation mappings' h: RY — RX:

Prediction {OJ(J’r)l = \U( ) §( 7

Kis1 = Covmls 2y, h(08))I(Covm[h(91))] + )~
Analysis yJ(J’r)l =Yj+1+ 77J(+)1

SO o0 e (9 o)y

Vi1 Vit1 J+1\ i1 — M\WVia) )

LEvensen, “Data Assimilation, The Ensemble Kalman Filter”, (2009).
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Rough idea of alternative approach to nonlinear
observations in EnKF

o =)+

Jj+1
Prediction q r1j41 —EM[ +1]
Ci1 = Covylv +1]

And solve the following minimization problem by iterated solver for each
particle i =1,2,..., M %

() (1)
Y =Yj+1+t1
Analysis J(J;r)l T s 2
D = argmingegs 2y — bR + Hu - it

2Qliver and Gu, “An lterative Ensemble Kalman Filter for Multiphase Fluid Flow

Data Assimilation” (2007)
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Summary

m We have introduced three nonlinear filtering methods based on
Gaussian approximation in the update step (3DVAR, ExKF and
EnKF).

m The methods do not generally converge to the Bayes filter when W is
nonlinear, but should not for that reason alone be excluded from
practical use.

m EnKF offers the most robust prediction-step approach, it converges in
weak sense to the mean-field EnKF when h is linear, and it may be
extended to settings with nonlinear h.
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Best filtering method measured in terms of accuracy and
efficiencv

Degree of
Nonlinearity

Strongly ??7?
nonlinear

Moderately| PF
nonlinear

Mildly EnKF
nonlinear EKF

Linear KF

100 10 107 10° 10¢ 10° 10° 107 10° 10°
Dimension
KF = Kalman filter; PF = particle filter; EKF = extended KF;

UKF = unscented KF; EnKF = ensemble KF

Figure from talk by Mattias Katzfuss on “Extended ensemble Kalman filters for

high-dimensional hierarchical state-space models”. 41/41
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