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Summary lecture 16
Described the extended KF and introduced ensemble KF.

Studied convergence properties of the methods, particularly showing
that the Gaussian approximation in the analysis of EnKF leads to
errors for nonlinear problems:

BF: π(vj+1|y1:j+1) ∝ πN(yj+1,Γ)(vj+1)π(vj+1|y1:j )

MFEnKF: πvMF
j+1

(vj+1) ∝ πKMF
j+1 N(yj+1−Hv̂MF

j+1 ,Γ)∗πv̂MF
j+1

(vj+1).
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Plan for today
Particle filtering: a nonlinear filtering method which, in essence, treats the
prediction step as EnKF, and reweights particles in the analysis step.

Recall that for the Bayes Filter,

π(vj |y1:j ) ∝ π(yj |vj )π(vj |y1:j−1).

(Bootstrap) particle filters consists of collection of weights and particles:

{(w (i)
j , v̂

(i)
j )}M

i=1 with empirical measure

πM
j (dv) =

M∑
i=1

w
(i)
j δ

v̂
(i)
j

(dv)

where the weights sum to 1, and

w
(i)
j ∝ πYj |Vj

(yj |v̂
(i)
j ),

and π
v̂

(i)
j

≈ πVj |Y1:j−1
(·|y1:j−1).
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Filtering setting
V0 ∼ π0 and mappings F : Rd × Rd → Rd and G : Rd × Rk → Rk such
that for for j = 0, 1, . . . and the hidden Markov model

Vj+1 = F (Vj , ξj )

Yj+1 = G (Vj+1, ηj+1)
(1)

with iid {ξj} and iid {ηj} where V0 ⊥ {ξj} ⊥ {ηj}.

“Classic” setting obtained with F (v , ξ) = Ψ(v) + ξ and
G (v , η) = h(v) + η with Gaussian ξ and η.

Note that the Markov chain {Vj} may be associated to a
time-independent kernel density function

πVj+1|Vj
(vj+1|vj ) = p(vj , vj+1).

and that, as in the classic setting,

π(yj+1|vj+1, y1:j ) = π(yj+1|vj+1).
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Bayes filter – in operator notation
Notation for analysis and prediction Bayes filter pdfs:

πj (v) := πVj |Y1:j
(v |y1:j ) and π̂j+1(v) := πVj+1|Y1:j

(v |y1:j )

The transition πj 7→ πj+1 consists of two steps:

1. Prediction:

π̂j+1(vj+1) = (Pπj )(vj+1) :=

∫
Rd

p(vj , vj+1)πj (vj )dvj

2. Analysis

πj+1(vj+1) = (Aj+1π̂j+1)(vj+1) :=
π(yj+1|vj+1)π̂j (vj+1)∫

Rd πYj+1|Vj+1
(yj+1|v)π̂j+1(v)dv

where the subscript in Aj+1 relates to the value of yj+1.

Summary: πj+1 = Aj+1Pπj , which may also connect to

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j ).
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Bootstrap particle filter

Given a probability measure or density π, we define for any M ∈ N, the
empirical probability measure

SMπ(dv) :=
1

M

M∑
i=1

δv i (dv) where v (i) iid∼ π.

Approximation ideas for particle filtering: Given πj ,

1. Approximate πM
j = SMπ ≈ πj

2. Prediction π̂M
j+1 = SM(PπM

j ) ≈Pπj

3. Analysis πM
j+1 = Aj+1π̂

M
j+1 ≈ A π̂j+1.

Problem: Have only defined P and Aj+1 as mappings from pdfs to pdfs,
but πM

j and π̂M
j+1 a measures.
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Extension of mappings

P as mapping from empirical probability measures (epms) to pdfs:
For any

π(dv) =
M∑

i=1

w (i)δv (i)(dv)

with
∑M

i=1 w
(i) = 1,

(Pπ)(u) :=

∫
Rd

p(v , u)π(dv) =
M∑

i=1

w (i)p(v (i), u)

Example: In the classic setting p(v , u) ∝ exp(−|Ψ(v)− u|2Σ/2) and thus

(Pπ)(u) ∝
M∑

i=1

w (i) exp
(
− |Ψ(v (i))− u|2Σ/2

)
.
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Aj as mapping from epms to epms

For any epm

π(dv) =
M∑

i=1

w (i)δv (i)(dv)

we define

(Ajπ)(du) :=
πYj |Vj

(yj |u)π(du)∫
Rd πYj |Vj

(yj |v)π(dv)

=

=
M∑

i=1

w (i)πYj |Vj
(yj |v (i))

Z
δv (i)(du)

with Z =
∑M

i=1 w
(i)πYj |Vj

(yj |v (i)).
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Approximation ideas for particle filtering revisited

Given πM
j =

∑M
i=1 w

(i)
j δv̂ i

j
, we compute πM

j+1 by the following steps

1. Resampling πM
j = SMπM

j

(
= 1

M

∑M
i=1 δv i

j

)

2. Prediction π̂M
j+1 = SM(PπM

j )
(

= 1
M

∑M
i=1 δv̂ i

j+1

)
3. Analysis

πM
j+1 = Aj+1π̂

M
j+1

(
=
∑M

i=1

πYj+1|Vj+1
(yj+1|v̂

(i)
j+1)

Z︸ ︷︷ ︸
w

(i)
j+1

δ
v̂

(i)
j+1

)
.

Note that πM
j+1 = Aj+1SMPπM

j is described by {(w (i)
j+1, v̂

(i)
j+1)}.
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Importance sampling viewpoint:

πj+1(vj+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j )

= π(yj+1|vj+1)︸ ︷︷ ︸
“weight”

∫
Rd

π(vj+1|vj )πj (vj )︸ ︷︷ ︸
“sampling density”

dvj ,

and for the particle filters this is approximated by

πM
j+1 =

M∑
i=1

w
(i)
j+1δv̂

(i)
j+1

with v̂
(i)
j+1 ∼

∫
πVj+1|Vj

(·|vj )π
M
j (vj )dvj and w

(i)
j+1 ∝ πYj+1|Vj+1

(yj+1|v̂
(i)
j+1)
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Bootstrap particle filter (BPF) algorithm [SST 11.1]

Input: Initial distribution π0 (which we also write πM
0 ), obs

sequence y1, y2, . . ., and M.

Particle generation: For j = 0, 1, . . .

1. Resampling Draw v
(i)
j

iid∼ πM
j for i = 1, . . . ,M.

2. Simulate v̂
(i)
j+1 = F (v

(i)
j , ξ

(i)
j ) with iid ξ

(i)
j .

3. Set w̄
(i)
j+1 = πYj+1|Vj+1

(yj+1|v̂ (i)
j+1)

4. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

5. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j approximating the distribution of Vj |Y1:j = y1:j .
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BPF algorithm classic setting

Input: Initial distribution π0 (which we also write πM
0 ), obs

sequence y1, y2, . . ., and M.

Particle generation: For j = 0, 1, . . .

1. Resampling Draw v
(i)
j

iid∼ πM
j for i = 1, . . . ,M.

2. Simulate v̂
(i)
j+1 = Ψ(v

(i)
j ) + ξj with ξ

(i)
j

iid∼ N(0,Σ).

3. Set w̄
(i)
j+1 = exp(− 1

2 |yj+1 − h(v̂
(i)
j+1)|2Γ)

4. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

5. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j .

14 / 29



Sequential importance sampling (SIS) vs sequential
importance resampling (SIR)

Bootstrap particle filter is a special case of SIR (can have more
general “proposals” in step 2.).

Without the resampling step 1., the particle weights multiply every
step, and one may risk very uneven particle weights: this is called the
degeneracy problem.

With resampling, uneven weights are avoided, but (1) one may lose
information and (2) the variance of the resulting particle distribution
πM

j can be shown to increase.

Adaptive resampling can for instance be based on estimating the
effective number of particles

neff ,j ≈
1∑M

i=1(w
(i)
j )2

and employing the SIR resampling step to SIS only when

neff ,j < M/10. (Motivation: if w
(i)
j = 1/M for all i , then neff ,j = M.)
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Sequential importance sampling algorithm 1

Input: Initial distribution π0, obs sequence y1, y2, . . ., and M.

Initialization: Draw v̂
(i)
0

iid∼ π0 and set w
(i)
0 = 1/M for i = 1, . . . ,M.

(Hat notation here is formally “wrong” but practical.)

Particle and weight dynamics: For j = 0, 1, . . . ,,

1. Simulate v̂
(i)
j+1 = F (v̂

(i)
j , ξ

(i)
j ) with iid ξ

(i)
j .

2. Set w̄
(i)
j+1 = w

(i)
j πYj+1|Vj+1

(yj+1|v̂ (i)
j+1)

3. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

4. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j .
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Adaptive resampling algorithm

Input: Initial distribution π0, obs sequence y1, y2, . . ., and M.

Initialization: Draw v̂
(i)
0

iid∼ π0 and set w
(i)
0 = 1/M for i = 1, . . . ,M.

(Hat notation here is formally “wrong” but practical.)

Particle and weight dynamics: For j = 0, 1, . . . ,,

1. Compute neff ,j . If neff ,j < M/10, then resample: draw v̂
(i)
j

iid∼ πM
j for

i = 1, . . . ,M and set w
(i)
j = 1/M for i = 1, . . . ,M.

2. Simulate v̂
(i)
j+1 = F (v̂

(i)
j , ξ

(i)
j ) with iid ξ

(i)
j .

3. Set w̄
(i)
j+1 = w

(i)
j πYj+1|Vj+1

(yj+1|v̂ (i)
j+1)

4. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

5. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j .
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Example implementation of BPF

Consider Dynamics:

Vj+1 = 2.5 sin(Vj ) + ξj

V0 ∼ N(0, 1)
(2)

where ξj ∼ N(0, 0.09) Observations:

Yj = h(Vj ) + ηj , j = 1, 2, . . . ,

with ηj ∼ N(0, 1).

Boostrap PF:

1. Sample iid v
(i)
0 ∼ N(0, 1) for i = 1, 2, . . . ,M

2. Simulate v̂
(i)
1 = 2.5 sin(v

(i)
0 ) + ξ

(i)
0 for i = 1, 2, . . . ,M.
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Bootstrap PF continued

3. Set w
(i)
1 ∝ exp(−1

2 |y1 − h(v̂
(i)
1 )|2Γ) and normalize weights to sum to

unity.

4. Set πM
1 (du) =

∑M
i=1 w

(i)
1 δ

v̂
(i)
1

(du).

5. Resampling: Sample iid v
(i)
1 ∼ πM

1 for i = 1, 2, . . . ,M

6. Simulate v̂
(i)
2 = 2.5 sin(v

(i)
1 ) + ξ

(i)
1 for i = 1, 2, . . . ,M, and so forth.

How to sample from an empirical probability measure πM
j (du)? Similar as

sampling a transition in a finite state space Markov chain, cf. Lecture 5
Annotated, p. 35-36, and [SST 11.4].
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Overview

1 Bootstrap particle filter

2 Convergence of the BPF
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Notation:

Recall that P denotes the space of probability measures on Rd , and
let PΩ denote the space of random probability measures.

Let now πj denote the distribution of Vj |Y1:j = y1:j (rather than, as
before, the pdf) , and let πM

j denote the particle filter approximation.

For any f : Rd → R we define the scalar-valued rv

πj [f ] = Eπj [f ] and πM
j [f ] = Eπ

M
j [f ].

In order to study the large-particle-limit convergence of πM
j → πj , we

introduce the following metric on PΩ (or, equivalently, on the space of
random pdfs MΩ)

d(π, π̃) := sup
‖f ‖∞≤1

√
E
[(
π[f ]− π̃[f ]

)2
]
,

for π, π̃ ∈ PΩ (or ∈MΩ).
Exercise: Verify that the triangle inequality holds.
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Theorem 1 (SST 11.6)

Consider the dynamics-observation setting (1), and for a given sequence
y1:J , assume there exists a κ ∈ (0, 1) such that

κ ≤ πYj |Vj
(yj |u) ≤ κ−1 for all u ∈ Rd and j ∈ {0, 1, . . . , J}. (3)

Then, for all j ∈ {0, 1, . . . , J}, it holds for the BPF algorithm that

d(πj , π
M
j ) ≤ c(J, κ)√

M
.

Remark: The assumption (3) never holds in the classic setting! See
ubung 8 for settings where an adapted assumption holds.

Sketch of proof: Recall that

πj+1 = Aj+1Pπj and πM
j+1 = Aj+1SMPπM

j .
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Proof of Thm 1

Hence,

d(πj+1, π
M
j+1) = d

(
Aj+1Pπj , Aj+1SMPπM

j

)
≤ d

(
Aj+1Pπj , Aj+1PπM

j

)
+ d

(
Aj+1PπM

j , Aj+1SMPπM
j

)
≤ 2

κ2

[
d
(
Pπj , PπM

j

)
+ d

(
PπM

j , SMPπM
j

)]
,

where the last inequality used that for any π, π̃ ∈ PΩ, and 0 ≤ j ≤ J,

d
(
Ajπ, Aj π̃

)
≤ 2

κ2
d
(
π, π̃

)
. (4)
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Verification of (4): Let us write gj (u) := πYj |Vj
(yj |u), and note that

κ ≤ gj ≤ κ−1, and recall that for any π̃ ∈ P, the analysis operator is
defined by

(Aj π̃)(du) =
πYj |Vj

(yj |u)π̃(du)∫
πYj |Vj

(yj |u)π̃(du)
=

gj (u)π̃(du)

π̃[gj ]
.

Hence,

(Aj π̃)[f ] =

∫
Rd

f (u)(A π̃)(du) =

∫
Rd

f (u)
gj (u)π̃(du)

π̃[g ]
=
π̃[gj f ]

π̃[gj ]
.

and

|(Ajπ)[f ]− (Aj π̃)[f ]| =

∣∣∣∣π[gj f ]

π[gj ]
−
π̃[gj f ]

π̃[gj ]

∣∣∣∣
=

∣∣∣∣π[gj f ]

π[gj ]
−
π̃[gj f ]

π[gj ]
+
π̃[gj f ]

π[gj ]
−

π̃[gj f ]

π̃[gj ]

∣∣∣∣
=

∣∣∣∣π[κgj f ]− π̃[κgj f ]

κπ[gj ]
+
π̃[gj f ]

π̃[gj ]

(π̃[κgj ]− π[κgj ])

κπ[gj ]

∣∣∣∣
π̃[g ],π[gj ]>κ

≤
∣∣π[κgj f ]− π̃[κgj f ]

∣∣
κ2

+
∣∣∣ π̃[gj f ]

π̃[gj ]

∣∣∣ ∣∣π̃[κgj ]− π[κgj ]
∣∣

κ2
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Since ∣∣∣ π̃[gj f ]

π̃[gj ]

∣∣∣ = |(Aj π̃)[f ]| ≤ 1,

when ‖f ‖∞ ≤ 1 (which we assume here), we obtain that(
(Ajπ)[f ]−(Aj π̃)[f ]

)2
≤ 2

κ4

((
π[κgj f ]− π̃[κgj f ]

)2
+
(
π̃[κgj ]− π[κgj ]

)2
)

Since gj ≤ κ−1, it holds that ‖κgj‖∞ ≤ 1 and ‖κgj f ‖∞ ≤ ‖f ‖∞, it follows
that

d(Ajπ,Aj π̃)2 = sup
‖f ‖∞≤1

E
[(

(Ajπ)[f ]− (Aj π̃)[f ]
)2
]

≤ sup
‖f ‖∞≤1

2

κ4

(
E
[ (
π[κgj f ]− π̃[κgj f ]

)2
+
(
π̃[κgj ]− π[κgj ]

)2
])

≤ 4

κ4
sup
‖f ‖∞≤1

E
[(
π[f ]− π̃[f ]

)2
]
.

Conclusion: d(Ajπ,Aj π̃) ≤ 2
κ2 d(π, π̃).
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We have reached

d(πj+1, π
M
j+1) =

2

κ2

[
d
(
Pπj , PπM

j

)
+ d

(
PπM

j , SMPπM
j

)]
.

For the last term, it follows by SMPπM
j being an epm with iid dirac

points, that

d
(
PπM

j , SMPπM
j

)
= sup
‖f ‖∞≤1

E

((PπM
j )[f ]−

M∑
i=1

f (v̂
(i)
j+1)

M

)2


≤ sup
‖f ‖∞≤1

VarPπM
j [f ]√

M
≤ 1√

M
.

And for the first term, we will show that

d
(
Pπj , PπM

j

)
≤ d

(
πj , π

M
j

)
, (5)
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Verfication of (5), for any π, π̃ ∈ P,

(Pπ)[f ]− (Pπ̃)[f ] =

∫
Rd

f (v)
(
Pπ)(v)− (Pπ̃)(v)

)
dv

=

∫
Rd

f (v)

∫
Rd

p(u, v)(π(du)− π̃(du))dv

=

∫
Rd

(∫
Rd

f (v)p(u, v)dv

)
(π(du)− π̃(du))

=

∫
Rd

qf (u)(π(du)− π̃(du)) = π[qf ]− π̃[qf ].

and ‖qf ‖∞ ≤ 1 whenever ‖f ‖∞ ≤ 1.
Consequently,

d
(
Pπ, Pπ̃

)2
= sup
‖f ‖≤1

E
[(

(Pπ)[f ]− (Pπ̃)[f ]
)2
]

= sup
‖f ‖≤1

E
[(
π[qf ]− π̃[qf ]

)2
]

≤ sup
‖q‖≤1

E
[(
π[q]− π̃[q]

)2
]

= d
(
π, π̃

)2
.

27 / 29



Conclusion

d(πj+1, π
M
j+1) = d

(
Aj+1Pπj , Aj+1SMPπM

j

)
≤ 2

κ2

[
d
(
Pπj , PπM

j

)
+ d

(
PπM

j , SMPπM
j

)]
≤ 2

κ2

(
d
(
πj , π

M
j

)
+

1√
M

)
≤ . . . ≤

(
2

κ2

)j+1

d
(
π0, π

M
0

)
︸ ︷︷ ︸

=0

+

∑j
k=0

(
2
κ2

)k

√
M

.

End of proof.
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Summary and next lecture

Particle filter is an unbiased filtering method which converges weakly
to the Bayes filter in the large-ensemble limit.

It is applicable also in settings both with nonlinear Ψ and h, and also
for more general hidden Markov models.

Degeneracy is an important issue for particle filters, particularly for
high-dimensional problems. It is an ongoing research topic to
understand this phenomenon and develop more robust particle filters.

Next time: Continuous time stochastic processes in the form of
Wiener processes, Ito integration and Ito stochastic differential
equations.
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