Mathematics and numerics for data assimilation and

 state estimation - Lecture 17Summer semester 2020

Overview

1 Bootstrap particle filter

2 Convergence of the BPF

Summary lecture 16

■ Described the extended KF and introduced ensemble KF.
■ Studied convergence properties of the methods, particularly showing that the Gaussian approximation in the analysis of EnKF leads to errors for nonlinear problems:

$$
\mathrm{BF}: \quad \pi\left(v_{j+1} \mid y_{1: j+1}\right) \propto \pi_{N\left(y_{j+1}, \Gamma\right)}\left(v_{j+1}\right) \pi\left(v_{j+1} \mid y_{1: j}\right)
$$

MFEnKF: $\quad \pi_{v_{j+1}^{\mathrm{MF}}}\left(v_{j+1}\right) \propto \pi_{K_{j+1}^{\mathrm{MF}} N\left(y_{j+1}-H \hat{v}_{j+1}^{\mathrm{MF}}, \Gamma\right)} * \pi_{\hat{v}_{j+1}^{\mathrm{MF}}}\left(v_{j+1}\right)$.

Plan for today

Particle filtering: a nonlinear filtering method which, in essence, treats the prediction step as EnKF, and reweights particles in the analysis step.

Recall that for the Bayes Filter,

$$
\pi\left(v_{j} \mid y_{1: j}\right) \propto \pi\left(y_{j} \mid v_{j}\right) \pi\left(v_{j} \mid y_{1: j-1}\right)
$$

(Bootstrap) particle filters consists of collection of weights and particles: $\left\{\left(w_{j}^{(i)}, \hat{v}_{j}^{(i)}\right)\right\}_{i=1}^{M}$ with empirical measure

$$
\pi_{j}^{M}(d v)=\sum_{i=1}^{M} w_{j}^{(i)} \delta_{\hat{v}_{j}^{(i)}}(d v)
$$

where the weights sum to 1 , and

$$
w_{j}^{(i)} \propto \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid \hat{v}_{j}^{(i)}\right)
$$

and $\pi_{\hat{v}_{j}^{(i)}} \approx \pi_{V_{j} \mid Y_{1: j-1}}\left(\cdot \mid y_{1: j-1}\right)$.

Overview

1 Bootstrap particle filter

2 Convergence of the BPF

Filtering setting

$V_{0} \sim \pi_{0}$ and mappings $F: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $G: \mathbb{R}^{d} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ such that for for $j=0,1, \ldots$ and the hidden Markov model

$$
\begin{align*}
& V_{j+1}=F\left(V_{j}, \xi_{j}\right) \\
& Y_{j+1}=G\left(V_{j+1}, \eta_{j+1}\right) \tag{1}
\end{align*}
$$

with iid $\left\{\xi_{j}\right\}$ and iid $\left\{\eta_{j}\right\}$ where $V_{0} \perp\left\{\xi_{j}\right\} \perp\left\{\eta_{j}\right\}$.
"Classic" setting obtained with $F(v, \xi)=\Psi(v)+\xi$ and $G(v, \eta)=h(v)+\eta$ with Gaussian ξ and η.

Note that the Markov chain $\left\{V_{j}\right\}$ may be associated to a time-independent kernel density function

$$
\pi_{v_{j+1} \mid v_{j}}\left(v_{j+1} \mid v_{j}\right)=p\left(v_{j}, v_{j+1}\right)
$$

and that, as in the classic setting,

$$
\pi\left(y_{j+1} \mid v_{j+1}, y_{1: j}\right)=\pi\left(y_{j+1} \mid v_{j+1}\right)
$$

Bayes filter - in operator notation

Notation for analysis and prediction Bayes filter pdfs:

$$
\pi_{j}(v):=\pi_{v_{j} \mid Y_{1 ; j}}\left(v \mid y_{1: j}\right) \quad \text { and } \quad \hat{\pi}_{j+1}(v):=\pi_{V_{j+1} \mid Y_{1: j}}\left(v \mid y_{1: j}\right)
$$

The transition $\pi_{j} \mapsto \pi_{j+1}$ consists of two steps:

1. Prediction:

$$
\hat{\pi}_{j+1}\left(v_{j+1}\right)=\left(\mathscr{P}_{j}\right)\left(v_{j+1}\right):=\int_{\mathbb{R}^{d}} p\left(v_{j}, v_{j+1}\right) \pi_{j}\left(v_{j}\right) d v_{j}
$$

2. Analysis

$$
\pi_{j+1}\left(v_{j+1}\right)=\left(\mathscr{A}_{j+1} \hat{\pi}_{j+1}\right)\left(v_{j+1}\right):=\frac{\pi\left(y_{j+1} \mid v_{j+1}\right) \hat{\pi}_{j}\left(v_{j+1}\right)}{\int_{\mathbb{R}^{d}} \pi_{Y_{j+1} \mid} \mid v_{j+1}\left(y_{j+1} \mid v\right) \hat{\pi}_{j+1}(v) d v}
$$

where the subscript in \mathscr{A}_{j+1} relates to the value of y_{j+1}.
Summary: $\pi_{j+1}=\mathscr{A}_{j+1} \mathscr{P}_{\pi_{j}}$, which may also connect to

$$
\pi\left(v_{j+1} \mid y_{1: j+1}\right) \propto \pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid y_{1: j}\right) .
$$

Bootstrap particle filter

Given a probability measure or density π, we define for any $M \in \mathbb{N}$, the empirical probability measure

$$
\mathcal{S}^{M} \pi(d v):=\frac{1}{M} \sum_{i=1}^{M} \delta_{v^{i}}(d v) \quad \text { where } \quad v^{(i)} \stackrel{i i d}{\sim} \pi
$$

Approximation ideas for particle filtering: Given π_{j},

1. Approximate $\pi_{j}^{M}=\mathcal{S}^{M} \pi \approx \pi_{j}$
2. Prediction $\hat{\pi}_{j+1}^{M}=\mathcal{S}^{M}\left(\mathscr{P} \pi_{j}^{M}\right) \approx \mathscr{P} \pi_{j}$
3. Analysis $\pi_{j+1}^{M}=\mathscr{A}_{j+1} \hat{\pi}_{j+1}^{M} \approx \mathscr{A} \hat{\pi}_{j+1}$.

Problem: Have only defined \mathscr{P} and \mathscr{A}_{j+1} as mappings from pdfs to pdfs, but π_{j}^{M} and $\hat{\pi}_{j+1}^{M}$ a measures.

Extension of mappings

\mathscr{P} as mapping from empirical probability measures (epms) to pdfs:
For any

$$
\pi(d v)=\sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(d v)
$$

with $\sum_{i=1}^{M} w^{(i)}=1$,

$$
(\mathscr{P} \pi)(u):=\int_{\mathbb{R}^{d}} p(v, u) \pi(d v)=\sum_{i=1}^{M} w^{(i)} p\left(v^{(i)}, u\right)
$$

Example: In the classic setting $p(v, u) \propto \exp \left(-|\Psi(v)-u|_{\Sigma}^{2} / 2\right)$ and thus

$$
(\mathscr{P} \pi)(u) \propto \sum_{i=1}^{M} w^{(i)} \exp \left(-\left|\Psi\left(v^{(i)}\right)-u\right|_{\Sigma}^{2} / 2\right)
$$

\mathscr{A}_{j} as mapping from epms to epms

For any epm

$$
\pi(d v)=\sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(d v)
$$

we define

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left(\mathscr{A}_{j} \pi\right)(d u):=\frac{\pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid u\right) \pi(d u)}{\int_{\mathbb{R}^{d}} \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid v\right) \pi(d v)} \\
&= \\
&=\sum_{i=1}^{M} \frac{w^{(i)} \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid v^{(i)}\right)}{Z} \delta_{v^{(i)}}(d u) \\
& \text { with } Z=\sum_{i=1}^{M} w^{(i)} \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid v^{(i)}\right) .
\end{aligned} \text {. }
\end{aligned}
$$

Approximation ideas for particle filtering revisited

Given $\pi_{j}^{M}=\sum_{i=1}^{M} w_{j}^{(i)} \delta_{\hat{v}_{j}^{j}}$, we compute π_{j+1}^{M} by the following steps

1. Resampling $\pi_{j}^{M}=\mathcal{S}^{M} \pi_{j}^{M}$

$$
\left(=\frac{1}{M} \sum_{i=1}^{M} \delta_{v_{j}^{\prime}}\right)
$$

2. Prediction $\hat{\pi}_{j+1}^{M}=\mathcal{S}^{M}\left(\mathscr{P}_{j}^{M}\right)$

$$
\left(=\frac{1}{M} \sum_{i=1}^{M} \delta_{\hat{v}_{j+1}^{i}}\right)
$$

3. Analysis

$$
\pi_{j+1}^{M}=\mathscr{A}_{j+1} \hat{\pi}_{j+1}^{M}
$$

$$
(=\sum_{i=1}^{M} \underbrace{\frac{\pi_{Y_{j+1} \mid V_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)}{Z}}_{w_{j+1}^{(i)}} \delta_{\hat{v}_{j+1}^{(i)}}) .
$$

Note that $\pi_{j+1}^{M}=\mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P}_{j}^{M}$ is described by $\left\{\left(w_{j+1}^{(i)}, \hat{v}_{j+1}^{(i)}\right)\right\}$.

Importance sampling viewpoint:

$$
\begin{aligned}
\pi_{j+1}\left(v_{j+1}\right) & \propto \pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid y_{1: j}\right) \\
& =\underbrace{\pi\left(y_{j+1} \mid v_{j+1}\right)}_{\text {"weight" }} \int_{\mathbb{R}^{d}} \underbrace{\pi\left(v_{j+1} \mid v_{j}\right) \pi_{j}\left(v_{j}\right)}_{\text {"sampling density" }} d v_{j}
\end{aligned}
$$

and for the particle filters this is approximated by

$$
\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}
$$

with $\hat{v}_{j+1}^{(i)} \sim \int \pi_{v_{j+1} \mid V_{j}}\left(\cdot \mid v_{j}\right) \pi_{j}^{M}\left(v_{j}\right) d v_{j} \quad$ and $w_{j+1}^{(i)} \propto \pi_{Y_{j+1} \mid v_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)$

Bootstrap particle filter (BPF) algorithm [SST 11.1]

- Input: Initial distribution π_{0} (which we also write π_{0}^{M}), obs sequence y_{1}, y_{2}, \ldots, and M.
■ Particle generation: For $j=0,1, \ldots$

1. Resampling Draw $v_{j}^{(i)} \stackrel{i i d}{\sim} \pi_{j}^{M}$ for $i=1, \ldots, M$.
2. Simulate $\hat{v}_{j+1}^{(i)}=F\left(v_{j}^{(i)}, \xi_{j}^{(i)}\right)$ with iid $\xi_{j}^{(i)}$.
3. Set $\bar{w}_{j+1}^{(i)}=\pi_{Y_{j+1} \mid} \mid V_{j+1}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)$
4. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
5. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{V}_{j+1}^{(i)}}$.

■ Output: π_{j}^{M} approximating the distribution of $V_{j} \mid Y_{1: j}=y_{1: j}$.

BPF algorithm classic setting

- Input: Initial distribution π_{0} (which we also write π_{0}^{M}), obs sequence y_{1}, y_{2}, \ldots, and M.
■ Particle generation: For $j=0,1, \ldots$

1. Resampling Draw $v_{j}^{(i)} \stackrel{i i d}{\sim} \pi_{j}^{M}$ for $i=1, \ldots, M$.
2. Simulate $\hat{v}_{j+1}^{(i)}=\Psi\left(v_{j}^{(i)}\right)+\xi_{j}$ with $\xi_{j}^{(i)} \stackrel{i i d}{\sim} N(0, \Sigma)$.
3. Set $\bar{w}_{j+1}^{(i)}=\exp \left(-\frac{1}{2}\left|y_{j+1}-h\left(\hat{v}_{j+1}^{(i)}\right)\right|_{\Gamma}^{2}\right)$
4. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
5. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$.

- Output: π_{j}^{M}.

Sequential importance sampling (SIS) vs sequential importance resampling (SIR)

- Bootstrap particle filter is a special case of SIR (can have more general "proposals" in step 2.).
- Without the resampling step 1., the particle weights multiply every step, and one may risk very uneven particle weights: this is called the degeneracy problem.
- With resampling, uneven weights are avoided, but (1) one may lose information and (2) the variance of the resulting particle distribution π_{j}^{M} can be shown to increase.
- Adaptive resampling can for instance be based on estimating the effective number of particles

$$
n_{e f f, j} \approx \frac{1}{\sum_{i=1}^{M}\left(w_{j}^{(i)}\right)^{2}}
$$

and employing the SIR resampling step to SIS only when $n_{\text {eff }, j}<M / 10$. (Motivation: if $w_{j}^{(i)}=1 / M$ for all i, then $n_{\text {eff }, j}=M$.)

Sequential importance sampling algorithm 1

■ Input: Initial distribution π_{0}, obs sequence y_{1}, y_{2}, \ldots, and M.
■ Initialization: Draw $\hat{v}_{0}^{(i)} \stackrel{i i d}{\sim} \pi_{0}$ and set $w_{0}^{(i)}=1 / M$ for $i=1, \ldots, M$. (Hat notation here is formally "wrong" but practical.)
■ Particle and weight dynamics: For $j=0,1, \ldots$, ,

1. Simulate $\hat{v}_{j+1}^{(i)}=F\left(\hat{v}_{j}^{(i)}, \xi_{j}^{(i)}\right)$ with iid $\xi_{j}^{(i)}$.
2. Set $\bar{w}_{j+1}^{(i)}=w_{j}^{(i)} \pi_{Y_{j+1} \mid V_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)$
3. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
4. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{V}_{j+1}^{(i)}}$.

- Output: π_{j}^{M}.

Adaptive resampling algorithm

■ Input: Initial distribution π_{0}, obs sequence y_{1}, y_{2}, \ldots, and M.
■ Initialization: Draw $\hat{v}_{0}^{(i)} \stackrel{i i d}{\sim} \pi_{0}$ and set $w_{0}^{(i)}=1 / M$ for $i=1, \ldots, M$. (Hat notation here is formally "wrong" but practical.)
■ Particle and weight dynamics: For $j=0,1, \ldots$, ,

1. Compute $n_{\text {eff }, j}$. If $n_{\text {eff }, j}<M / 10$, then resample: $\operatorname{draw} \hat{v}_{j}^{(i)} \stackrel{i i d}{\sim} \pi_{j}^{M}$ for

$$
i=1, \ldots, M \text { and set } w_{j}^{(i)}=1 / M \text { for } i=1, \ldots, M \text {. }
$$

2. Simulate $\hat{v}_{j+1}^{(i)}=F\left(\hat{v}_{j}^{(i)}, \xi_{j}^{(i)}\right)$ with iid $\xi_{j}^{(i)}$.
3. Set $\bar{w}_{j+1}^{(i)}=w_{j}^{(i)} \pi_{Y_{j+1} \mid V_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)$
4. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
5. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{\imath}_{j+1}^{(i)}}$.

- Output: π_{j}^{M}.

Example implementation of BPF

Consider Dynamics:

$$
\begin{align*}
V_{j+1} & =2.5 \sin \left(V_{j}\right)+\xi_{j} \tag{2}\\
V_{0} & \sim N(0,1)
\end{align*}
$$

where $\xi_{j} \sim N(0,0.09)$ Observations:

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots
$$

with $\eta_{j} \sim N(0,1)$.

Boostrap PF:

1. Sample iid $v_{0}^{(i)} \sim N(0,1)$ for $i=1,2, \ldots, M$
2. Simulate $\hat{v}_{1}^{(i)}=2.5 \sin \left(v_{0}^{(i)}\right)+\xi_{0}^{(i)}$ for $i=1,2, \ldots, M$.

Bootstrap PF continued

3. Set $w_{1}^{(i)} \propto \exp \left(-\frac{1}{2}\left|y_{1}-h\left(\hat{v}_{1}^{(i)}\right)\right|_{\Gamma}^{2}\right)$ and normalize weights to sum to unity.
4. Set $\pi_{1}^{M}(d u)=\sum_{i=1}^{M} w_{1}^{(i)} \delta_{\hat{v}_{1}^{(i)}}(d u)$.
5. Resampling: Sample iid $v_{1}^{(i)} \sim \pi_{1}^{M}$ for $i=1,2, \ldots, M$
6. Simulate $\hat{v}_{2}^{(i)}=2.5 \sin \left(v_{1}^{(i)}\right)+\xi_{1}^{(i)}$ for $i=1,2, \ldots, M$, and so forth.

How to sample from an empirical probability measure $\pi_{j}^{M}(d u)$? Similar as sampling a transition in a finite state space Markov chain, cf. Lecture 5 Annotated, p. 35-36, and [SST 11.4].

Overview

1 Bootstrap particle filter

2 Convergence of the BPF

Notation:

- Recall that \mathcal{P} denotes the space of probability measures on \mathbb{R}^{d}, and let \mathcal{P}_{Ω} denote the space of random probability measures.
■ Let now π_{j} denote the distribution of $V_{j} \mid Y_{1: j}=y_{1: j}$ (rather than, as before, the pdf), and let π_{j}^{M} denote the particle filter approximation.
■ For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we define the scalar-valued $r v$

$$
\pi_{j}[f]=\mathbb{E}^{\pi_{j}}[f] \quad \text { and } \quad \pi_{j}^{M}[f]=\mathbb{E}^{\pi_{j}^{M}}[f]
$$

In order to study the large-particle-limit convergence of $\pi_{j}^{M} \rightarrow \pi_{j}$, we introduce the following metric on \mathcal{P}_{Ω} (or, equivalently, on the space of random pdfs \mathcal{M}_{Ω})

$$
d(\pi, \tilde{\pi}):=\sup _{\|f\|_{\infty} \leq 1} \sqrt{\mathbb{E}\left[(\pi[f]-\tilde{\pi}[f])^{2}\right]}
$$

for $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$ (or $\in \mathcal{M}_{\Omega}$).
Exercise: Verify that the triangle inequality holds.

Theorem 1 (SST 11.6)

Consider the dynamics-observation setting (1), and for a given sequence $y_{1: J}$, assume there exists a $\kappa \in(0,1)$ such that

$$
\begin{equation*}
\kappa \leq \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid u\right) \leq \kappa^{-1} \quad \text { for all } u \in \mathbb{R}^{d} \quad \text { and } \quad j \in\{0,1, \ldots, J\} \tag{3}
\end{equation*}
$$

Then, for all $j \in\{0,1, \ldots, J\}$, it holds for the BPF algorithm that

$$
d\left(\pi_{j}, \pi_{j}^{M}\right) \leq \frac{c(J, \kappa)}{\sqrt{M}}
$$

Remark: The assumption (3) never holds in the classic setting! See ubung 8 for settings where an adapted assumption holds.

Sketch of proof: Recall that

$$
\pi_{j+1}=\mathscr{A}_{j+1} \mathscr{P} \pi_{j} \quad \text { and } \quad \pi_{j+1}^{M}=\mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}
$$

Proof of Thm 1

Hence,

$$
\begin{aligned}
d\left(\pi_{j+1}, \pi_{j+1}^{M}\right) & =d\left(\mathscr{A}_{j+1} \mathscr{P} \pi_{j}, \mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}\right) \\
& \leq d\left(\mathscr{A}_{j+1} \mathscr{P}_{j}, \mathscr{A}_{j+1} \mathscr{P} \pi_{j}^{M}\right)+d\left(\mathscr{S}_{j+1} \mathscr{P} \pi_{j}^{M}, \mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P}_{j}^{M}\right) \\
& \leq \frac{2}{\kappa^{2}}\left[d\left(\mathscr{P} \pi_{j}, \mathscr{\mathscr { A }} \pi_{j}^{M}\right)+d\left(\mathscr{P} \pi_{j}^{M}, \mathcal{S}^{M} \mathscr{P}_{\pi_{j}^{M}}^{M}\right)\right],
\end{aligned}
$$

where the last inequality used that for any $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$, and $0 \leq j \leq J$,

$$
\begin{equation*}
d\left(\mathscr{A}_{j} \pi, \mathscr{A}_{j} \tilde{\pi}\right) \leq \frac{2}{\kappa^{2}} d(\pi, \tilde{\pi}) . \tag{4}
\end{equation*}
$$

Verification of (4): Let us write $g_{j}(u):=\pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid u\right)$, and note that $\kappa \leq g_{j} \leq \kappa^{-1}$, and recall that for any $\tilde{\pi} \in \mathcal{P}$, the analysis operator is defined by

$$
\left(\mathscr{A}_{j} \tilde{\pi}\right)(d u)=\frac{\pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid u\right) \tilde{\pi}(d u)}{\int \pi_{Y_{j} \mid V_{j}}\left(y_{j} \mid u\right) \tilde{\pi}(d u)}=\frac{g_{j}(u) \tilde{\pi}(d u)}{\tilde{\pi}\left[g_{j}\right]} .
$$

Hence,

$$
\left(\mathscr{A} \mathcal{j}_{j} \tilde{\pi}\right)[f]=\int_{\mathbb{R}^{d}} f(u)(\mathscr{A} \tilde{\pi})(d u)=\int_{\mathbb{R}^{d}} f(u) \frac{g_{j}(u) \tilde{\pi}(d u)}{\tilde{\pi}[g]}=\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]} .
$$

and

$$
\begin{aligned}
&\left|\left(\mathscr{A}_{j} \pi\right)[f]-\left(\mathscr{A}_{j} \tilde{\pi}\right)[f]\right|=\left|\frac{\pi\left[g_{j} f\right]}{\pi\left[g_{j}\right]}-\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]}\right| \\
&=\left|\frac{\pi\left[g_{j} f\right]}{\pi\left[g_{j}\right]}-\frac{\tilde{\pi}\left[g_{j} f\right]}{\pi\left[g_{j}\right]}+\frac{\tilde{\pi}\left[g_{j} f\right]}{\pi\left[g_{j}\right]}-\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]}\right| \\
&=\left|\frac{\pi\left[\kappa g_{j} f\right]-\tilde{\pi}\left[\kappa g_{j} f\right]}{\kappa \pi\left[g_{j}\right]}+\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]} \frac{\left.\tilde{\pi}\left[\kappa g_{j}\right]-\pi\left[\kappa g_{j}\right]\right)}{\kappa \pi\left[g_{j}\right]}\right| \\
& \tilde{\pi}[g], \pi\left[g_{j}\right]>\kappa \frac{\left|\pi\left[\kappa g_{j} f\right]-\tilde{\pi}\left[\kappa g_{j} f\right]\right|}{\kappa^{2}}+\left|\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]}\right| \frac{\left|\tilde{\pi}\left[\kappa g_{j}\right]-\pi\left[\kappa g_{j}\right]\right|}{\kappa^{2}} \\
& \quad \leq 24 / 29
\end{aligned}
$$

Since

$$
\left|\frac{\tilde{\pi}\left[g_{j} f\right]}{\tilde{\pi}\left[g_{j}\right]}\right|=\left|\left(\mathscr{A}_{j} \tilde{\pi}\right)[f]\right| \leq 1,
$$

when $\|f\|_{\infty} \leq 1$ (which we assume here), we obtain that
$\left(\left(\mathscr{A}_{j} \pi\right)[f]-\left(\mathscr{A}_{j} \tilde{\pi}\right)[f]\right)^{2} \leq \frac{2}{\kappa^{4}}\left(\left(\pi\left[\kappa g_{j} f\right]-\tilde{\pi}\left[\kappa g_{j} f\right]\right)^{2}+\left(\tilde{\pi}\left[\kappa g_{j}\right]-\pi\left[\kappa g_{j}\right]\right)^{2}\right)$
Since $g_{j} \leq \kappa^{-1}$, it holds that $\left\|\kappa g_{j}\right\|_{\infty} \leq 1$ and $\left\|\kappa g_{j} f\right\|_{\infty} \leq\|f\|_{\infty}$, it follows that

$$
\begin{aligned}
d\left(\mathscr{A}_{j} \pi, \mathscr{A}_{j} \tilde{\pi}\right)^{2} & =\sup _{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left(\left(\mathscr{A}_{j} \pi\right)[f]-\left(\mathscr{A}_{j} \tilde{\pi}\right)[f]\right)^{2}\right] \\
& \leq \sup _{\|f\|_{\infty} \leq 1} \frac{2}{\kappa^{4}}\left(\mathbb{E}\left[\left(\pi\left[\kappa g_{j} f\right]-\tilde{\pi}\left[\kappa g_{j} f\right]\right)^{2}+\left(\tilde{\pi}\left[\kappa g_{j}\right]-\pi\left[\kappa g_{j}\right]\right)^{2}\right]\right) \\
& \leq \frac{4}{\kappa^{4}} \sup _{\|f\|_{\infty} \leq 1} \mathbb{E}\left[(\pi[f]-\tilde{\pi}[f])^{2}\right] .
\end{aligned}
$$

Conclusion: $\quad d\left(\mathscr{A}_{j} \pi, \mathscr{A}_{j} \tilde{\pi}\right) \leq \frac{2}{\kappa^{2}} d(\pi, \tilde{\pi})$.

We have reached

$$
d\left(\pi_{j+1}, \pi_{j+1}^{M}\right)=\frac{2}{\kappa^{2}}\left[d\left(\mathscr{P} \pi_{j}, \mathscr{P} \pi_{j}^{M}\right)+d\left(\mathscr{P} \pi_{j}^{M}, \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}\right)\right] .
$$

For the last term, it follows by $\mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}$ being an epm with iid dirac points, that

$$
\begin{aligned}
d\left(\mathscr{P} \pi_{j}^{M}, \mathcal{S}^{M} \mathscr{P}_{j}^{M}\right) & =\sup _{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left(\left(\mathscr{P} \pi_{j}^{M}\right)[f]-\sum_{i=1}^{M} \frac{f\left(\hat{v}_{j+1}^{(i)}\right)}{M}\right)^{2}\right] \\
& \leq \sup _{\|f\|_{\infty} \leq 1} \frac{\operatorname{Var}^{\mathscr{P} \pi_{j}^{M}}[f]}{\sqrt{M}} \leq \frac{1}{\sqrt{M}}
\end{aligned}
$$

And for the first term, we will show that

$$
\begin{equation*}
d\left(\mathscr{P} \pi_{j}, \mathscr{P} \pi_{j}^{M}\right) \leq d\left(\pi_{j}, \pi_{j}^{M}\right) \tag{5}
\end{equation*}
$$

Verfication of (5), for any $\pi, \tilde{\pi} \in \mathcal{P}$,

$$
\begin{aligned}
(\mathscr{P} \pi)[f]-(\mathscr{P} \tilde{\pi})[f] & \left.=\int_{\mathbb{R}^{d}} f(v)(\mathscr{P} \pi)(v)-(\mathscr{P} \tilde{\pi})(v)\right) d v \\
& =\int_{\mathbb{R}^{d}} f(v) \int_{\mathbb{R}^{d}} p(u, v)(\pi(d u)-\tilde{\pi}(d u)) d v \\
& =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} f(v) p(u, v) d v\right)(\pi(d u)-\tilde{\pi}(d u)) \\
& =\int_{\mathbb{R}^{d}} q_{f}(u)(\pi(d u)-\tilde{\pi}(d u))=\pi\left[q_{f}\right]-\tilde{\pi}\left[q_{f}\right] .
\end{aligned}
$$

and $\left\|q_{f}\right\|_{\infty} \leq 1$ whenever $\|f\|_{\infty} \leq 1$.
Consequently,

$$
\begin{aligned}
d(\mathscr{P} \pi, \mathscr{P} \tilde{\pi})^{2} & =\sup _{\|f\| \leq 1} \mathbb{E}\left[((\mathscr{P} \pi)[f]-(\mathscr{P} \tilde{\pi})[f])^{2}\right] \\
& =\sup _{\|f\| \leq 1} \mathbb{E}\left[\left(\pi\left[q_{f}\right]-\tilde{\pi}\left[q_{f}\right]\right)^{2}\right] \\
& \leq \sup _{\|q\| \leq 1} \mathbb{E}\left[(\pi[q]-\tilde{\pi}[q])^{2}\right]=d(\pi, \tilde{\pi})^{2}
\end{aligned}
$$

Conclusion

$$
\begin{aligned}
d\left(\pi_{j+1}, \pi_{j+1}^{M}\right) & =d\left(\mathscr{A}_{j+1} \mathscr{P} \pi_{j}, \mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}\right) \\
& \leq \frac{2}{\kappa^{2}}\left[d\left(\mathscr{P} \pi_{j}, \mathscr{P} \pi_{j}^{M}\right)+d\left(\mathscr{P} \pi_{j}^{M}, \mathcal{S}^{M} \mathscr{P}_{\pi_{j}^{M}}\right)\right] \\
& \leq \frac{2}{\kappa^{2}}\left(d\left(\pi_{j}, \pi_{j}^{M}\right)+\frac{1}{\sqrt{M}}\right) \\
& \leq \ldots \leq\left(\frac{2}{\kappa^{2}}\right)^{j+1} \underbrace{d\left(\pi_{0}, \pi_{0}^{M}\right)}_{=0}+\frac{\sum_{k=0}^{j}\left(\frac{2}{\kappa^{2}}\right)^{k}}{\sqrt{M}}
\end{aligned}
$$

End of proof.

Summary and next lecture

- Particle filter is an unbiased filtering method which converges weakly to the Bayes filter in the large-ensemble limit.

■ It is applicable also in settings both with nonlinear Ψ and h, and also for more general hidden Markov models.

- Degeneracy is an important issue for particle filters, particularly for high-dimensional problems. It is an ongoing research topic to understand this phenomenon and develop more robust particle filters.

■ Next time: Continuous time stochastic processes in the form of Wiener processes, Ito integration and Ito stochastic differential equations.

