Mathematics and numerics for data assimilation and state estimation – Lecture 17

Summer semester 2020

1 Bootstrap particle filter

2 Convergence of the BPF

Summary lecture 16

- Described the extended KF and introduced ensemble KF.
- Studied convergence properties of the methods, particularly showing that the Gaussian approximation in the analysis of EnKF leads to errors for nonlinear problems:

$$BF: \pi(v_{j+1}|y_{1:j+1}) \propto \pi_{N(y_{j+1},\Gamma)}(v_{j+1})\pi(v_{j+1}|y_{1:j})$$

$$MFEnKF: \pi_{v_{j+1}}(v_{j+1}) \propto \pi_{K_{j+1}}N(y_{j+1}-H\hat{v}_{j+1}^{MF},\Gamma)*\pi_{\hat{v}_{j+1}}(v_{j+1}).$$

$$\int_{0}^{0} \int_{0}^{1} \pi_{(\hat{v}_{j}|y_{1:j})} \int_{0}^{0} \int_{0}^{1} \pi_{(\hat{v}_{j+1}|y_{1:j})} \int_{0}^{1} \pi_{(\hat{v}_{j+1}|y_{1:j+1})} \int_{0}^{0} \int_{0}^{1} \pi_{v_{j}^{MF}} \int_{0}^{1} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{MEn-field} \int_{0}^{0} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{Men-field} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{1} \pi_{v_{j+1}} \int_{0}^{Men-field} \int_{0}^{Men-field$$

Plan for today

Particle filtering: a nonlinear filtering method which, in essence, treats the prediction step as EnKF, and reweights particles in the analysis step.

Recall that for the Bayes Filter,

 $\pi(\mathbf{v}_j|\mathbf{y}_{1:j}) \propto \pi(\mathbf{y}_j|\mathbf{v}_j)\pi(\mathbf{v}_j|\mathbf{y}_{1:j-1}).$

(Bootstrap) particle filters consists of collection of weights and particles: $\{(w_i^{(i)}, \hat{v}_i^{(i)})\}_{i=1}^M$ with empirical measure

$$\pi^M_j(d\mathbf{v}) = \sum_{i=1}^M w^{(i)}_j \delta_{\hat{v}^{(i)}_j}(d\mathbf{v})$$

where the weights sum to 1, and

$$w_j^{(i)} \propto \pi_{Y_j|V_j}(y_j|\hat{v}_j^{(i)}),$$

and $\pi_{\hat{v}_{j}^{(i)}} \approx \pi_{V_{j}|Y_{1:j-1}}(\cdot|y_{1:j-1}).$

Overview

1 Bootstrap particle filter

2 Convergence of the BPF

Filtering setting

 $V_0 \sim \pi_0$ and mappings $F : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ and $G : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^k$ such that for for $j = 0, 1, \ldots$ and the hidden Markov model

$$V_{j+1} = F(V_j, \xi_j)$$

$$Y_{j+1} = G(V_{j+1}, \eta_{j+1})$$
(1)

with iid $\{\xi_j\}$ and iid $\{\eta_j\}$ where $V_0 \perp \{\xi_j\} \perp \{\eta_j\}$.

"Classic" setting obtained with $F(v, \xi) = \Psi(v) + \xi$ and $G(v, \eta) = h(v) + \eta$ with Gaussian ξ and η .

Note that the Markov chain $\{V_j\}$ may be associated to a time-independent kernel density function

$$\pi_{V_{j+1}|V_j}(v_{j+1}|v_j) = p(v_j, v_{j+1}).$$

and that, as in the classic setting,

$$\pi(y_{j+1}|v_{j+1},y_{1:j}) = \pi(y_{j+1}|v_{j+1}).$$

Bayes filter - in operator notation

Notation for analysis and prediction Bayes filter pdfs:

$$\pi_j(v) := \pi_{V_j \mid Y_{1:j}}(v \mid y_{1:j}) \quad \text{and} \quad \hat{\pi}_{j+1}(v) := \pi_{V_{j+1} \mid Y_{1:j}}(v \mid y_{1:j})$$

The transition $\pi_j \mapsto \pi_{j+1}$ consists of two steps:

1. Prediction:

$$\hat{\pi}_{j+1}(v_{j+1}) = (\mathscr{P}\pi_j)(v_{j+1}) := \int_{\mathbb{R}^d} p(v_j, v_{j+1})\pi_j(v_j) dv_j$$

2. Analysis

$$\pi_{j+1}(v_{j+1}) = (\mathscr{A}_{j+1}\hat{\pi}_{j+1})(v_{j+1}) := rac{\pi(y_{j+1}|v_{j+1})\hat{\pi}_j(v_{j+1})}{\int_{\mathbb{R}^d} \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|v)\hat{\pi}_{j+1}(v)dv}$$

where the subscript in \mathscr{A}_{j+1} relates to the value of y_{j+1} . **Summary:** $\pi_{j+1} = \mathscr{A}_{j+1} \mathscr{P} \pi_j$, which may also connect to

 $\pi(v_{j+1}|y_{1:j+1}) \propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j}).$

Bootstrap particle filter

Given a probability measure or density π , we define for any $M \in \mathbb{N}$, the empirical probability measure

$$\mathcal{S}^M \pi(dv) := rac{1}{M} \sum_{i=1}^M \delta_{v^i}(dv) \quad ext{where} \quad v^{(i)} \stackrel{\textit{iid}}{\sim} \pi.$$

Approximation ideas for particle filtering: Given π_j ,

1. Approximate
$$\pi_j^M = S^M \pi \approx \pi_j$$

2. Prediction
$$\hat{\pi}_{j+1}^M = \mathcal{S}^M(\mathscr{P}\pi_j^M) \approx \mathscr{P}\pi_j$$

3. Analysis
$$\pi_{j+1}^M = \mathscr{A}_{j+1} \hat{\pi}_{j+1}^M \approx \mathscr{A} \hat{\pi}_{j+1}$$
.

Problem: Have only defined \mathscr{P} and \mathscr{A}_{j+1} as mappings from pdfs to pdfs, but π_j^M and $\hat{\pi}_{j+1}^M$ a measures.

Extension of mappings

 ${\mathscr P}$ as mapping from empirical probability measures (epms) to pdfs: For any

$$\pi(dv) = \sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(dv)$$

with $\sum_{i=1}^{M} w^{(i)} = 1$,

$$(\mathscr{P}\pi)(u) := \int_{\mathbb{R}^d} p(v,u)\pi(dv) = \sum_{i=1}^M w^{(i)}p(v^{(i)},u)$$

Example: In the classic setting $p(v, u) \propto \exp(-|\Psi(v) - u|_{\Sigma}^2/2)$ and thus

$$(\mathscr{P}\pi)(u)\propto \sum_{i=1}^{M}w^{(i)}\exp\Big(-|\Psi(v^{(i)})-u|_{\Sigma}^{2}/2\Big).$$

\mathscr{A}_j as mapping from epms to epms

For any epm

$$\pi(dv) = \sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(dv)$$

we define

$$(\mathscr{A}_j\pi)(du) := rac{\pi_{Y_j|V_j}(y_j|u)\pi(du)}{\int_{\mathbb{R}^d}\pi_{Y_j|V_j}(y_j|v)\pi(dv)}$$

$$= \sum_{i=1}^{M} \frac{w^{(i)} \pi_{Y_j | V_j}(y_j | v^{(i)})}{Z} \delta_{v^{(i)}}(du)$$

with $Z = \sum_{i=1}^{M} w^{(i)} \pi_{Y_j|V_j}(y_j|v^{(i)}).$

=

Approximation ideas for particle filtering revisited

Given $\pi_j^M = \sum_{i=1}^M w_j^{(i)} \delta_{\hat{v}_j^i}$, we compute π_{j+1}^M by the following steps

1. Resampling
$$\pi_j^M = S^M \pi_j^M$$
 $\left(= \frac{1}{M} \sum_{i=1}^M \delta_{v_j^i} \right)$

2. Prediction
$$\hat{\pi}_{j+1}^M = S^M(\mathscr{P}\pi_j^M)$$
 $\left(= \frac{1}{M} \sum_{i=1}^M \delta_{\hat{v}_{j+1}^i} \right)$

3. Analysis

$$\begin{aligned} \pi_{j+1}^{M} &= \mathscr{A}_{j+1} \hat{\pi}_{j+1}^{M} \qquad \Big(= \sum_{i=1}^{M} \underbrace{\frac{\pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})}{Z}}_{w_{j+1}^{(i)}} \delta_{\hat{v}_{j+1}^{(i)}} \Big). \end{aligned}$$

Note that $\pi_{j+1}^{M} = \mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M}$ is described by $\{(w_{j+1}^{(i)}, \hat{v}_{j+1}^{(i)})\}. \end{aligned}$

(...

Importance sampling viewpoint:

$$\pi_{j+1}(v_{j+1}) \propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j}) \\ = \underbrace{\pi(y_{j+1}|v_{j+1})}_{\text{"weight"}} \int_{\mathbb{R}^d} \underbrace{\pi(v_{j+1}|v_j)\pi_j(v_j)}_{\text{"sampling density"}} dv_j,$$

and for the particle filters this is approximated by

$$\pi_{j+1}^{M} = \sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$

with
$$\hat{v}_{j+1}^{(i)} \sim \int \pi_{V_{j+1}|V_j}(\cdot|v_j) \pi_j^M(v_j) dv_j$$
 and $w_{j+1}^{(i)} \propto \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$

Bootstrap particle filter (BPF) algorithm [SST 11.1]

- **Input:** Initial distribution π_0 (which we also write π_0^M), obs sequence y_1, y_2, \ldots , and M.
- **Particle generation:** For j = 0, 1, ...
 - 1. Resampling Draw $v_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for $i = 1, \dots, M$.
 - 2. Simulate $\hat{v}_{j+1}^{(i)} = F(v_j^{(i)}, \xi_j^{(i)})$ with iid $\xi_j^{(i)}$.

3. Set
$$\bar{w}_{j+1}^{(i)} = \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$$

4. and
$$w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$$
.

5. Set
$$\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$
.

• **Output:** π_j^M approximating the distribution of $V_j | Y_{1:j} = y_{1:j}$.

BPF algorithm classic setting

- **Input:** Initial distribution π_0 (which we also write π_0^M), obs sequence y_1, y_2, \ldots , and M.
- **Particle generation:** For j = 0, 1, ...
 - 1. Resampling Draw $v_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for $i = 1, \dots, M$.
 - 2. Simulate $\hat{v}_{j+1}^{(i)} = \Psi(v_j^{(i)}) + \xi_j$ with $\xi_j^{(i)} \stackrel{iid}{\sim} N(0, \Sigma)$.
 - 3. Set $\bar{w}_{j+1}^{(i)} = \exp(-\frac{1}{2}|y_{j+1} h(\hat{v}_{j+1}^{(i)})|_{\Gamma}^2)$

4. and
$$w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$$
.

5. Set
$$\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$
.

• Output: π_j^M .

Sequential importance sampling (SIS) vs sequential importance resampling (SIR)

- Bootstrap particle filter is a special case of SIR (can have more general "proposals" in step 2.).
- Without the resampling step 1., the particle weights multiply every step, and one may risk very uneven particle weights: this is called the degeneracy problem.
- With resampling, uneven weights are avoided, but (1) one may lose information and (2) the variance of the resulting particle distribution π_i^M can be shown to increase.
- Adaptive resampling can for instance be based on estimating the effective number of particles

$$n_{eff,j} \approx \frac{1}{\sum_{i=1}^{M} (w_j^{(i)})^2}$$

and employing the SIR resampling step to SIS only when $n_{eff,j} < M/10$. (Motivation: if $w_j^{(i)} = 1/M$ for all *i*, then $n_{eff,j} = M$.)

Sequential importance sampling algorithm 1

- **Input:** Initial distribution π_0 , obs sequence y_1, y_2, \ldots , and M.
- Initialization: Draw $\hat{v}_0^{(i)} \stackrel{iid}{\sim} \pi_0$ and set $w_0^{(i)} = 1/M$ for $i = 1, \dots, M$. (Hat notation here is formally "wrong" but practical.)
- **Particle and weight dynamics:** For j = 0, 1, ..., n

1. Simulate
$$\hat{v}_{j+1}^{(i)} = F(\hat{v}_j^{(i)}, \xi_j^{(i)})$$
 with iid $\xi_j^{(i)}$.

2. Set
$$\bar{w}_{j+1}^{(i)} = w_j^{(i)} \pi_{Y_{j+1}|Y_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$$

3. and
$$w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$$
.

4. Set
$$\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$
.

• Output: π_j^M .

Adaptive resampling algorithm

- **Input:** Initial distribution π_0 , obs sequence y_1, y_2, \ldots , and M.
- Initialization: Draw $\hat{v}_0^{(i)} \stackrel{iid}{\sim} \pi_0$ and set $w_0^{(i)} = 1/M$ for $i = 1, \dots, M$. (Hat notation here is formally "wrong" but practical.)
- Particle and weight dynamics: For j = 0, 1, ..., j
 - 1. Compute $n_{eff,j}$. If $n_{eff,j} < M/10$, then resample: draw $\hat{v}_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for $i = 1, \dots, M$ and set $w_j^{(i)} = 1/M$ for $i = 1, \dots, M$.

2. Simulate
$$\hat{v}_{j+1}^{(i)} = F(\hat{v}_j^{(i)}, \xi_j^{(i)})$$
 with iid $\xi_j^{(i)}$.

3. Set
$$\bar{w}_{j+1}^{(i)} = w_j^{(i)} \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$$

4. and
$$w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$$
.

5. Set
$$\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$
.

• Output: π_j^M .

Example implementation of BPF

Consider Dynamics:

$$V_{j+1} = 2.5 \sin(V_j) + \xi_j V_0 \sim N(0, 1)$$
(2)

where $\xi_j \sim N(0, 0.09)$ **Observations:**

$$Y_j = h(V_j) + \eta_j, \quad j = 1, 2, \ldots,$$

with $\eta_j \sim N(0,1)$.

Boostrap PF:

1. Sample iid
$$v_0^{(i)} \sim N(0,1)$$
 for $i = 1, 2, ..., M$

2. Simulate $\hat{v}_1^{(i)} = 2.5 \sin(v_0^{(i)}) + \xi_0^{(i)}$ for $i = 1, 2, \dots, M$.

Bootstrap PF continued

3. Set $w_1^{(i)} \propto \exp(-\frac{1}{2}|y_1 - h(\hat{v}_1^{(i)})|_{\Gamma}^2)$ and normalize weights to sum to unity.

4. Set
$$\pi_1^M(du) = \sum_{i=1}^M w_1^{(i)} \delta_{\hat{v}_1^{(i)}}(du).$$

5. **Resampling:** Sample iid $v_1^{(i)} \sim \pi_1^M$ for i = 1, 2, ..., M

6. Simulate
$$\hat{v}_2^{(i)} = 2.5 \sin(v_1^{(i)}) + \xi_1^{(i)}$$
 for $i = 1, 2, \dots, M$, and so forth.

How to sample from an empirical probability measure $\pi_j^M(du)$? Similar as sampling a transition in a finite state space Markov chain, cf. Lecture 5 Annotated, p. 35-36, and [SST 11.4].

Overview

1 Bootstrap particle filter

2 Convergence of the BPF

Notation:

- Recall that \mathcal{P} denotes the space of probability measures on \mathbb{R}^d , and let \mathcal{P}_{Ω} denote the space of **random** probability measures.
- Let now π_j denote the distribution of $V_j | Y_{1:j} = y_{1:j}$ (rather than, as before, the pdf), and let π_i^M denote the particle filter approximation.
- For any $f : \mathbb{R}^d \to \mathbb{R}$ we define the scalar-valued rv

$$\pi_j[f] = \mathbb{E}^{\pi_j}[f]$$
 and $\pi_j^{\mathcal{M}}[f] = \mathbb{E}^{\pi_j^{\mathcal{M}}}[f].$

In order to study the large-particle-limit convergence of $\pi_j^M \to \pi_j$, we introduce the following metric on \mathcal{P}_{Ω} (or, equivalently, on the space of random pdfs \mathcal{M}_{Ω})

$$d(\pi, ilde{\pi}):=\sup_{\|f\|_\infty\leq 1}\sqrt{\mathbb{E}\left[\left.\left(\pi[f]- ilde{\pi}[f]
ight)^2
ight]},$$

for $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$ (or $\in \mathcal{M}_{\Omega}$). **Exercise:** Verify that the triangle inequality holds.

Theorem 1 (SST 11.6)

Consider the dynamics-observation setting (1), and for a given sequence $y_{1:J}$, assume there exists a $\kappa \in (0, 1)$ such that

$$\kappa \leq \pi_{Y_j|V_j}(y_j|u) \leq \kappa^{-1}$$
 for all $u \in \mathbb{R}^d$ and $j \in \{0, 1, \dots, J\}$. (3)

Then, for all $j \in \{0, 1, \dots, J\}$, it holds for the BPF algorithm that

$$d(\pi_j,\pi_j^M) \leq \frac{c(J,\kappa)}{\sqrt{M}}.$$

Remark: The assumption (3) never holds in the classic setting! See ubung 8 for settings where an adapted assumption holds.

Sketch of proof: Recall that

$$\pi_{j+1} = \mathscr{A}_{j+1} \mathscr{P} \pi_j$$
 and $\pi_{j+1}^M = \mathscr{A}_{j+1} \mathcal{S}^M \mathscr{P} \pi_j^M.$

Proof of Thm 1

Hence,

$$egin{aligned} d(\pi_{j+1},\pi_{j+1}^{M}) &= d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j},\,\mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big) \ &\leq d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j},\,\mathscr{A}_{j+1}\mathscr{P}\pi_{j}^{M}\Big) + d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}^{M},\,\mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big) \ &\leq rac{2}{\kappa^{2}}\Big[d\Big(\mathscr{P}\pi_{j},\,\mathscr{P}\pi_{j}^{M}\Big) + d\Big(\mathscr{P}\pi_{j}^{M},\,\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big)\Big], \end{aligned}$$

where the last inequality used that for any $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$, and $0 \leq j \leq J$,

$$d\left(\mathscr{A}_{j}\pi,\,\mathscr{A}_{j}\tilde{\pi}\right) \leq \frac{2}{\kappa^{2}}d\left(\pi,\,\tilde{\pi}\right). \tag{4}$$

Verification of (4): Let us write $g_j(u) := \pi_{Y_j|V_j}(y_j|u)$, and note that $\kappa \leq g_j \leq \kappa^{-1}$, and recall that for any $\tilde{\pi} \in \mathcal{P}$, the analysis operator is defined by

$$(\mathscr{A}_{j}\tilde{\pi})(du) = \frac{\pi_{Y_{j}|V_{j}}(y_{j}|u)\tilde{\pi}(du)}{\int \pi_{Y_{j}|V_{j}}(y_{j}|u)\tilde{\pi}(du)} = \frac{g_{j}(u)\tilde{\pi}(du)}{\tilde{\pi}[g_{j}]}$$

Hence,

$$(\mathscr{A}_{j}\tilde{\pi})[f] = \int_{\mathbb{R}^{d}} f(u)(\mathscr{A}\tilde{\pi})(du) = \int_{\mathbb{R}^{d}} f(u)\frac{g_{j}(u)\tilde{\pi}(du)}{\tilde{\pi}[g]} = \frac{\tilde{\pi}[g_{j}f]}{\tilde{\pi}[g_{j}]}.$$

and

$$\begin{split} |(\mathscr{A}_{j}\pi)[f] - (\mathscr{A}_{j}\widetilde{\pi})[f]| &= \left| \frac{\pi[g_{j}f]}{\pi[g_{j}]} - \frac{\widetilde{\pi}[g_{j}f]}{\widetilde{\pi}[g_{j}]} \right| \\ &= \left| \frac{\pi[g_{j}f]}{\pi[g_{j}]} - \frac{\widetilde{\pi}[g_{j}f]}{\pi[g_{j}]} + \frac{\widetilde{\pi}[g_{j}f]}{\pi[g_{j}]} - \frac{\widetilde{\pi}[g_{j}f]}{\widetilde{\pi}[g_{j}]} \right| \\ &= \left| \frac{\pi[\kappa g_{j}f] - \widetilde{\pi}[\kappa g_{j}f]}{\kappa \pi[g_{j}]} + \frac{\widetilde{\pi}[g_{j}f]}{\widetilde{\pi}[g_{j}]} \frac{(\widetilde{\pi}[\kappa g_{j}] - \pi[\kappa g_{j}])}{\kappa \pi[g_{j}]} \right| \\ &\stackrel{\widetilde{\pi}[g], \pi[g_{j}] > \kappa}{\leq} \frac{\left| \pi[\kappa g_{j}f] - \widetilde{\pi}[\kappa g_{j}f] \right|}{\kappa^{2}} + \left| \frac{\widetilde{\pi}[g_{j}f]}{\widetilde{\pi}[g_{j}]} \right| \frac{\left| \widetilde{\pi}[\kappa g_{j}] - \pi[\kappa g_{j}]}{\kappa^{2}} \right| \\ \xrightarrow{24/2} \end{split}$$

Since

$$\Big|rac{ ilde{\pi}[g_jf]}{ ilde{\pi}[g_j]}\Big| = |(\mathscr{A}_j ilde{\pi})[f]| \leq 1,$$

when $\|f\|_{\infty} \leq 1$ (which we assume here), we obtain that

$$\left((\mathscr{A}_{j}\pi)[f]-(\mathscr{A}_{j}\tilde{\pi})[f]\right)^{2} \leq \frac{2}{\kappa^{4}}\left(\left(\pi[\kappa g_{j}f]-\tilde{\pi}[\kappa g_{j}f]\right)^{2}+\left(\tilde{\pi}[\kappa g_{j}]-\pi[\kappa g_{j}]\right)^{2}\right)$$

Since $g_j \leq \kappa^{-1}$, it holds that $\|\kappa g_j\|_{\infty} \leq 1$ and $\|\kappa g_j f\|_{\infty} \leq \|f\|_{\infty}$, it follows that

$$\begin{split} d(\mathscr{A}_{j}\pi,\mathscr{A}_{j}\tilde{\pi})^{2} &= \sup_{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left((\mathscr{A}_{j}\pi)[f] - (\mathscr{A}_{j}\tilde{\pi})[f]\right)^{2}\right] \\ &\leq \sup_{\|f\|_{\infty} \leq 1} \frac{2}{\kappa^{4}} \left(\mathbb{E}\left[\left(\pi[\kappa g_{j}f] - \tilde{\pi}[\kappa g_{j}f]\right)^{2} + \left(\tilde{\pi}[\kappa g_{j}] - \pi[\kappa g_{j}]\right)^{2}\right]\right) \\ &\leq \frac{4}{\kappa^{4}} \sup_{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left(\pi[f] - \tilde{\pi}[f]\right)^{2}\right]. \end{split}$$

Conclusion: $d(\mathscr{A}_j\pi, \mathscr{A}_j\tilde{\pi}) \leq \frac{2}{\kappa^2} d(\pi, \tilde{\pi}).$

We have reached

$$d(\pi_{j+1},\pi_{j+1}^{M}) = \frac{2}{\kappa^2} \Big[d\Big(\mathscr{P}\pi_j, \mathscr{P}\pi_j^{M} \Big) + d\Big(\mathscr{P}\pi_j^{M}, \mathcal{S}^{M} \mathscr{P}\pi_j^{M} \Big) \Big].$$

For the last term, it follows by $\mathcal{S}^M\mathscr{P}\pi_j^M$ being an epm with iid dirac points, that

$$d\left(\mathscr{P}\pi_{j}^{M}, \mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\right) = \sup_{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left((\mathscr{P}\pi_{j}^{M})[f] - \sum_{i=1}^{M} \frac{f(\hat{v}_{j+1}^{(i)})}{M}\right)^{2}\right]$$
$$\leq \sup_{\|f\|_{\infty} \leq 1} \frac{\operatorname{Var}^{\mathscr{P}\pi_{j}^{M}}[f]}{\sqrt{M}} \leq \frac{1}{\sqrt{M}}.$$

And for the first term, we will show that

$$d\left(\mathscr{P}\pi_{j}, \mathscr{P}\pi_{j}^{M}\right) \leq d\left(\pi_{j}, \pi_{j}^{M}\right),$$
(5)

Verfication of (5), for any $\pi, \tilde{\pi} \in \mathcal{P}$,

$$(\mathscr{P}\pi)[f] - (\mathscr{P}\tilde{\pi})[f] = \int_{\mathbb{R}^d} f(v) \Big(\mathscr{P}\pi)(v) - (\mathscr{P}\tilde{\pi})(v) \Big) dv$$

$$= \int_{\mathbb{R}^d} f(v) \int_{\mathbb{R}^d} p(u,v) (\pi(du) - \tilde{\pi}(du)) dv$$

$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(v) p(u,v) dv \right) (\pi(du) - \tilde{\pi}(du))$$

$$= \int_{\mathbb{R}^d} q_f(u) (\pi(du) - \tilde{\pi}(du)) = \pi[q_f] - \tilde{\pi}[q_f].$$

and $\|q_f\|_{\infty} \leq 1$ whenever $\|f\|_{\infty} \leq 1$. Consequently,

$$d\left(\mathscr{P}\pi, \mathscr{P}\tilde{\pi}\right)^{2} = \sup_{\|f\| \leq 1} \mathbb{E}\left[\left((\mathscr{P}\pi)[f] - (\mathscr{P}\tilde{\pi})[f]\right)^{2}\right]$$
$$= \sup_{\|f\| \leq 1} \mathbb{E}\left[\left(\pi[q_{f}] - \tilde{\pi}[q_{f}]\right)^{2}\right]$$
$$\leq \sup_{\|q\| \leq 1} \mathbb{E}\left[\left(\pi[q] - \tilde{\pi}[q]\right)^{2}\right] = d\left(\pi, \tilde{\pi}\right)^{2}.$$

27 / 29

Conclusion

$$\begin{split} d(\pi_{j+1}, \pi_{j+1}^{M}) &= d\left(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}, \mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\right) \\ &\leq \frac{2}{\kappa^{2}}\Big[d\left(\mathscr{P}\pi_{j}, \mathscr{P}\pi_{j}^{M}\right) + d\left(\mathscr{P}\pi_{j}^{M}, \mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\right)\Big] \\ &\leq \frac{2}{\kappa^{2}}\Big(d\Big(\pi_{j}, \pi_{j}^{M}\Big) + \frac{1}{\sqrt{M}}\Big) \\ &\leq \ldots \leq \left(\frac{2}{\kappa^{2}}\right)^{j+1}\underbrace{d\Big(\pi_{0}, \pi_{0}^{M}\Big)}_{=0} + \frac{\sum_{k=0}^{j}\left(\frac{2}{\kappa^{2}}\right)^{k}}{\sqrt{M}}. \end{split}$$

End of proof.

Summary and next lecture

- Particle filter is an unbiased filtering method which converges weakly to the Bayes filter in the large-ensemble limit.
- It is applicable also in settings both with nonlinear Ψ and h, and also for more general hidden Markov models.
- Degeneracy is an important issue for particle filters, particularly for high-dimensional problems. It is an ongoing research topic to understand this phenomenon and develop more robust particle filters.
- Next time: Continuous time stochastic processes in the form of Wiener processes, Ito integration and Ito stochastic differential equations.