
Mathematics and numerics for data assimilation and
state estimation – Lecture 18

Summer semester 2020

1 / 34



Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

2 / 34



Summary lecture 17

Introduced sequential importance sampling (SIS) and sequential
importance resampling (SIR) particle filters, for dynamics generated
by the classic kernel density.

Proved convergence of the bootstrap particle filter.

Plan for today: quick look on particle filtering with more general
dynamics and introduction to stochastic processes.
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Other sampling dynamics
In the SIS and SIR algorithms we have considered, given {(w (i)

j , v
(i)
j )}, the

dynamics simulation for the next step reads

“Simulate v̂
(i)
j+1 = F (v

(i)
j , ξ

(i)
j ) with iid ξ

(i)
j ”

This could also have been written

“Draw independent v̂
(i)
j+1 ∼ πVj+1|Vj

(·|v (i)
j ) for i = 1, . . . ,M”.

For SIS, the particles v̂
(i)
j have precisely the same distribution as the

true dynamics Vj for every j ≥ 0, this ignore completely the
information from observations and may lead to neff ,j � M.

To avoid degeneracy, one can sample from other “dynamics”/kernel

density than πVj+1|Vj
(·|v (i)

j ) that takes y1:j+1 into account.

Generic notation for kernel density: ρ(vj+1|vj , y1:j+1), it can for
instance be

ρ(vj+1|vj , y1:j+1) = πVj+1|Vj ,Y1:j+1
(vj+1|vj , y1:j+1)
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Effective number of particles for SIS
. . . applied to linear-Gaussian problem

Vj+1 =

[
1 0.1
0 1

]
Vj + ξj , V0 ∼ N

([0
1

]
,

[
1/4 0

0 1/4

])
where ξj

iid∼ N(0,Σ) with Σ =

[
0.01 0

0 0.1

]
(cf. Ubung 8.4).
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Change of dynamics/kernel density

Recall that for the Bayes filter

πj+1(vj+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j )

=

∫
Rd

π(yj+1|vj+1)︸ ︷︷ ︸
“weight”

π(vj+1|vj )︸ ︷︷ ︸
“kernel density”

πj (vj )dvj ,

and for the particle filters this is approximated by

πM
j+1 =

M∑
i=1

w
(i)
j+1δv̂

(i)
j+1

with v̂
(i)
j+1 ∼

∫
πVj+1|Vj

(·|vj )π
M
j (vj )dvj and w

(i)
j+1 ∝ πYj+1|Vj+1

(yj+1|v̂
(i)
j+1)
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We replace the kernel density by ρ(vj+1|vj , y1:j+1) as follows

πj+1(vj+1) ∝
∫
π(yj+1|vj+1)π(vj+1|vj )πj (vj )dvj

=

∫
π(yj+1|vj+1)π(vj+1|vj )

ρ(vj+1|vj , y1:j+1)︸ ︷︷ ︸
“weight”

ρ(vj+1|vj , y1:j+1)︸ ︷︷ ︸
“dynamics”

πj (vj )dvj

Constraint for the kernel density: Given y1:j+1, it must hold for any
vj , vj+1 ∈ Rd such that

π(yj+1|vj+1)π(vj+1|vj ) > 0, also ρ(vj+1|vj , y1:j+1) > 0.

Essential idea for the modified particle filter:

πM
j+1 =

M∑
i=1

w
(i)
j+1δv̂

(i)
j+1

, with v̂
(i)
j+1 ∼

∫
ρ(·|vj , y1:j+1)πM

j (vj )dvj

and w
(i)
j+1 ∝

πYj+1|Vj+1
(yj+1|v̂

(i)
j+1)πVj+1|Vj

(v̂
(i)
j+1|v

(i)
j )

ρ(v̂
(i)
j+1|v

(i)
j , y1:j+1)
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More general sequential importance resampling algorithm

Input: Initial distribution π0 (which we also write πM
0 ), obs

sequence y1, y2, . . ., and M.

Particle generation: For j = 0, 1, . . . ,,

1. Resampling Draw v
(i)
j

iid∼ πM
j for i = 1, . . . ,M.

2. Draw independent v̂
(i)
j+1 ∼ ρ(·|v (i)

j , y1:j+1) for i = 1, . . . ,M.

3. Set

w̄
(i)
j+1 =

πYj+1|Vj+1
(yj+1|v̂ (i)

j+1)πVj+1|Vj
(v̂

(i)
j+1|v

(i)
j )

ρ(v̂
(i)
j+1|v

(i)
j , y1:j+1)

4. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

5. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j approximating the distribution of Vj |Y1:j = y1:j .
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Modified Sequential importance sampling algorithm

Input: Initial distribution π0, obs sequence y1, y2, . . ., and M.

Initialization: Draw v̂
(i)
j

iid∼ π0 and set w
(i)
0 = 1/M for i = 1, . . . ,M.

(Hat notation here is formally “wrong” but practical.)

Particle and weight dynamics: For j = 0, 1, . . . ,,

1. Draw independent v̂
(i)
j+1 ∼ ρ(·|v̂ (i)

j , y1:j+1) for i = 1, . . . ,M.

2. Set

w̄
(i)
j+1 = w

(i)
j

πYj+1|Vj+1
(yj+1|v̂ (i)

j+1)πVj+1|Vj
(v̂

(i)
j+1|v̂

(i)
j )

ρ(v̂
(i)
j+1|v̂

(i)
j , y1:j+1)

3. and w
(i)
j+1 = w̄

(i)
j+1/

∑M
k=1 w̄

(k)
j+1.

4. Set πM
j+1 =

∑M
i=1 w

(i)
j+1δv̂

(i)
j+1

.

Output: πM
j approximating the distribution of Vj |Y1:j = y1:j .
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Sampling from a different kernel density

Sampling from the kernel density

πVj+1|Vj ,Yj+1
(·|vj , yj+1) (1)

in SIS gives you the so called optimal particle filter. Meaning

Var
πVj+1|Vj ,Yj+1

(·|v̂ (i)
j ,yj+1)

[w̄
(i)
j+1] = inf

ρ(·|v̂ (i)
j ,y1:j+1)

Varρ(·|v̂ (i)
j ,y1:j+1)[w̄

(i)
j+1]

In other words, of all possible kernel densities ρ(·|vj , y1:j+1), sampling

from (1) leads to the minimum variance in w̄
(i)
j .

See [SST 12.3] for a setting where it actually is possible to sample
from πVj+1|Vj ,Yj+1

(·|vj , yj+1).
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Stochastic processes

Definition 1

A stochastic process on Rd is family of rv {Xt}t∈T all taking values in Rd ,
all defined on (Ω,F ,P), for some parameter set T, typically T = N, or
[0,T ] or [0,∞).
For any fixed t ∈ T, the mapping Xt : Ω→ Rd is an rv.
For any fixed ω ∈ Ω, the mapping X·(ω) : T→ Rd is a d-dimensional path.

Examples on R: (Simple random walk, Wiener process, Geometric
Brownian motion)
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Construction of a stochastic process
Defining probability measures on spaces of stochastic processes is subtle:
Consider the fair coin-tossing process

X = (X1,X2, . . .) ∈ {0, 1}N

where Xn(T ) = 0 and Xn(H) = 1.

We assume Xm ⊥ Xn when m 6= n.

Implication: all events

{X = k} = {X1 = k1,X2 = k2, . . .}

for k ∈ {0, 1}N are equally likely.

Problem: there are infinitely many of equally likely events, so

P(X = k) = P(X1 = k1,X2 = k2, . . . ,Xn = kn, . . .) = lim
n→∞

(
1

2

)n

= 0,

which means it is difficult to construct the probability measure
bottom up using the probability of individual paths (the “atoms” of
the probability space) to derive the probability of unions of paths.
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Probability on F generated by cylinder sets
We define the probability space by

Ω = {0, 1}N

and for any fintie subsequence {ik}m
k=1 ⊂ N, the finite projection of a

paths have positive measure:

P({ωik}
m
k=1) = P(Xi1 = ωi1 , . . .Xim = ωim ) = 2−m, ωik ∈ {0, 1}.

An idea is therefore to let F be the defined as the smallest σ-algebra
containing all events of the form

{Xi1 = ωi1 ,Xi2 = ωi2 , . . . ,Xim = ωim} cylinder sets (2)

for any 1 ≤ i1 < i2 < . . . < im, ωik ∈ {0, 1} and m ∈ N: F is called the
product σ − algebra.

Question: We know value of P on every cylinder set, but is it possible to
extend P so that we can apply it to any C ∈ F?
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Continuous state-space stochastic process - and measure
More generally, for {Xt}t∈R on (Rd ,Bd ) cylinder sets generating F can be
defined by

{Xi1 ∈ Fi1 ,Xi2 ∈ Fi2 , . . . ,Xim ∈ Fim}

for any 1 ≤ i1 < i2 < . . . < im, Fik ∈ Bd and m ∈ N.
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C1 = {W0.5 ∈ (0, 2),W1 ∈ (1, 2)} and C2 = {W0.1 ∈ (−1, 1),W1 < −2}

we have ω2 ∈ C1 and ω1, ω3 6∈ C1. And ω3 ∈ C2 and ω1, ω2 6∈ C2.
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Question: We know value of P on every cylinder set, but is it possible to
extend P so that we can apply it to any C ∈ F? Yes!:

Theorem 2 (Kolmogorov’s extension theorem [ELV-E 5.2])

Let {µt1,...,tm} be a family of finite-dimensional distributions satisfying for
any t1, . . . , tm ∈ T, F1, . . . ,Fm ∈ Bd and m ∈ N that

(i) For any permutation σ of {1, 2, . . . ,m},

µtσ(1),tσ(2),...,tσ(m)
(F1×F2×. . .×Fm) = µt1,t2,...,tm (Fσ(1)×Fσ(2)×. . .×Fσ(m)).

(ii) For any k ∈ N,

µt1,...,tm (F1×. . .×Fm) = µt1,...,tm,tm+1,...,tm+k
(F1×. . .×Fm×Rd×. . .×Rd ).

Then there exists a space (Ω,F ,P), with F being the product
σ-algebra, and a proces {Xt}t∈T s.t.

µt1,t2,...,tm (F1 × F2 × . . .× Fm) = P(Xt1 ∈ F1,Xt2 ∈ F2, . . . ,Xtm ∈ Fm)

for any t1, . . . , tm ∈ T, Fi ∈ Bd and and m ∈ N.
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Filtrations
To simplify the presentation, assume T = [0,∞), but the below easily
extends to other T-sets

Definition 3

Given (Ω,F ,P) a filtration is a non-decreasing family of σ-algebras
{F}t≥0 such that Fs ⊂ Ft ⊂ F for any 0 ≤ s < t.

A stochastic process {Xt}t≥0, say on (Rd ,Bd ), is called Ft-adapted if for
any t ≥ 0

X−1
t (B) ∈ Ft ∀B ∈ Bd .

Given {Xt} the filtration generated by the process

FX
t = σ({Xs}s≤t)

provides all the information of the path up to time t and is the smallest
filtration on which Xt is adapted.
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Example filtration
Consider again the fair coin-tossing process

X = (X1,X2, . . .) ∈ {0, 1}N

with Ω = {0, 1}N, F generated by the cylinder sets (2) and P existing by
Kolmogorov’s extension thm.

We associate the filtration {FX
n }n∈N with

FX
1 = σ(X1) = F({0}, {1}) =

{
∅,Ω, {0}︸︷︷︸

{X1=0}

, {1}︸︷︷︸
{X1=1}

}
FX

2 = σ(X1,X2) = F({00}, {01}, {10}, {11})

=
{
∅,Ω, {0·}, {1·}, {·0}, {·1},

{00}, {01}, {10}, {11}, {0·} ∪ {10}, {0·} ∪ {11},

{1·} ∪ {00}, {1·} ∪ {01}, {00} ∪ {11}, {01} ∪ {10}
}

Note: {0·} := {X1 = 0,X2 ∈ {0, 1}} = {0} etc. And no sets of the form
{010} = {01} ∩ {X3 = 0} are contained in F2, as that is in the future.
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Filtration for a continuous-time stochastic process
For a Wiener process {Wt}t∈[0,T ] on (R,B),

FW
t = σ({Ws}s≤t)

where FW
t is generated from all cylinder-sets

C = {Wt1 ∈ Ft1 ,Wt2 ∈ Ft2 , . . . ,Wtm ∈ Ftm}
for any 0 ≤ t1 < t2 < . . . < tm ≤ t, (this upper bound is the constraint on
information), Ftk

∈ B and m ∈ N.
May be associated to a probability measure on the path-space
Ω = C [0,T ].
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Markov processes

Definition 4 (Markov process)

Given (Ω,F ,P) and a filtration {Ft}t≥0, a stoch process Xt on (Rd ,Bd )
is called a Markov process wrt Ft if

(i) Xt is Ft-adapted

(ii) for any t ≥ s and B ∈ Bd ,

P (Xt ∈ B|Fs)︸ ︷︷ ︸
:=E[1Xt∈B |Fs ]

= P (Xt ∈ B|Xs)︸ ︷︷ ︸
:=E[1Xt∈B |σ(Xs )]

memorylessness.

Connections to Markov chains:

P (Xn ∈ B|X1:m = x1:m) = P (Xn ∈ B|Xm = xm)

Conditioning is either on (possibly more than the) full path history over
[0, s] or just on state at time s:

Fs ⊃ σ({Xr}r≤s) ⊃ σ(Xs).
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The transition function
The transition function p(t,B|s, x) of a Markov process Xt on (Rd ,Bd ) is
defined by

p(t,B|s, x) := P(Xt ∈ B|Xs = x) (:= P(Xt ∈ B|Xs ∈ dx)

for s ≤ t and B ∈ Bd .
The mapping p : [0,∞)× Bd | [0,∞)× Rd )→ [0,∞) has the following
properties:

(i) For any t ≥ s and x ∈ Rd , p(t, ·|s, x) : Bd → [0, 1] is a probability
measure.

(ii) For any t ≥ s and B ∈ Bd , p(t,B|s, ·) : Rd → [0, 1] is a measureable
function on Rd .

(iii) p satisfies the “Chapman-Kolmogorov” analog:

p(t,B|s, y) =

∫
Rd

p(t,B|u, y)p(u, dy |s, x), s ≤ u ≤ t.
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Transition kernel densities
We will restrict ourselves to stationary Markov processes:

Definition 5

{Xt}t≥0 is stationary if for any t1, t2, . . . , tm ≥ 0 and m ∈ N the joint
distribution is translation invariant:

(Xt1 ,Xt2 , . . . ,Xtm )
D
= (Xt1+s ,Xt2+s , . . . ,Xtm+s)

for any s ∈ R so that Xtk +s are defined.

For stationary {Xt}t≥0, the transition function then simplifies into the
transition kernel:

p(t,B|x) = p(t + s,B|s, x) for any s, t ≥ 0

and, with abuse of notation, we refer to p(t, y |x) as the kernel density if

p(t,B|x) =

∫
B
p(t, y |x)dy .
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Example
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Next steps

Our plan is to study filtering problems with stochastic differential equation
(SDE) dynamics:

Vt = Ψt(V0) = V0 +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs

Here Wt is a Wiener process and Vt is a Markov process.
For this purpose, we need to describe:

Wiener processes

SDE (well-posedness, Itô integrals, etc)

numerical methods for solving sde

the probability density function of time-homogeneous SDE
p(t, y , x) = ”P(Vt = x |V0 = y)”.
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Wiener processes

Definition 6

Wiener process {Wt}t≥0 on R is a stochastic process described by

(i) W0
a.s.
= 0, and or for any 0 ≤ t0 < t1 < . . . < tm, the increments

Wt0 ,Wt1 −Wt0 , . . .Wtm −Wtm−1 are independent.

(ii) For any s, t ≥ 0, Wt+s −Ws ∼ N(0, t),

(iii) With probability 1, the path W·(ω) is continuous.

Independent increments implies that σ(Wt −Ws) ⊥ σ({Wr}r≤s), and thus
that Wt is Markovian wrt FW

t :

E
[
1B(Wt)|FW

s

]
= E

[
1B((Wt −Ws) + Ws)|FW

s

]
= E [1B(Wt)|σ(Ws)] .

And by (ii), the kernel density of Wt+s −Ws equals

p(t, x |y) =
exp

(
−(y−x)2

2t

)
√

2πt
(AKA = πWt |W0

(y |x))
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Construction of the Wiener process

By Kolmogorov’s extension theorem: Using independent increments
all finite-dimensional joint pdfs are computable:

πWt0 Wt1 ...Wtm
(x0, x1, . . . , xm)

= πWtm |Wtm−1
(xm|xm−1)πWtm−1 |Wtm−2

(xm−1|xm−2) . . . πWt1 |Wt0
(x1|x0)πWt0

(x0)

=
exp

(
−
∑m

k=1
(xk−xk−1)2

2(tk−tk−1) −
(x0)2

2t0

)
∏m

k=1

√
2π(tk − tk−1)

√
2πt0

Consequently, we can compute all probabilities of the form

µt0,t1,...,tm (B0 × B1 × . . .× Bm) = P(Wt0 ∈ B0,Wt1 ∈ B1, . . . ,Wtm ∈ Bm)

and the extension theorem ensures the existence of a prob space (Ω,F ,P)
on which {Wt}t≥0 is defined.
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Gaussian processes

Any stoch process {X}t≥0 for which every finite-dimensional joint
distribution (Xt0 , . . . ,Xtm ) is multivariate Gaussian, is called a
Gaussian process.

The Wiener process is a Gaussian process.

For fixed y , the kernel density solves the Heat equation

∂

∂t
pt(·, ·|y) =

1

2
pxx (·, ·|y) (t, x) ∈ [0,∞)× R,

with initial condition p(0, x |y) = δy (x).
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Second construction: limit of simple random walks

Theorem 7 (Random walk case of Donsker’s theorem)

Let {Xn} be a simple symmetric RW on Z with X0 = 0 and consider

W (n)(t) :=
Xbntc√

n
t ∈ [0, 1],

where bxc := max{k ∈ Z | k ≤ x}. Then {W (n)(t)}t∈[0,1] converges in
distribution to a standard Brownian motion {W (t)}t∈[0,1].
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Simulation of Wiener processes:
Suppose we want to simulate Wt exactly on a uniform mesh tk = k∆t
covering [0,T ].

From property (ii) we know that

Wtk+1
= Wtk

+ Wtk+1
−Wtk︸ ︷︷ ︸

∼N(0,∆t)

Hence, one may simulate iteratively,

Wtk+1
= Wtk

+
√

∆tξk

where ξk are iid standard normals.

We may approximate the full path e.g. by linear interpolation

Ws = LinInterp(s; {(tk ,Wtk
)}), s ∈ [0,T ].

or one may interpolate exactly by Brownian bridge refinement.
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Regularity properties of the Wiener processes:

Over a compact interval [0,T ]:

α-Hölder continuity (almost one-half time differentiable):

sup
s,t∈[0,T ]

|W (t)−W (s)|
|t − s|α

a.s.
<∞ ⇐⇒ 0 ≤ α < 1/2

Unbounded variation: Let ∆ = {tk} denote a mesh of [0,T ]. Then

sup
∆

∑
k

|Wtk+1
−Wtk

| a.s.
= ∞

(Motivation for result: assume tk = k∆t. Then, almost surely,

T/∆t−1∑
k=0

|Wtk+1
−Wtk

| =
√

∆t

T/∆t−1∑
k=0

|ξk |
∆t↓0
−→∞ .)

33 / 34



Summary and next lecture

Degeneracy is an important issue for particle filters, particularly for
high-dimensional problems. It is an ongoing research topic to
understand this phenomenon and develop more robust particle filters,
through e.g., adaptive resampling and alternative sampling dynamics.

Have defined stochastic processes on filtered probability spaces
(Ω,F , {F}t≥0,P), Markov processes, and particularly Wiener
processes.

Next time: Itô integrals, and theory and numerical integration of Itô
SDE.
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