Mathematics and numerics for data assimilation and state estimation - Lecture 18

Summer semester 2020

Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

Summary lecture 17

- Introduced sequential importance sampling (SIS) and sequential importance resampling (SIR) particle filters, for dynamics generated by the classic kernel density.

■ Proved convergence of the bootstrap particle filter.

■ Plan for today: quick look on particle filtering with more general dynamics and introduction to stochastic processes.

Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

Other sampling dynamics

In the SIS and SIR algorithms we have considered, given $\left\{\left(w_{j}^{(i)}, v_{j}^{(i)}\right)\right\}$, the dynamics simulation for the next step reads

- "Simulate $\hat{v}_{j+1}^{(i)}=F\left(v_{j}^{(i)}, \xi_{j}^{(i)}\right)$ with iid $\xi_{j}^{(i) "}$

This could also have been written
■ "Draw independent $\hat{v}_{j+1}^{(i)} \sim \pi_{V_{j+1} \mid} \mid V_{j}\left(\cdot \mid v_{j}^{(i)}\right)$ for $i=1, \ldots, M$ ".

- For SIS, the particles $\hat{v}_{j}^{(i)}$ have precisely the same distribution as the true dynamics V_{j} for every $j \geq 0$, this ignore completely the information from observations and may lead to $n_{\text {eff }, j} \ll M$.

■ To avoid degeneracy, one can sample from other "dynamics" /kernel density than $\pi_{V_{j+1} \mid V_{j}}\left(\cdot \mid v_{j}^{(i)}\right)$ that takes $y_{1: j+1}$ into account.

■ Generic notation for kernel density: $\rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)$, it can for instance be

$$
\rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)=\pi_{v_{j+1} \mid V_{j}, Y_{1: j+1}}\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)
$$

Effective number of particles for SIS

... applied to linear-Gaussian problem

$$
V_{j+1}=\left[\begin{array}{cc}
1 & 0.1 \\
0 & 1
\end{array}\right] V_{j}+\xi_{j}, \quad V_{0} \sim N\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{cc}
1 / 4 & 0 \\
0 & 1 / 4
\end{array}\right]\right)
$$

where $\xi_{j} \stackrel{\text { iid }}{\sim} N(0, \Sigma)$ with $\Sigma=\left[\begin{array}{cc}0.01 & 0 \\ 0 & 0.1\end{array}\right]$ (cf. Ubung 8.4).

Change of dynamics/kernel density

Recall that for the Bayes filter

$$
\begin{aligned}
\pi_{j+1}\left(v_{j+1}\right) & \propto \pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid y_{1: j}\right) \\
& =\int_{\mathbb{R}^{d}} \underbrace{\pi\left(y_{j+1} \mid v_{j+1}\right)}_{\text {"weight" }} \underbrace{\pi\left(v_{j+1} \mid v_{j}\right)}_{\text {"kernel density" }} \pi_{j}\left(v_{j}\right) d v_{j}
\end{aligned}
$$

and for the particle filters this is approximated by

$$
\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}
$$

with $\hat{v}_{j+1}^{(i)} \sim \int \pi_{V_{j+1} \mid V_{j}}\left(\cdot \mid v_{j}\right) \pi_{j}^{M}\left(v_{j}\right) d v_{j} \quad$ and $w_{j+1}^{(i)} \propto \pi_{Y_{j+1} \mid V_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right)$

We replace the kernel density by $\rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)$ as follows

$$
\begin{aligned}
\pi_{j+1}\left(v_{j+1}\right) & \propto \int \pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid v_{j}\right) \pi_{j}\left(v_{j}\right) d v_{j} \\
& =\int \underbrace{\frac{\pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid v_{j}\right)}{\rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)}}_{\text {"weight" }} \underbrace{\rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)}_{\text {"dynamics" }} \pi_{j}\left(v_{j}\right) d v_{j}
\end{aligned}
$$

Constraint for the kernel density: Given $y_{1: j+1}$, it must hold for any $v_{j}, v_{j+1} \in \mathbb{R}^{d}$ such that

$$
\pi\left(y_{j+1} \mid v_{j+1}\right) \pi\left(v_{j+1} \mid v_{j}\right)>0, \quad \text { also } \quad \rho\left(v_{j+1} \mid v_{j}, y_{1: j+1}\right)>0
$$

Essential idea for the modified particle filter:

$$
\begin{aligned}
\pi_{j+1}^{M}= & \sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}, \quad \text { with } \hat{v}_{j+1}^{(i)} \sim \int \rho\left(\cdot \mid v_{j}, y_{1: j+1}\right) \pi_{j}^{M}\left(v_{j}\right) d v_{j} \\
& \text { and } \quad w_{j+1}^{(i)} \propto \frac{\pi_{Y_{j+1} \mid v_{j+1}}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right) \pi_{v_{j+1} \mid v_{j}}\left(\hat{v}_{j+1}^{(i)} \mid v_{j}^{(i)}\right)}{\rho\left(\hat{v}_{j+1}^{(i)} \mid v_{j}^{(i)}, y_{1: j+1}\right)}
\end{aligned}
$$

More general sequential importance resampling algorithm

- Input: Initial distribution π_{0} (which we also write π_{0}^{M}), obs sequence y_{1}, y_{2}, \ldots, and M.
■ Particle generation: For $j=0,1, \ldots$,

1. Resampling Draw $v_{j}^{(i)} \stackrel{i i d}{\sim} \pi_{j}^{M}$ for $i=1, \ldots, M$.
2. Draw independent $\hat{v}_{j+1}^{(i)} \sim \rho\left(\cdot \mid v_{j}^{(i)}, y_{1: j+1}\right)$ for $i=1, \ldots, M$.
3. Set

$$
\bar{w}_{j+1}^{(i)}=\frac{\pi_{Y_{j+1} \mid}\left|v_{j+1}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right) \pi_{v_{j+1} \mid}\right| v_{j}\left(\hat{v}_{j+1}^{(i)} \mid v_{j}^{(i)}\right)}{\rho\left(\hat{v}_{j+1}^{(i)} \mid v_{j}^{(i)}, y_{1: j+1}\right)}
$$

4. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
5. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$.

- Output: π_{j}^{M} approximating the distribution of $V_{j} \mid Y_{1: j}=y_{1: j}$.

Modified Sequential importance sampling algorithm

- Input: Initial distribution π_{0}, obs sequence y_{1}, y_{2}, \ldots, and M.
- Initialization: Draw $\hat{v}_{j}^{(i)} \stackrel{i i d}{\sim} \pi_{0}$ and set $w_{0}^{(i)}=1 / M$ for $i=1, \ldots, M$. (Hat notation here is formally "wrong" but practical.)
■ Particle and weight dynamics: For $j=0,1, \ldots$, ,

1. Draw independent $\hat{v}_{j+1}^{(i)} \sim \rho\left(\cdot \mid \hat{v}_{j}^{(i)}, y_{1: j+1}\right)$ for $i=1, \ldots, M$.
2. Set

$$
\bar{w}_{j+1}^{(i)}=w_{j}^{(i)} \frac{\pi_{Y_{j+1} \mid} \mid v_{j+1}\left(y_{j+1} \mid \hat{v}_{j+1}^{(i)}\right) \pi_{v_{j+1} \mid}\left(v_{j}\left(\hat{v}_{j+1}^{(i)} \mid \hat{v}_{j}^{(i)}\right)\right.}{\rho\left(\hat{v}_{j+1}^{(i)} \mid \hat{v}_{j}^{(i)}, y_{1: j+1}\right)}
$$

3. and $w_{j+1}^{(i)}=\bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
4. Set $\pi_{j+1}^{M}=\sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$.

■ Output: π_{j}^{M} approximating the distribution of $V_{j} \mid Y_{1: j}=y_{1: j}$.

Sampling from a different kernel density

■ Sampling from the kernel density

$$
\begin{equation*}
\pi_{v_{j+1} \mid V_{j}, Y_{j+1}}\left(\cdot \mid v_{j}, y_{j+1}\right) \tag{1}
\end{equation*}
$$

in SIS gives you the so called optimal particle filter. Meaning

$$
\operatorname{Var}^{\pi v_{j+1} \mid v_{j}, r_{j+1}\left(\cdot \mid \hat{v}_{j}^{(i)}, y_{j+1}\right)}\left[\bar{w}_{j+1}^{(i)}\right]=\inf _{\rho\left(\cdot \mid \hat{v}_{j}^{(i)}, y_{1: j+1}\right)} \operatorname{Var}^{\rho\left(\cdot \mid \hat{v}_{j}^{(i)}, y_{1: j+1}\right)}\left[\bar{w}_{j+1}^{(i)}\right]
$$

■ In other words, of all possible kernel densities $\rho\left(\cdot \mid v_{j}, y_{1: j+1}\right)$, sampling from (1) leads to the minimum variance in $\bar{w}_{j}^{(i)}$.

- See [SST 12.3] for a setting where it actually is possible to sample from $\pi_{V_{j+1} \mid V_{j}, Y_{j+1}}\left(\cdot \mid v_{j}, y_{j+1}\right)$.

Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

Stochastic processes

Definition 1

A stochastic process on \mathbb{R}^{d} is family of $r v\left\{X_{t}\right\}_{t \in \mathbb{T}}$ all taking values in \mathbb{R}^{d}, all defined on $(\Omega, \mathcal{F}, \mathbb{P})$, for some parameter set \mathbb{T}, typically $\mathbb{T}=\mathbb{N}$, or $[0, T]$ or $[0, \infty)$.
For any fixed $t \in \mathbb{T}$, the mapping $X_{t}: \Omega \rightarrow \mathbb{R}^{d}$ is an rv.
For any fixed $\omega \in \Omega$, the mapping $X .(\omega): \mathbb{T} \rightarrow \mathbb{R}^{d}$ is a d-dimensional path.
Examples on \mathbb{R} : (Simple random walk, Wiener process, Geometric Brownian motion)

Construction of a stochastic process

Defining probability measures on spaces of stochastic processes is subtle: Consider the fair coin-tossing process

$$
X=\left(X_{1}, X_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}
$$

where $X_{n}(T)=0$ and $X_{n}(H)=1$.

- We assume $X_{m} \perp X_{n}$ when $m \neq n$.
- Implication: all events

$$
\{X=k\}=\left\{X_{1}=k_{1}, X_{2}=k_{2}, \ldots\right\}
$$

for $k \in\{0,1\}^{\mathbb{N}}$ are equally likely.
■ Problem: there are infinitely many of equally likely events, so

$$
\mathbb{P}(X=k)=\mathbb{P}\left(X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{n}=k_{n}, \ldots\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0
$$

which means it is difficult to construct the probability measure bottom up using the probability of individual paths (the "atoms" of the probability space) to derive the probability of unions of paths.

Probability on \mathcal{F} generated by cylinder sets

We define the probability space by

$$
\Omega=\{0,1\}^{\mathbb{N}}
$$

and for any fintie subsequence $\left\{i_{k}\right\}_{k=1}^{m} \subset \mathbb{N}$, the finite projection of a paths have positive measure:

$$
\mathbb{P}\left(\left\{\omega_{i_{k}}\right\}_{k=1}^{m}\right)=\mathbb{P}\left(X_{i_{1}}=\omega_{i_{1}}, \ldots X_{i_{m}}=\omega_{i_{m}}\right)=2^{-m}, \quad \omega_{i_{k}} \in\{0,1\} .
$$

An idea is therefore to let \mathcal{F} be the defined as the smallest σ-algebra containing all events of the form

$$
\begin{equation*}
\left\{X_{i_{1}}=\omega_{i_{1}}, X_{i_{2}}=\omega_{i_{2}}, \ldots, X_{i_{m}}=\omega_{i_{m}}\right\} \quad \text { cylinder sets } \tag{2}
\end{equation*}
$$

for any $1 \leq i_{1}<i_{2}<\ldots<i_{m}, \omega_{i_{k}} \in\{0,1\}$ and $m \in \mathbb{N}: \mathcal{F}$ is called the product σ-algebra.

Question: We know value of \mathbb{P} on every cylinder set, but is it possible to extend \mathbb{P} so that we can apply it to any $C \in \mathcal{F}$?

Continuous state-space stochastic process - and measure

 More generally, for $\left\{X_{t}\right\}_{t \in \mathbb{R}}$ on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ cylinder sets generating \mathcal{F} can be defined by$$
\left\{X_{i_{1}} \in F_{i_{1}}, X_{i_{2}} \in F_{i_{2}}, \ldots, X_{i_{m}} \in F_{i_{m}}\right\}
$$

for any $1 \leq i_{1}<i_{2}<\ldots<i_{m}, F_{i_{k}} \in \mathcal{B}^{d}$ and $m \in \mathbb{N}$.

$$
C_{1}=\left\{W_{0.5} \in(0,2), W_{1} \in(1,2)\right\} \text { and } C_{2}=\left\{W_{0.1} \in(-1,1), W_{1}<-2\right\}
$$ we have $\omega_{2} \in C_{1}$ and $\omega_{1}, \omega_{3} \notin C_{1}$. And $\omega_{3} \in C_{2}$ and $\omega_{1}, \omega_{2} \notin C_{2}$.

Question: We know value of \mathbb{P} on every cylinder set, but is it possible to extend \mathbb{P} so that we can apply it to any $C \in \mathcal{F}$? Yes!:

Theorem 2 (Kolmogorov's extension theorem [ELV-E 5.2])

Let $\left\{\mu_{t_{1}, \ldots, t_{m}}\right\}$ be a family of finite-dimensional distributions satisfying for any $t_{1}, \ldots, t_{m} \in \mathbb{T}, F_{1}, \ldots, F_{m} \in \mathcal{B}^{d}$ and $m \in \mathbb{N}$ that
(i) For any permutation σ of $\{1,2, \ldots, m\}$,

$$
\mu_{t_{\sigma(1)}, t_{\sigma(2)}, \ldots, t_{\sigma(m)}}\left(F_{1} \times F_{2} \times \ldots \times F_{m}\right)=\mu_{t_{1}, t_{2}, \ldots, t_{m}}\left(F_{\sigma(1)} \times F_{\sigma(2)} \times \ldots \times F_{\sigma(m)}\right) .
$$

(ii) For any $k \in \mathbb{N}$,

$$
\mu_{t_{1}, \ldots, t_{m}}\left(F_{1} \times \ldots \times F_{m}\right)=\mu_{t_{1}, \ldots, t_{m}, t_{m+1}, \ldots, t_{m+k}}\left(F_{1} \times \ldots \times F_{m} \times \mathbb{R}^{d} \times \ldots \times \mathbb{R}^{d}\right)
$$

Then there exists a space $(\Omega, \mathcal{F}, \mathbb{P})$, with \mathcal{F} being the product σ-algebra, and a proces $\left\{X_{t}\right\}_{t \in \mathbb{T}}$ s.t.
$\mu_{t_{1}, t_{2}, \ldots, t_{m}}\left(F_{1} \times F_{2} \times \ldots \times F_{m}\right)=\mathbb{P}\left(X_{t_{1}} \in F_{1}, X_{t_{2}} \in F_{2}, \ldots, X_{t_{m}} \in F_{m}\right)$ for any $t_{1}, \ldots, t_{m} \in \mathbb{T}, F_{i} \in \mathcal{B}^{d}$ and and $m \in \mathbb{N}$.

Filtrations

To simplify the presentation, assume $\mathbb{T}=[0, \infty)$, but the below easily extends to other \mathbb{T}-sets

Definition 3

Given $(\Omega, \mathcal{F}, \mathbb{P})$ a filtration is a non-decreasing family of σ-algebras $\{\mathcal{F}\}_{t \geq 0}$ such that $\mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$ for any $0 \leq s<t$.

A stochastic process $\left\{X_{t}\right\}_{t \geq 0}$, say on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$, is called \mathcal{F}_{t}-adapted if for any $t \geq 0$

$$
X_{t}^{-1}(B) \in \mathcal{F}_{t} \quad \forall B \in \mathcal{B}^{d}
$$

Given $\left\{X_{t}\right\}$ the filtration generated by the process

$$
\mathcal{F}_{t}^{X}=\sigma\left(\left\{X_{s}\right\}_{s \leq t}\right)
$$

provides all the information of the path up to time t and is the smallest filtration on which X_{t} is adapted.

Example filtration

Consider again the fair coin-tossing process

$$
X=\left(X_{1}, X_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}
$$

with $\Omega=\{0,1\}^{\mathbb{N}}, \mathcal{F}$ generated by the cylinder sets (2) and \mathbb{P} existing by Kolmogorov's extension thm.

We associate the filtration $\left\{\mathcal{F}_{n}^{X}\right\}_{n \in \mathbb{N}}$ with

$$
\begin{aligned}
\mathcal{F}_{1}^{X} & =\sigma\left(X_{1}\right)=\mathcal{F}(\{0\},\{1\})=\{\emptyset, \Omega, \underbrace{\{0\}}_{\left\{X_{1}=0\right\}}, \underbrace{\{1\}}_{\left\{X_{1}=1\right\}}\} \\
\mathcal{F}_{2}^{X} & =\sigma\left(X_{1}, X_{2}\right)=\mathcal{F}(\{00\},\{01\},\{10\},\{11\}) \\
& =\{\emptyset, \Omega,\{0 \cdot\},\{1 \cdot\},\{\cdot 0\},\{\cdot 1\}, \\
& \{00\},\{01\},\{10\},\{11\},\{0 \cdot\} \cup\{10\},\{0 \cdot\} \cup\{11\}, \\
& \{1 \cdot\} \cup\{00\},\{1 \cdot\} \cup\{01\},\{00\} \cup\{11\},\{01\} \cup\{10\}\}
\end{aligned}
$$

Note: $\{0 \cdot\}:=\left\{X_{1}=0, X_{2} \in\{0,1\}\right\}=\{0\}$ etc. And no sets of the form $\{010\}=\{01\} \cap\left\{X_{3}=0\right\}$ are contained in \mathcal{F}_{2}, as that is in the future.

Filtration for a continuous-time stochastic process

For a Wiener process $\left\{W_{t}\right\}_{t \in[0, T]}$ on $(\mathbb{R}, \mathcal{B})$,

$$
\mathcal{F}_{t}^{W}=\sigma\left(\left\{W_{s}\right\}_{s \leq t}\right)
$$

where \mathcal{F}_{t}^{W} is generated from all cylinder-sets

$$
C=\left\{W_{t_{1}} \in F_{t_{1}}, W_{t_{2}} \in F_{t_{2}}, \ldots, W_{t_{m}} \in F_{t_{m}}\right\}
$$

for any $0 \leq t_{1}<t_{2}<\ldots<t_{m} \leq t$, (this upper bound is the constraint on information), $F_{t_{k}} \in \mathcal{B}$ and $m \in \mathbb{N}$.
May be associated to a probabilitv measure on the path-space $\Omega=C[0, T]$.

Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

Markov processes

Definition 4 (Markov process)

Given $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, a stoch process X_{t} on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ is called a Markov process wrt \mathcal{F}_{t} if
(i) X_{t} is \mathcal{F}_{t}-adapted
(ii) for any $t \geq s$ and $B \in \mathcal{B}^{d}$,

$$
\underbrace{\mathbb{P}\left(X_{t} \in B \mid \mathcal{F}_{s}\right)}_{:=\mathbb{E}\left[\mathbb{1}_{X_{t} \in B} \mid \mathcal{F}_{s}\right]}=\underbrace{\mathbb{P}\left(X_{t} \in B \mid X_{s}\right)}_{:=\mathbb{E}\left[\mathbb{1}_{X_{t} \in B} \mid \sigma\left(X_{s}\right)\right]} \quad \text { memorylessness. }
$$

Connections to Markov chains:

$$
\mathbb{P}\left(X_{n} \in B \mid X_{1: m}=x_{1: m}\right)=\mathbb{P}\left(X_{n} \in B \mid X_{m}=x_{m}\right)
$$

Conditioning is either on (possibly more than the) full path history over $[0, s]$ or just on state at time s :

$$
\mathcal{F}_{s} \supset \sigma\left(\left\{X_{r}\right\}_{r \leq s}\right) \supset \sigma\left(X_{s}\right)
$$

The transition function

The transition function $p(t, B \mid s, x)$ of a Markov process X_{t} on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ is defined by

$$
p(t, B \mid s, x):=\mathbb{P}\left(X_{t} \in B \mid X_{s}=x\right) \quad\left(:=\mathbb{P}\left(X_{t} \in B \mid X_{s} \in d x\right)\right.
$$

for $s \leq t$ and $B \in \mathcal{B}^{d}$.
The mapping $\left.p:[0, \infty) \times \mathcal{B}^{d} \mid[0, \infty) \times \mathbb{R}^{d}\right) \rightarrow[0, \infty)$ has the following properties:
(i) For any $t \geq s$ and $x \in \mathbb{R}^{d}, p(t, \cdot \mid s, x): \mathcal{B}^{d} \rightarrow[0,1]$ is a probability measure.
(ii) For any $t \geq s$ and $B \in \mathcal{B}^{d}, p(t, B \mid s, \cdot): \mathbb{R}^{d} \rightarrow[0,1]$ is a measureable function on \mathbb{R}^{d}.
(iii) p satisfies the "Chapman-Kolmogorov" analog:

$$
p(t, B \mid s, y)=\int_{\mathbb{R}^{d}} p(t, B \mid u, y) p(u, d y \mid s, x), \quad s \leq u \leq t
$$

Transition kernel densities

We will restrict ourselves to stationary Markov processes:

Definition 5

$\left\{X_{t}\right\}_{t \geq 0}$ is stationary if for any $t_{1}, t_{2}, \ldots, t_{m} \geq 0$ and $m \in \mathbb{N}$ the joint distribution is translation invariant:

$$
\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{m}}\right) \stackrel{D}{=}\left(X_{t_{1}+s}, X_{t_{2}+s}, \ldots, X_{t_{m}+s}\right)
$$

for any $s \in \mathbb{R}$ so that $X_{t_{k}+s}$ are defined.
For stationary $\left\{X_{t}\right\}_{t \geq 0}$, the transition function then simplifies into the transition kernel:

$$
p(t, B \mid x)=p(t+s, B \mid s, x) \quad \text { for any } s, t \geq 0
$$

and, with abuse of notation, we refer to $p(t, y \mid x)$ as the kernel density if

$$
p(t, B \mid x)=\int_{B} p(t, y \mid x) d y .
$$

Example

Overview

1 Other sampling dynamics for particle filters

2 Stochastic processes and filtrations

3 Markov processes

4 The Wiener process

Next steps

Our plan is to study filtering problems with stochastic differential equation (SDE) dynamics:

$$
V_{t}=\Psi_{t}\left(V_{0}\right)=V_{0}+\int_{0}^{t} b\left(V_{s}\right) d s+\int_{0}^{t} \sigma\left(V_{s}\right) d W_{s}
$$

Here W_{t} is a Wiener process and V_{t} is a Markov process.
For this purpose, we need to describe:

- Wiener processes

■ SDE (well-posedness, Itô integrals, etc)
■ numerical methods for solving sde
■ the probability density function of time-homogeneous SDE $p(t, y, x)=" \mathbb{P}\left(V_{t}=x \mid V_{0}=y\right) "$.

Wiener processes

Definition 6

Wiener process $\left\{W_{t}\right\}_{t \geq 0}$ on \mathbb{R} is a stochastic process described by
(i) $W_{0} \stackrel{\text { a.s. }}{=} 0$, and or for any $0 \leq t_{0}<t_{1}<\ldots<t_{m}$, the increments $W_{t_{0}}, W_{t_{1}}-W_{t_{0}}, \ldots W_{t_{m}}-W_{t_{m-1}}$ are independent.
(ii) For any $s, t \geq 0, W_{t+s}-W_{s} \sim N(0, t)$,
(iii) With probability 1 , the path $W .(\omega)$ is continuous.

Independent increments implies that $\sigma\left(W_{t}-W_{s}\right) \perp \sigma\left(\left\{W_{r}\right\}_{r \leq s}\right)$, and thus that W_{t} is Markovian wrt \mathcal{F}_{t}^{W} :

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{B}\left(W_{t}\right) \mid \mathcal{F}_{s}^{W}\right] & =\mathbb{E}\left[\mathbb{1}_{B}\left(\left(W_{t}-W_{s}\right)+W_{s}\right) \mid \mathcal{F}_{s}^{W}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{B}\left(W_{t}\right) \mid \sigma\left(W_{s}\right)\right]
\end{aligned}
$$

And by (ii), the kernel density of $W_{t+s}-W_{s}$ equals

$$
p(t, x \mid y)=\frac{\exp \left(\frac{-(y-x)^{2}}{2 t}\right)}{\sqrt{2 \pi t}} \quad\left(\mathrm{AKA}=\pi_{W_{t} \mid W_{0}}(y \mid x)\right)
$$

Construction of the Wiener process

By Kolmogorov's extension theorem: Using independent increments all finite-dimensional joint pdfs are computable:
$\pi_{W_{t_{0}}} W_{t_{1} \ldots W_{t_{m}}}\left(x_{0}, x_{1}, \ldots, x_{m}\right)$
$=\pi_{W_{t_{m}} \mid W_{t_{m-1}}}\left(x_{m} \mid x_{m-1}\right) \pi_{W_{t_{m-1}} \mid W_{t_{m-2}}}\left(x_{m-1} \mid x_{m-2}\right) \ldots \pi_{W_{t_{1}} \mid W_{t_{0}}}\left(x_{1} \mid x_{0}\right) \pi_{W_{t_{0}}}\left(x_{0}\right)$
$=\frac{\exp \left(-\sum_{k=1}^{m} \frac{\left(x_{k}-x_{k-1}\right)^{2}}{2\left(t_{k}-t_{k-1}\right)}-\frac{\left(x_{0}\right)^{2}}{2 t_{0}}\right)}{\prod_{k=1}^{m} \sqrt{2 \pi\left(t_{k}-t_{k-1}\right)} \sqrt{2 \pi t_{0}}}$
Consequently, we can compute all probabilities of the form
$\mu_{t_{0}, t_{1}, \ldots, t_{m}}\left(B_{0} \times B_{1} \times \ldots \times B_{m}\right)=\mathbb{P}\left(W_{t_{0}} \in B_{0}, W_{t_{1}} \in B_{1}, \ldots, W_{t_{m}} \in B_{m}\right)$
and the extension theorem ensures the existence of a prob space $(\Omega, \mathcal{F}, \mathbb{P})$ on which $\left\{W_{t}\right\}_{t \geq 0}$ is defined.

Gaussian processes

- Any stoch process $\{X\}_{t \geq 0}$ for which every finite-dimensional joint distribution $\left(X_{t_{0}}, \ldots, X_{t_{m}}\right)$ is multivariate Gaussian, is called a Gaussian process.
- The Wiener process is a Gaussian process.

■ For fixed y, the kernel density solves the Heat equation

$$
\frac{\partial}{\partial t} p_{t}(\cdot, \cdot \mid y)=\frac{1}{2} p_{x x}(\cdot, \cdot \mid y) \quad(t, x) \in[0, \infty) \times \mathbb{R}
$$

with initial condition $p(0, x \mid y)=\delta_{y}(x)$.

Second construction: limit of simple random walks

Theorem 7 (Random walk case of Donsker's theorem)
Let $\left\{X_{n}\right\}$ be a simple symmetric $R W$ on \mathbb{Z} with $X_{0}=0$ and consider

$$
W^{(n)}(t):=\frac{X_{\lfloor n t\rfloor}}{\sqrt{n}} \quad t \in[0,1],
$$

where $\lfloor x\rfloor:=\max \{k \in \mathbb{Z} \mid k \leq x\}$. Then $\left\{W^{(n)}(t)\right\}_{t \in[0,1]}$ converges in
distribution to a standard Brownian motion $\{W(t)\}_{t \in[0,1]}$.

Simulation of Wiener processes:

Suppose we want to simulate W_{t} exactly on a uniform mesh $t_{k}=k \Delta t$ covering $[0, T]$.

From property (ii) we know that

$$
W_{t_{k+1}}=W_{t_{k}}+\underbrace{W_{t_{k+1}}-W_{t_{k}}}_{\sim N(0, \Delta t)}
$$

Hence, one may simulate iteratively,

$$
W_{t_{k+1}}=W_{t_{k}}+\sqrt{\Delta t} \xi_{k}
$$

where ξ_{k} are iid standard normals.
We may approximate the full path e.g. by linear interpolation

$$
W_{s}=\operatorname{LinInterp}\left(s ;\left\{\left(t_{k}, W_{t_{k}}\right)\right\}\right), \quad s \in[0, T]
$$

or one may interpolate exactly by Brownian bridge refinement.

Regularity properties of the Wiener processes:

Over a compact interval $[0, T]$:
■ α-Hölder continuity (almost one-half time differentiable):

$$
\sup _{s, t \in[0, T]} \frac{|W(t)-W(s)|}{|t-s|^{\alpha}} \stackrel{\text { a.s. }}{<} \infty \Longleftrightarrow 0 \leq \alpha<1 / 2
$$

■ Unbounded variation: Let $\Delta=\left\{t_{k}\right\}$ denote a mesh of $[0, T]$. Then

$$
\sup _{\Delta} \sum_{k}\left|W_{t_{k+1}}-W_{t_{k}}\right| \stackrel{\text { a.s. }}{=} \infty
$$

(Motivation for result: assume $t_{k}=k \Delta t$. Then, almost surely,

$$
\left.\sum_{k=0}^{T / \Delta t-1}\left|W_{t_{k+1}}-W_{t_{k}}\right|=\sqrt{\Delta t} \sum_{k=0}^{T / \Delta t-1}\left|\xi_{k}\right| \xrightarrow{\Delta t \downarrow 0} \infty .\right)
$$

Summary and next lecture

- Degeneracy is an important issue for particle filters, particularly for high-dimensional problems. It is an ongoing research topic to understand this phenomenon and develop more robust particle filters, through e.g., adaptive resampling and alternative sampling dynamics.

■ Have defined stochastic processes on filtered probability spaces $\left(\Omega, \mathcal{F},\{\mathcal{F}\}_{t \geq 0}, \mathbb{P}\right)$, Markov processes, and particularly Wiener processes.

■ Next time: Itô integrals, and theory and numerical integration of Itô SDE.

