## Mathematics and numerics for data assimilation and

 state estimation - Lecture 19for Uncertainty Quantification

Summer semester 2020

## Overview

1 Stochastic integrals

2 Itô integrals

3 Itô's formula

4 Stochastic differential equations

## Summary lecture 18

■ Stochastic processes, filtrations and Wiener processes.

■ Plan for today: Itô integrals, theory and numerical integration of stochastic differential equations (SDE)

$$
V_{t}=V_{0}+\int_{0}^{t} b\left(V_{s}\right) d s+\int_{0}^{t} \sigma\left(V_{s}\right) d W_{s}
$$

## Overview

1 Stochastic integrals

2 Itô integrals

3 Itô's formula

4 Stochastic differential equations

## Construction of stochastic integrals

 Seeking to make sense of the SDE$$
V_{t}=V_{0}+\int_{0}^{t} b\left(V_{s}\right) d s+\int_{0}^{t} \sigma\left(V_{s}\right) d W_{s}
$$

we need to define the stochastic integral.
Riemann-Stieltjes approach: let $|\Delta|$ denote the largest timestep in a mesh over $[0, t]$ and

$$
\int_{0}^{t} \sigma\left(V_{s}\right) d W_{s}=\lim _{|\Delta| \rightarrow 0} \sum_{k} \sigma\left(V_{t_{k}^{*}}\right)\left(W_{t_{k+1}}-W_{t_{k}}\right)
$$

for some $t_{k}^{*} \in\left[t_{k}, t_{k+1}\right]$.
Problem: these integrals are well-defined provided $\sigma\left(V_{t}\right)$ is continuous (which is reasonable to assume) and $W_{t}$ has bounded total variation which almost surely is not the case for the Wiener process.
Implication: different choices of $t_{k}^{*}$ may lead to different integral values (both pathwise and in expectation).

## Example

Consider the integral $\int_{0}^{t} W_{s} d W_{s}$, and three different choices for integration point:

$$
t_{k}^{*}=\left\{\begin{array}{l}
\text { left: } t_{k} \text { giving } I^{L}=\sum_{k} W_{t_{k}}\left(W_{t_{k+1}}-W_{t_{k}}\right) \\
\text { right: } t_{k+1} \text { giving } I^{R}=\sum_{k} W_{t_{k+1}}\left(W_{t_{k+1}}-W_{t_{k}}\right) \\
\text { middle: } t_{k+1 / 2} \text { giving } I^{M}=\sum_{k} W_{t_{k+1 / 2}}\left(W_{t_{k+1}}-W_{t_{k}}\right)
\end{array}\right.
$$

And
$\mathbb{E}\left[I^{L}\right]=\sum_{k} \mathbb{E}\left[W_{t_{k}}\left(W_{t_{k+1}}-W_{t_{k}}\right)\right]^{W_{t_{k}} \perp\left(W_{t_{k+1}}-W_{t_{k}}\right)} \sum_{k} \mathbb{E}\left[W_{t_{k}}\right] \mathbb{E}\left[W_{t_{k+1}}-W_{t_{k}}\right]=0$,
while

$$
\begin{aligned}
\mathbb{E}\left[I^{R}\right] & =\sum_{k} \mathbb{E}\left[W_{t_{k+1}}\left(W_{t_{k+1}}-W_{t_{k}}\right)\right] \\
& =\sum_{k} \mathbb{E}\left[\left(\left(W_{t_{k+1}}-W_{t_{k}}\right)+W_{t_{k}}\right)\left(W_{t_{k+1}}-W_{t_{k}}\right)\right] \\
& =\sum_{k} \mathbb{E}\left[\left(W_{t_{k+1}}-W_{t_{k}}\right)^{2}\right]+\iota^{L}=\sum_{k}\left(t_{k+1}-t_{k}\right)=t
\end{aligned}
$$

and $\mathbb{E}\left[I^{M}\right]=t / 2$.

## Overview

## 1 Stochastic integrals

2 Itô integrals

## 3 Itô's formula

## 4 Stochastic differential equations

## Itô integral

Given a filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$, with $\mathcal{F}_{t}=\mathcal{F}_{t}^{W}$, the Itô integral is defined by

$$
\int_{0}^{t} \sigma\left(V_{s}\right) d W_{s}:=\lim _{|\Delta| \rightarrow 0} \sum_{k} \sigma\left(V_{t_{k}}\right)\left(W_{t_{k+1}}-W_{t_{k}}\right)
$$

where $\Delta$ denotes a mesh/subdivision of $[0, t]$ and one assumes that both $V_{t}$ and $W_{t}$ are $\mathcal{F}_{t}$-adapted.
It remains to describe what we mean by " $=$ " in the above definition.

## Integrals of simple and $\mathcal{F}_{t}$-adapted functions

Given a mesh $\left\{\tau_{k}\right\}_{k=0}^{n}$ over an interval $[S, T]$, we consider simple functions of the form

$$
\phi_{n}(\omega, t):=\sum_{j=1}^{n-1} e_{j}(\omega) \mathbb{1}_{\left[\tau_{j}, \tau_{j+1}\right)}(t)
$$

with $e_{j}$ being $\mathcal{F}_{\tau_{j}}$-measurable. This makes also $\phi_{n} \mathcal{F}_{t^{-}}$measurable.
The Itô integral is given by

$$
\int_{S}^{T} \phi_{n}(t, \omega) d W_{t}:=\lim _{|\Delta| \rightarrow 0} \sum_{k} \phi_{n}\left(t_{k}, \omega\right)\left(W_{t_{k+1}}-W_{t_{k}}\right)=\sum_{j=0}^{n-1} e_{j}(\omega)\left(W_{\tau_{j+1}}-W_{\tau_{j}}\right)
$$

Motivation: Summing over a finer mesh $\Delta \supset\left\{\tau_{k}\right\}_{k=0}^{n}$ leads to telescoping sums of Wiener increments over each $\tau$ - interval: if $\left[t_{k_{1}}, t_{k_{2}}\right)=\left[\tau_{j}, \tau_{j+1}\right)$, then $\left.\phi_{n}(\cdot, \omega)\right|_{\left[\tau_{j}, \tau_{j+1}\right)}=\phi_{n}\left(\tau_{j}, \omega\right)$ and
$\sum_{k=k_{1}}^{k_{2}-1} \phi_{n}\left(t_{k}, \omega\right)\left(W_{t_{k+1}}-W_{t_{k}}\right)=\phi_{n}\left(\tau_{j}, \omega\right) \sum_{k=k_{1}}^{k_{2}-1}\left(W_{t_{k+1}}-W_{t_{k}}\right)=e_{j}(\omega)\left(W_{\tau_{j+1}}-W_{\tau_{j}}\right)$

## Properties of simple-function stochastic integrals

Since $e_{j}(\omega)$ is $\mathcal{F}_{\tau_{j}}$-measurable, it turns out that

$$
e_{j} \perp \Delta W_{k}:=W_{\tau_{k+1}}-W_{\tau_{k}} \quad \text { for any } k \geq j
$$

(since $\left.\mathcal{F}_{\tau_{j}} \perp \sigma\left(\left\{W_{s}-W_{\tau_{j}}\right\}_{s \geq \tau_{j}}\right)\right)$.
Property 1: The Itô integral has mean zero:

$$
\mathbb{E}\left[\int_{S}^{T} \phi_{n}(t, \cdot) d W_{t}\right]=\sum_{j=0}^{n-1} \mathbb{E}\left[e_{j}(\cdot) \Delta W_{j}\right]=\sum_{j=0}^{n-1} \mathbb{E}\left[e_{j}(\cdot)\right] \mathbb{E}\left[\Delta W_{j}\right]=0
$$

Property 2: Itô isometry:

$$
\mathbb{E}\left[\left(\int_{S}^{T} \phi_{n}(t, \cdot) d W_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{S}^{T} \phi_{n}^{2}(t, \cdot) d t\right]
$$

## Indepencence of $\sigma$-algebras vs rv [cf. Durrett]

Given two rv on $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B})$ and $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B})$ defined on the same probability space, we recall that
$X \perp Y \Longleftrightarrow \mathbb{P}\left(X^{-1}\left(B_{1}\right) \cap Y^{-1}\left(B_{2}\right)\right)=\mathbb{P}\left(X^{-1}\left(B_{1}\right)\right) \mathbb{P}\left(Y^{-1}\left(B_{2}\right)\right) \quad \forall B_{1}, B_{2} \in \mathcal{B}$.
The independence condition is equivalent to

$$
\mathbb{P}\left(C_{1} \cap C_{2}\right)=\mathbb{P}\left(C_{1}\right) \mathbb{P}\left(C_{2}\right) \quad \forall C_{1} \in \sigma(X) \text { and } C_{2} \in \sigma(Y)
$$

since any $C_{1} \in \sigma(X)$ can be written $C_{1}=X^{-1}\left(B_{1}\right)$ for some $B_{1} \in \mathcal{B}$ and any $C_{2} \in \sigma(Y), C_{2}=Y^{-1}\left(B_{2}\right)$ for some $B_{2} \in \mathcal{B}$.

Equivalence $\perp$ of $\mathbf{r v}$ and $\perp$ of $\sigma$-algebras: $X \perp Y \Longleftrightarrow \sigma(X) \perp \sigma(Y)$.
This naturally extends to point evaluations etc of stochastic processes. E.g.,

$$
e_{j} \perp \Delta W_{j} \Longleftrightarrow \sigma\left(e_{j}\right) \perp \sigma\left(\Delta W_{j}\right)
$$

And this holds since since $\left.\sigma\left(e_{j}\right) \subset \mathcal{F}_{\tau_{j}} \perp \sigma\left(\left\{W_{s}-W_{\tau_{j}}\right)\right\}_{s \geq \tau_{j}}\right) \supset \sigma\left(\Delta W_{j}\right)$.

## Proof of Itô isometry:

$$
\begin{aligned}
& \mathbb{E}\left[\left(\int_{S}^{T} \phi_{n}(t, \cdot) d W_{t}\right)^{2}\right]=\mathbb{E}\left[\sum_{j, k} e_{j} e_{k} \Delta W_{j} \Delta W_{k}\right] \\
& \quad=\sum_{j} \mathbb{E}\left[e_{j}^{2} \Delta W_{j}^{2}\right]+2 \sum_{j<k} \mathbb{E}\left[\sum_{j, k} e_{j} e_{k} \Delta W_{j} \Delta W_{k}\right] \\
& \\
& \quad=\sum_{j} \mathbb{E}\left[e_{j}^{2}\right] \mathbb{E}\left[\Delta W_{j}^{2}\right]+2 \sum_{j<k} \mathbb{E}\left[e_{j} e_{k} \Delta W_{j}\right] \mathbb{E}\left[\Delta W_{k}\right] \\
& \\
& =\sum_{j} \mathbb{E}\left[e_{j}^{2}\right]\left(\tau_{j+1}-\tau_{j}\right) \\
& \\
& =\mathbb{E}\left[\int_{S}^{T} \phi_{n}^{2}(t, \cdot) d t\right]
\end{aligned}
$$

Where we used that $e_{j} \perp \Delta W_{j}$ and that for $k>j, e_{j} e_{k} \Delta W_{j} \perp \Delta W_{k}$ (since $\mathcal{F}_{\tau_{k}} \perp \sigma\left(\left\{W_{s}-W_{\tau_{k}}\right\}_{s \geq \tau_{k}}\right)$.

We next extend the Itô integral to more general integrands:

## Definition 1

Let $\mathcal{V}[S, T]$ be the class of functions $f(t, \omega) \in \mathbb{R}$ that satisfying
■ $f:[S, T] \times \Omega \rightarrow \mathbb{R}$ is $\mathcal{B} \times c F$-measurable (i.e., $f^{-1}(B) \in \mathcal{B} \times \mathcal{F}$ for any $B \in \mathbb{R}$ )
■ $f$ is $\mathcal{F}_{t}$-adapted, (i.e., $f(t, \cdot)$ is $\mathcal{F}_{t}$-measurable for each $t \in[S, T]$ )
■ $f \in L^{2}\left(\Omega ; L^{2}[S, T]\right)$ meaning $\mathbb{E}^{\omega}\left[\int_{S}^{T} f^{2}(t, \omega) d t\right]<\infty$.
[ELV-E 7] For any $f \in \mathcal{V}[S, T]$ there exists a sequence of simple fens $\left\{\phi_{n}\right\} \subset \mathcal{V}[S, T]$ such that

$$
\left\|f-\phi_{n}\right\|_{L^{2}\left(\Omega ; L^{2}[S, T]\right)}^{2}=\mathbb{E}\left[\int_{S}^{T}\left(\phi_{n}(t, \cdot)-f(t, \cdot)\right)^{2} d t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This implies that $\left\{\phi_{n}\right\}$ is Cauchy in the Banach space $L^{2}\left(\Omega ; L^{2}[S, T]\right)$.

## Definition of Itô integral

We define

$$
\int_{S}^{T} f(t, \omega) d W_{t} \stackrel{L^{2}(\Omega)}{:=} \lim _{n \rightarrow \infty} \int_{S}^{T} \phi_{n}(t, \omega) d W_{t}
$$

This limit exists, since by Itô isometry,

$$
\begin{aligned}
\mathbb{E}[ & \left.\left(\int_{S}^{T} \phi_{n}(t, \cdot) d W_{t}-\int_{S}^{T} \phi_{m}(t, \cdot) d W_{t}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\int_{S}^{T} \phi_{n}(t, \cdot)-\phi_{m}(t, \cdot) d W_{t}\right)^{2}\right] \\
& =\mathbb{E}\left[\int_{S}^{T}\left(\phi_{n}(t, \cdot)-\phi_{m}(t, \cdot)\right)^{2} d t\right] \\
& =\left\|\phi_{n}-\phi_{m}\right\|_{L^{2}\left(\Omega ; L^{2}[S, T]\right)}^{2} \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
\end{aligned}
$$

## Properties of the Itô integral

For $f, g \in \mathcal{V}[S, T]$ and $u \in[S, T]$, the following integral properties extend from simple-function setting:

- Mean zero: $\mathbb{E}\left[\int_{S}^{T} f d W_{t}\right]=0$,
- Itô isometry: $\mathbb{E}\left[\left(\int_{S}^{T} f d W_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{S}^{T} f^{2} d t\right]$,
- partition of integral: $\int_{S}^{T} f d W_{t} \stackrel{\text { a.s. }}{=} \int_{S}^{u} f d W_{t}+\int_{u}^{T} f d W_{t}$,
- for any scalar $c \in \mathbb{R}, \int_{S}^{T} f+c g d W_{t} \stackrel{\text { a.s. }}{=} \int_{S}^{T} f d W_{t}+c \int_{S}^{T} g d W_{t}$,
- $\int_{S}^{T} f d W_{t}$ is $\mathcal{F}_{T}$-measurable.


## Overview

## 1 Stochastic integrals

2 Itô integrals

3 Itô's formula

4 Stochastic differential equations

## Definition 2 (1-D Itô process)

Given a Wiener process $W_{t}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$, an Itô process over $[0, T]$ is defined by

$$
X_{t}:=X_{0}+\int_{0}^{t} b(s, \omega) d s+\int_{0}^{t} \sigma(s, \omega) d W_{s}
$$

where $\sigma \in \mathcal{V}[0, T]$ and $b: \Omega \times[0, T] \rightarrow \mathbb{R}$ is $\mathcal{F}_{t}$-adapted and $\int_{0}^{T}|b(t, \omega)| d t<\infty$ for a.a. $\omega$. Or, equivalently,

$$
d X_{t}:=b(s, \omega) d t+\sigma(t, \omega) d W_{t},\left.\quad X_{t}\right|_{t=0}=X_{0}
$$

Question: For an Itô process $X_{t}$ and $f \in C^{2}(\mathbb{R})$, what is the "Itô chain rule" for computing $d f\left(X_{t}\right)=$ ?,
The classic chain rule yields:

$$
d f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) d X_{t}+\underbrace{\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) d X_{t}^{2}+\ldots}_{\text {h.o.t. }}
$$

but since $X_{t}$ has less regularity than in classic settings, it turns out that some "classic h.o.t." needs to be reclassified as leading order.

## Quadratic variation of the Wiener process

The quadtratic variation of $W_{t}$ over $[0, t]$ is defined as

$$
[W, W]_{t}:=\lim _{|\Delta| \downarrow 0} \sum_{k}\left(W_{t_{k+1}}-W_{t_{k}}\right)^{2}
$$

It can be shown that for any $t \geq 0$,

$$
[W, W]_{t} \stackrel{L^{2}(\Omega)}{=} t \quad \text { meaning } \quad \mathbb{E}\left[\left([W, W]_{t}-t\right)^{2}\right]=0
$$

We employ this property to motivate the following Itô integration:

$$
\begin{aligned}
& \int_{0}^{t} W_{s} d W_{s} \approx \sum_{j} W_{t_{j}}\left(W_{t_{j+1}}-W_{t_{j}}\right)=\ldots \\
&=\frac{W_{t}^{2}}{2}-\frac{1}{2} \sum_{j}\left(W_{t_{j+1}}-W_{t_{j}}\right)^{2} \rightarrow \frac{W_{t}^{2}}{2}-\frac{t}{2}
\end{aligned}
$$

This corresponds to the differential equation

$$
W_{t} d W_{t}=\frac{d W_{t}^{2}}{2}-\frac{d t}{2} \quad \text { or equivalently } \quad d W_{t}^{2}=2 W_{t} d W_{t}+d t
$$

Note that this is different from the classic chain rule: $d W_{t}^{2}=2 W_{t} d W_{t}$.

## Theorem 3 (ELV-E 7.6)

Assume $f \in \mathcal{V}[0, T]$ is bounded and continuous for $t \in[0, T]$ for almost all $\omega$. Then, in probability,

$$
\lim _{|\Delta|, 00} \sum_{j} f\left(t_{j}^{*}, \omega\right)\left(W_{t_{j+1}}-W_{t_{j}}\right)^{2}=\int_{0}^{T} f(s, \omega) d s
$$

for any choice $t_{j}^{*} \in\left[t_{j}, t_{j+1}\right]$
This motivates formally writing $\left(d W_{t}\right)^{2}=d t$, and by introducing the additional formal h.o.t. rules

$$
(d t)^{2}=0, \quad \text { and } \quad d t d W=d W d t=0
$$

we derive for the Itô process

$$
d X_{t}=b(s, \omega) d t+\sigma(t, \omega) d W_{t},\left.\quad X_{t}\right|_{t=0}=X_{0}
$$

and $f \in C^{2}(\mathbb{R})$, the 1D Itô's formula:
$d f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) d X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right)\left(d X_{t}\right)^{2}=\left(f^{\prime}\left(X_{t}\right) b+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) \sigma^{2}\right) d t+f^{\prime}\left(X_{t}\right) d W$

## Application of Itô's formula

To evaluate

$$
X_{t}=\int_{0}^{t} W_{s} d W_{s}
$$

consider the detour of introducing $f(x)=x^{2} / 2$ and noting that

$$
X_{t}=\int_{0}^{t} f^{\prime}\left(W_{s}\right) d W_{s}
$$

Next, apply Itô's formula to $Y_{t}=f\left(W_{t}\right)$ :

$$
d Y_{t}=f^{\prime}\left(W_{t}\right) d W_{t}+\frac{1}{2} f^{\prime \prime}\left(W_{t}\right)\left(d W_{t}\right)^{2}=W_{t} d W_{t}+\frac{d t}{2}
$$

Integrating both sides yields,

$$
\frac{W_{t}^{2}}{2}=\int_{0}^{t} W_{s} d W_{s}+\frac{t}{2} \Longrightarrow X_{t}=\frac{W_{t}^{2}}{2}-\frac{t}{2}
$$

## Itô integrals in higher dimensions

Multidimensional Itô integrals of the form

$$
\int_{0}^{T} \sigma(t, \omega) d W_{t}
$$

where

■ each component of $\sigma:[0, T] \times \Omega \rightarrow \mathbb{R}^{d \times n}$ belongs to the function space $\mathcal{V}[0, T]$ and

■ the components of $W_{t}: \Omega \times[0, T] \rightarrow \mathbb{R}^{n}$ are independent Wiener processes.

See [ELV-E 7.2] for more details on this and Itô's formula in higher dimensions.

## Overview

## 1 Stochastic integrals

2 Itô integrals

3 Itô's formula

4 Stochastic differential equations

## Existence and uniqueness of Itô SDE

## Theorem 4 (ELV-E 7.14)

For the Itô SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad \text { for } \quad t \in[0, T],\left.\quad X_{t}\right|_{t=0}=X_{0}
$$

with coefficients $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times n}$ and $W$ an $n$-dimensional Wiener process, assume that for some $K>0$ that

$$
\begin{aligned}
|b(x)-b(y)|+|\sigma(x)-\sigma(y)| & \leq K|x-y| \\
|b(x)|^{2}+|\sigma(x)|^{2} & \leq K\left(1+|x|^{2}\right)
\end{aligned}
$$

for all $x, y \in \mathbb{R}^{d}$ and that $X_{0} \in L^{2}(\Omega)$ is independent from the history of the Wiener paths: $\sigma\left(X_{0}\right) \perp \mathcal{F}_{T}^{W}$. Then there exists a unique solution $X \in L^{2}\left(\Omega ; L^{2}[0, T]\right)$ satisfying $X \in \mathcal{V}[0, T]$ for each component.

Remark: Unless $X_{0}$ is deterministic, the filtration must be augmented $\mathcal{F}_{t}=\mathcal{F}_{t}^{W} \vee \sigma\left(X_{0}\right)=\sigma\left(X_{0},\left\{W_{s}\right\}_{s \leq t}\right)$.

## Proof ideas:

Existence: can be derived through a Picard iteration argument:

$$
X_{t}^{(k+1)}=X_{0}+\int_{0}^{t} b\left(X_{s}^{(k)}\right) d s+\int_{0}^{t} \sigma\left(X_{s}^{(k)}\right) d W_{s}
$$

and $X_{t}^{(0)}:=X_{0}$.
Uniqueness in $L^{2}\left(\Omega ; L^{2}[0, T]\right)$ : Given a pair of solutions $X, \hat{X}$, Itô isometry and the regularity of the coefficients yield

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{t}-\hat{X}_{t}\right|^{2}\right] \leq & 2 \mathbb{E}\left[\left(\int_{0}^{t} b\left(X_{s}\right)-b\left(\hat{X}_{s}\right) d s\right)^{2}\right] \\
& +2 \mathbb{E}\left[\int_{0}^{t}\left(\sigma\left(X_{s}\right)-\sigma\left(\hat{X}_{s}\right)\right)^{2} d s\right] \\
\leq & 2 K^{2}(1+t) \int_{0}^{t} \mathbb{E}\left[\left|X_{s}-\hat{X}_{s}\right|^{2}\right] d s
\end{aligned}
$$

By Grönwall's inequality, $X_{t} \stackrel{\text { a.s. }}{=} \hat{X}_{t}$ for all $t \in[0, T] \cap \mathbb{Q}$. Result follows by the (a.s.) continuity of solutions.

## Example: Geometric Brownian Motion

$$
d N_{t}=r N_{t} d t+\alpha N_{t} d W_{t},\left.\quad N_{t}\right|_{t=0}=N_{0}
$$

$N_{t}$ the non-negative price of an asset, $r, \alpha>$ interest rate and volatility. Assuming $N_{t}>0$ (once $N_{t}=0$, it will remain 0 -valued),

$$
\frac{d N_{t}}{N_{t}}=r d t+\alpha d W_{t}
$$

Applying Ito's formula to $Y_{t}=\log \left(N_{t}\right)$ yields

$$
\begin{aligned}
d \log \left(N_{t}\right) & =\frac{1}{N_{t}} d N_{t}-\frac{1}{2 N_{t}^{2}}\left(d N_{t}\right)^{2} \\
& =\frac{r N_{t} d t+\alpha N_{t} d W_{t}}{N_{t}}-\frac{N_{t}^{2} \alpha^{2} d t}{2 N_{t}^{2}} \\
& =\left(r-\alpha^{2} / 2\right) d t+\alpha d W_{t}
\end{aligned}
$$

and thus

$$
N_{t}=N_{0} e^{\left(r-\alpha^{2} / 2\right) t+\alpha W_{t}}
$$

## Langevin equation

$$
\begin{aligned}
d X_{t} & =V_{t} d t \\
m d V_{t} & =\left(-\gamma V_{t}-U^{\prime}\left(X_{t}\right)\right) d t+\sigma d W_{t}
\end{aligned}
$$

Particle-velocity system $(X, V)$ in a force field potential $U: \mathbb{R} \rightarrow \mathbb{R}$. Friction coefficient $\gamma, \sigma$-magnitude of noise force

This is a "stochastic version" the newtonian dynamics

$$
\begin{aligned}
\dot{x} & =v \\
m \dot{v} & =-U^{\prime}(x)
\end{aligned}
$$



Potentials with local minima lead to pseudo-stable states for $X_{t}$.

## Summary

■ Have introduced stochastic integrals and differential equations.
■ SDE extend the previously studied dynamics $\Psi\left(V_{j}\right)+\xi_{j}$ in many ways:

1 the dynamics may now be nonlinear in both the drift and the diffusion coefficient,

2 the noise enters in a more general way (not only as additive noise) through the diffusion coefficient,

3 the dynamics is now continuous ...so one may generalize observation frequency as well.

■ Next time: Filtering problems with SDE dynamics.

