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3 Itô’s formula

4 Stochastic differential equations

2 / 27



Summary lecture 18

Stochastic processes, filtrations and Wiener processes.

Plan for today: Itô integrals, theory and numerical integration of
stochastic differential equations (SDE)

Vt = V0 +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs
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Construction of stochastic integrals
Seeking to make sense of the SDE

Vt = V0 +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs

we need to define the stochastic integral.
Riemann-Stieltjes approach: let |∆| denote the largest timestep in a mesh
over [0, t] and∫ t

0
σ(Vs)dWs = lim

|∆|→0

∑
k

σ(Vt∗k
)(Wtk+1

−Wtk )

for some t∗k ∈ [tk , tk+1].

Problem: these integrals are well-defined provided σ(Vt) is continuous
(which is reasonable to assume) and Wt has bounded total variation –
which almost surely is not the case for the Wiener process.

Implication: different choices of t∗k may lead to different integral values
(both pathwise and in expectation).
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Example
Consider the integral

∫ t
0 WsdWs , and three different choices for integration

point:

t∗k =


left: tk giving I L =

∑
k Wtk (Wtk+1

−Wtk )

right: tk+1 giving IR =
∑

k Wtk+1
(Wtk+1

−Wtk )

middle: tk+1/2 giving IM =
∑

k Wtk+1/2
(Wtk+1

−Wtk )

And

E
[
I L
]

=
∑
k

E
[
Wtk (Wtk+1

−Wtk )
] Wtk

⊥(Wtk+1
−Wtk

)
=

∑
k

E [Wtk ]E
[
Wtk+1

−Wtk

]
= 0,

while
E
[
IR
]

=
∑
k

E
[
Wtk+1

(Wtk+1
−Wtk )

]
=
∑
k

E
[ (

(Wtk+1
−Wtk ) + Wtk

)
(Wtk+1

−Wtk )
]

=
∑
k

E
[

(Wtk+1
−Wtk )2

]
+ I L =

∑
k

(tk+1 − tk) = t

and E
[
IM
]

= t/2.
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Itô integral

Given a filtered probability space (Ω,F , {Ft}t≥0,P), with Ft = FW
t , the

Itô integral is defined by∫ t

0
σ(Vs)dWs := lim

|∆|→0

∑
k

σ(Vtk )(Wtk+1
−Wtk )

where ∆ denotes a mesh/subdivision of [0, t] and one assumes that both
Vt and Wt are Ft-adapted.
It remains to describe what we mean by “=” in the above definition.

8 / 27



Integrals of simple and Ft-adapted functions
Given a mesh {τk}nk=0 over an interval [S ,T ], we consider simple
functions of the form

φn(ω, t) :=
n−1∑
j=1

ej(ω)1[τj ,τj+1)(t)

with ej being Fτj -measurable. This makes also φn Ft-measurable.

The Itô integral is given by∫ T

S

φn(t, ω)dWt := lim
|∆|→0

∑
k

φn(tk , ω)(Wtk+1
−Wtk ) =

n−1∑
j=0

ej(ω)(Wτj+1 −Wτj )

Motivation: Summing over a finer mesh ∆ ⊃ {τk}nk=0 leads to
telescoping sums of Wiener increments over each τ − interval : if
[tk1 , tk2) = [τj , τj+1), then φn(·, ω)|[τj ,τj+1) = φn(τj , ω) and

k2−1∑
k=k1

φn(tk , ω)(Wtk+1
−Wtk ) = φn(τj , ω)

k2−1∑
k=k1

(Wtk+1
−Wtk ) = ej(ω)(Wτj+1 −Wτj )
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Properties of simple-function stochastic integrals

Since ej(ω) is Fτj -measurable, it turns out that

ej ⊥ ∆Wk := Wτk+1
−Wτk for any k ≥ j ,

(since Fτj ⊥ σ({Ws −Wτj}s≥τj )).

Property 1: The Itô integral has mean zero:

E
[ ∫ T

S
φn(t, ·)dWt

]
=

n−1∑
j=0

E [ ej(·)∆Wj ] =
n−1∑
j=0

E [ ej(·)]E [ ∆Wj ] = 0

Property 2: Itô isometry:

E

[(∫ T

S
φn(t, ·)dWt

)2
]

= E
[ ∫ T

S
φ2
n(t, ·)dt

]
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Indepencence of σ−algebras vs rv [cf. Durrett]
Given two rv on X : (Ω,F)→ (R,B) and Y : (Ω,F)→ (R,B) defined on
the same probability space, we recall that

X ⊥ Y ⇐⇒ P(X−1(B1) ∩ Y−1(B2)) = P(X−1(B1))P(Y−1(B2)) ∀B1,B2 ∈ B.

The independence condition is equivalent to

P(C1 ∩ C2) = P(C1)P(C2) ∀C1 ∈ σ(X ) and C2 ∈ σ(Y ),

since any C1 ∈ σ(X ) can be written C1 = X−1(B1) for some B1 ∈ B and
any C2 ∈ σ(Y ), C2 = Y−1(B2) for some B2 ∈ B.

Equivalence ⊥ of rv and ⊥ of σ-algebras: X ⊥ Y ⇐⇒ σ(X ) ⊥ σ(Y ).

This naturally extends to point evaluations etc of stochastic processes.
E.g.,

ej ⊥ ∆Wj ⇐⇒ σ(ej) ⊥ σ(∆Wj)

And this holds since since σ(ej) ⊂ Fτj ⊥ σ({Ws −Wτj )}s≥τj ) ⊃ σ(∆Wj).
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Proof of Itô isometry:

E

[(∫ T

S
φn(t, ·)dWt

)2
]

= E

∑
j ,k

ejek∆Wj∆Wk


=
∑
j

E
[
e2
j ∆W 2

j

]
+ 2

∑
j<k

E

∑
j ,k

ejek∆Wj∆Wk


=
∑
j

E
[
e2
j

]
E
[

∆W 2
j

]
+ 2

∑
j<k

E [ ejek∆Wj ]E [ ∆Wk ]

=
∑
j

E
[
e2
j

]
(τj+1 − τj)

= E
[ ∫ T

S
φ2
n(t, ·)dt

]
Where we used that ej ⊥ ∆Wj and that for k > j , ejek∆Wj ⊥ ∆Wk

(since Fτk ⊥ σ({Ws −Wτk}s≥τk ).
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We next extend the Itô integral to more general integrands:

Definition 1

Let V[S ,T ] be the class of functions f (t, ω) ∈ R that satisfying

f : [S ,T ]× Ω→ R is B × cF -measurable (i.e., f −1(B) ∈ B × F for
any B ∈ R)

f is Ft-adapted, (i.e., f (t, ·) is Ft-measurable for each t ∈ [S ,T ])

f ∈ L2(Ω; L2[S ,T ]) meaning Eω
[ ∫ T

S f 2(t, ω)dt
]
<∞.

[ELV-E 7] For any f ∈ V[S ,T ] there exists a sequence of simple fcns
{φn} ⊂ V[S ,T ] such that

‖f − φn‖2
L2(Ω;L2[S ,T ]) = E

[ ∫ T

S
(φn(t, ·)− f (t, ·))2 dt

]
→ 0 as n→∞.

This implies that {φn} is Cauchy in the Banach space L2(Ω; L2[S ,T ]).
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Definition of Itô integral

We define
∫ T

S
f (t, ω)dWt

L2(Ω)
:= lim

n→∞

∫ T

S
φn(t, ω)dWt

This limit exists, since by Itô isometry,

E

[(∫ T

S
φn(t, ·)dWt −

∫ T

S
φm(t, ·)dWt

)2
]

= E

[(∫ T

S
φn(t, ·)− φm(t, ·)dWt

)2
]

= E
[ ∫ T

S
(φn(t, ·)− φm(t, ·))2dt

]
= ‖φn − φm‖2

L2(Ω;L2[S,T ]) → 0 as m, n→∞.
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Properties of the Itô integral

For f , g ∈ V[S ,T ] and u ∈ [S ,T ], the following integral properties extend
from simple-function setting:

Mean zero: E
[ ∫ T

S fdWt

]
= 0,

Itô isometry: E
[(∫ T

S fdWt

)2
]

= E
[ ∫ T

S f 2dt
]
,

partition of integral:
∫ T
S fdWt

a.s.
=
∫ u
S fdWt +

∫ T
u fdWt ,

for any scalar c ∈ R,
∫ T
S f + cgdWt

a.s.
=
∫ T
S fdWt + c

∫ T
S gdWt ,

∫ T
S fdWt is FT -measurable.
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2 Itô integrals
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Definition 2 (1-D Itô process)

Given a Wiener process Wt defined on (Ω,F ,P), an Itô process over [0,T ]
is defined by

Xt := X0 +

∫ t

0
b(s, ω)ds +

∫ t

0
σ(s, ω)dWs

where σ ∈ V[0,T ] and b : Ω× [0,T ]→ R is Ft-adapted and∫ T
0 |b(t, ω)|dt <∞ for a.a. ω. Or, equivalently,

dXt := b(s, ω)dt + σ(t, ω)dWt , Xt |t=0 = X0.

Question: For an Itô process Xt and f ∈ C 2(R), what is the “Itô chain
rule” for computing df (Xt) =?,
The classic chain rule yields:

df (Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)dX

2
t + . . .︸ ︷︷ ︸

h.o.t.

but since Xt has less regularity than in classic settings, it turns out that
some “classic h.o.t.” needs to be reclassified as leading order.
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Quadratic variation of the Wiener process
The quadtratic variation of Wt over [0, t] is defined as

[W ,W ]t := lim
|∆|↓0

∑
k

(Wtk+1
−Wtk )2

It can be shown that for any t ≥ 0,

[W ,W ]t
L2(Ω)

= t meaning E
[

([W ,W ]t − t)2
]

= 0.

We employ this property to motivate the following Itô integration:∫ t

0
WsdWs ≈

∑
j

Wtj (Wtj+1 −Wtj ) = . . .

=
W 2

t

2
− 1

2

∑
j

(Wtj+1 −Wtj )
2 → W 2

t

2
− t

2
.

This corresponds to the differential equation

WtdWt =
dW 2

t

2
− dt

2
or equivalently dW 2

t = 2WtdWt + dt

Note that this is different from the classic chain rule: dW 2
t = 2WtdWt .18 / 27



Theorem 3 (ELV-E 7.6)

Assume f ∈ V[0,T ] is bounded and continuous for t ∈ [0,T ] for almost all
ω. Then, in probability,

lim
|∆|↓0

∑
j

f (t∗j , ω)(Wtj+1 −Wtj )
2 =

∫ T

0
f (s, ω)ds

for any choice t∗j ∈ [tj , tj+1]

This motivates formally writing (dWt)
2 = dt, and by introducing the

additional formal h.o.t. rules

(dt)2 = 0, and dtdW = dWdt = 0

we derive for the Itô process

dXt = b(s, ω)dt + σ(t, ω)dWt , Xt |t=0 = X0,

and f ∈ C 2(R), the 1D Itô’s formula:

df (Xt) = f ′(Xt)dXt+
1

2
f ′′(Xt)(dXt)

2 =
(
f ′(Xt)b+

1

2
f ′′(Xt)σ

2
)
dt+f ′(Xt)dWt .
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Application of Itô’s formula

To evaluate

Xt =

∫ t

0
WsdWs

consider the detour of introducing f (x) = x2/2 and noting that

Xt =

∫ t

0
f ′(Ws)dWs .

Next, apply Itô’s formula to Yt = f (Wt):

dYt = f ′(Wt)dWt +
1

2
f ′′(Wt)(dWt)

2 = WtdWt +
dt

2
.

Integrating both sides yields,

W 2
t

2
=

∫ t

0
WsdWs +

t

2
=⇒ Xt =

W 2
t

2
− t

2
.
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Itô integrals in higher dimensions

Multidimensional Itô integrals of the form∫ T

0
σ(t, ω)dWt

where

each component of σ : [0,T ]× Ω→ Rd×n belongs to the function
space V[0,T ] and

the components of Wt : Ω× [0,T ]→ Rn are independent Wiener
processes.

See [ELV-E 7.2] for more details on this and Itô’s formula in higher
dimensions.

21 / 27



Overview

1 Stochastic integrals
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Existence and uniqueness of Itô SDE

Theorem 4 (ELV-E 7.14)

For the Itô SDE

dXt = b(Xt)dt + σ(Xt)dWt , for t ∈ [0,T ], Xt |t=0 = X0

with coefficients b : Rd → Rd , σ : Rd → Rd×n and W an n−dimensional
Wiener process, assume that for some K > 0 that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K |x − y |
|b(x)|2 + |σ(x)|2 ≤ K (1 + |x |2)

for all x , y ∈ Rd and that X0 ∈ L2(Ω) is independent from the history of
the Wiener paths: σ(X0) ⊥ FW

T . Then there exists a unique solution
X ∈ L2(Ω; L2[0,T ]) satisfying X ∈ V[0,T ] for each component.

Remark: Unless X0 is deterministic, the filtration must be augmented
Ft = FW

t ∨ σ(X0) = σ(X0, {Ws}s≤t).
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Proof ideas:
Existence: can be derived through a Picard iteration argument:

X
(k+1)
t = X0 +

∫ t

0
b(X

(k)
s ) ds +

∫ t

0
σ(X

(k)
s )dWs

and X
(0)
t := X0.

Uniqueness in L2(Ω; L2[0,T ]): Given a pair of solutions X , X̂ ,
Itô isometry and the regularity of the coefficients yield

E
[
|Xt − X̂t |2

]
≤ 2E

[(∫ t

0
b(Xs)− b(X̂s)ds

)2
]

+ 2E
[ ∫ t

0
(σ(Xs)− σ(X̂s))2ds

]
≤ 2K 2(1 + t)

∫ t

0
E
[
|Xs − X̂s |2

]
ds

By Grönwall’s inequality, Xt
a.s.
= X̂t for all t ∈ [0,T ] ∩Q. Result follows by

the (a.s.) continuity of solutions.
24 / 27



Example: Geometric Brownian Motion

dNt = rNtdt + αNtdWt , Nt |t=0 = N0

Nt the non-negative price of an asset, r , α > interest rate and volatility.
Assuming Nt > 0 (once Nt = 0, it will remain 0-valued),

dNt

Nt
= rdt + αdWt ,

Applying Ito’s formula to Yt = log(Nt) yields

d log(Nt) =
1

Nt
dNt −

1

2N2
t

(dNt)
2

=
rNtdt + αNtdWt

Nt
− N2

t α
2dt

2N2
t

= (r − α2/2)dt + αdWt

and thus
Nt = N0e

(r−α2/2)t+αWt .
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Langevin equation

dXt = Vtdt

mdVt = (−γVt − U ′(Xt))dt + σdWt

Particle-velocity system (X ,V ) in a force field potential U : R→ R.
Friction coefficient γ, σ - magnitude of noise force

This is a “stochastic version” the
newtonian dynamics

ẋ = v

mv̇ = −U ′(x)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

0

1

2

3

4

5

6

7

8

9

U

Potentials with local minima lead to
pseudo-stable states for Xt .
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Summary

Have introduced stochastic integrals and differential equations.

SDE extend the previously studied dynamics Ψ(Vj) + ξj in many
ways:

1 the dynamics may now be nonlinear in both the drift and the diffusion
coefficient,

2 the noise enters in a more general way (not only as additive noise)
through the diffusion coefficient,

3 the dynamics is now continuous . . . so one may generalize observation
frequency as well.

Next time: Filtering problems with SDE dynamics.
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