Mathematics and numerics for data assimilation and state estimation - Lecture 2

Summer semester 2020

Overview

1 Summary of lecture 1

2 Discrete random variables
■ Independence of random variables and events

- Expected value and moments

On ubungs, presentation and lectures

- 10:30-12:00 on most Fridays.

■ Structure: 5-10 questions, which I will put up in pdf form on course webpage and on Moodle. Roughly 30 minutes work in groups or alone, where I will be present for discussions, thereafter solutions in plenary by me and/or you.

■ No hand-ins, unless you want to (i.e., only for feedbac, kdoes not affect grade).

- The only "graded" part of the course, in the form of bonus points, is the presentation early July, and, of course, the final exam.

■ Presentations can be done alone or in groups of maximum 2 people.
■ Lectures after July 17th moved to first week of June.

Overview

1 Summary of lecture 1

2 Discrete random variables

■ Independence of random variables and events

- Expected value and moments

Measurable spaces and probability measures

- introduced a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$

■ discrete random variable $X: \Omega \rightarrow A=\left\{a_{1}, a_{2}, \ldots,\right\}$ satisfies the event constraints

$$
X^{-1}(a)=\{\omega \in \Omega \mid X(\omega)=a\} \in \mathcal{F} \quad \text { for all } \quad a \in A
$$

■ X can be represented by a simple function

$$
X(\omega)=\sum_{a \in A} a \mathbb{1}_{X=a}(\omega) . \quad \text { where } \mathbb{1}_{X=a}(\omega):= \begin{cases}1 & \text { if } X(\omega)=a \\ 0 & \text { otherwise }\end{cases}
$$

Overview

1 Summary of lecture 1

2 Discrete random variables
■ Independence of random variables and events

- Expected value and moments

Discrete random variables 2

Example 1 (Coin toss, $X \sim \operatorname{Bernoulli}(p)$)

- image-space outcomes $A=\{0,1\}$,

$$
\Omega=\{\text { Heads, Tails }\}, \quad \mathcal{F}=\{\emptyset,\{\text { Heads }\},\{\text { Tails }\}, \Omega\}
$$

- $X($ Heads $)=1$ and $X($ Tails $)=0$ and

$$
\mathbb{P}(X=1)=\mathbb{P}\left(X^{-1}(1)\right)=\mathbb{P}(\text { Heads })=p, \quad \mathbb{P}(X=0)=\mathbb{P}(\text { Tails })=1-p .
$$

Comment from last lecture: image-outcomes $\left\{a_{1}, a_{2}, \ldots,\right\}$ may not be associated uniquely to (probability-space) outcomes in Ω.

Larger set of outcomes in Ω than in A

Alternative, and admittedly confusing, probability space for the same rv as in the preceding example:

Example 2 (Coin toss, $X \sim \operatorname{Bernoulli}(p)$)

■ image-space outcomes $A=\{0,1\} \subset \mathbb{R}$,
$■ \Omega=\{$ Heads, Tails, Nose $\}$ and

$$
\begin{aligned}
\mathcal{F}=\{\emptyset,\{\text { Nose }\},\{\text { Heads }\},\{\text { Tails }\}, & \{\text { Nose }, \text { Heads }\}, \\
& \{\text { Nose, Tails }\},\{\text { Heads, Tails }\}, \Omega\}
\end{aligned}
$$

$\square X^{-1}(1)=\{$ Heads, Nose $\}$ and $X^{-1}(0)=\{$ Tails $\}$ and

$$
\begin{aligned}
& \mathbb{P}(X=1)=\mathbb{P}\left(X^{-1}(1)\right)=\mathbb{P}(\{\text { Heads, Nose }\})=p \\
& \mathbb{P}(X=0)=\mathbb{P}(\text { Tails })=1-p
\end{aligned}
$$

Motivation: if, for instance, you want to represent both a coin toss and a three-sided-die toss in the same probability space.

Joint rv

If $X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow B=\left\{b_{1}, b_{2}, \ldots\right\}$ are two discrete $r v$ on the same probability space, then
$\boxed{\square}(X, Y): \Omega \rightarrow A \times B$ is also a discrete rv with countable set of outcomes

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

- with joint distribution:

$$
\mathbb{P}_{(X, Y)}((a, b))=\mathbb{P}(X=a, Y=b)
$$

- Question: why is $\mathbb{P}(X=a, Y=b)$ defined? Answer: when we say X and Y are defined on the same probability space, this entails that

$$
\{X=a\},\{Y=b\} \in \mathcal{F} \quad \underbrace{\Longrightarrow} \quad\{X=a\} \cap\{Y=b\} \in \mathcal{F}
$$

since \mathcal{F} is σ-algebra
and

$$
\mathbb{P}(X=a, Y=b)=\mathbb{P}(\{X=a\} \cap\{Y=b\})
$$

Definition 3 (Independence of two rv)

If $X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow B=\left\{b_{1}, b_{2}, \ldots\right\}$ are two discrete $r v$ on the same probability space ${ }^{a}$ are said to be independent random variables if

$$
\mathbb{P}(X=a, Y=b)=\mathbb{P}(X=a) \mathbb{P}(Y=b), \quad \forall a \in A \quad b \in B
$$

Notation: $X \perp Y$.
${ }^{\text {a }}$ From now on, it will be implicitly assumed that all rv are defined on the same probability space, unless otherwise stated.

Example 4

Given independent coin tosses $X_{k} \sim \operatorname{Bernoulli}(1 / 2)$ for $k=1,2$, describe the smallest possible σ-algebra on which the $\mathrm{rv}\left(X_{1}, X_{2}\right)$ is defined.

Solution:

Example 5 (one coin toss and one three-sided-die toss)

- Consider $X: \Omega \rightarrow\{0,1\}$ and and $Y: \Omega \rightarrow\{1,2,3\}$ both defined on the probability space from Example 2.
- Recall that $X^{-1}(1)=\{$ Heads, Nose $\}$ and $X^{-1}(0)=\{$ Tails $\}$ and let us assume that

$$
\mathbb{P}(X=1)=1 / 2, \quad \mathbb{P}(X=0)=1 / 2
$$

and that $Y^{-1}(1)=\{$ Heads $\}, Y^{-1}(2)=\{$ Nose $\}$ and $Y^{-1}(3)=\{$ Tails $\}$.

- Quation: For $p=1 / 2$, what is

$$
\mathbb{P}(X=0, Y \in\{1,2\})=?
$$

■ Question: Are X and Y independent?

Independence of multiple rv

Definition 6

Let $X_{k}: \Omega \rightarrow A_{k}$ for $k=1,2, \ldots, N$, be a finite sequence of discrete rv. Then $X_{1}, X_{2}, \ldots, X_{N}$ are independent provided

$$
\begin{equation*}
\mathbb{P}\left(X_{1}=a_{1}, X_{2}=a_{2}, \ldots, X_{N}=a_{N}\right)=\prod_{k=1}^{N} \mathbb{P}\left(X_{k}=a_{k}\right) \tag{1}
\end{equation*}
$$

for all $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{N}$.
Extension: A countable sequence of discrete rv X_{1}, X_{2}, \ldots are independent provided every finite subsequence $\left\{X_{k_{j}}\right\}_{j}$ satisfies (1).

Example 7

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ for $i=1, \ldots, N$ with joint distribution

$$
\mathbb{P}\left(X_{1}=a_{1}, X_{2}=a_{2}, \ldots, X_{N}=a_{N}\right)=p^{\sum_{k=1}^{N} a_{k}}(1-p)^{N-\sum_{k=1}^{N} a_{k}}
$$

for any $a_{1}, \ldots, a_{N} \in\{0,1\}$. Then X_{1}, X_{2}, \ldots are independent and identically distributed (iid).

Example 8 (Functions of joint discrete rv are also discrete rv)

Let $X_{i} \sim \operatorname{Bernoulli}(p)$ be independent for $i=1,2, \ldots, N$ and

$$
S_{N}=f\left(X_{1}, \ldots, X_{N}\right):=\sum_{i=1}^{N} X_{i}
$$

Then

$$
\mathbb{P}\left(S_{N}=k\right)=\binom{N}{k}(1-p)^{N-k} p^{k}
$$

S_{N} is called the Binomial distribution with degrees of freedom N and p, and we write $S_{N} \sim B(N, p)$.

Comment: the number of different ways the event $\left\{S_{N}=k\right\}$ when flipping N independent coins once equals factor in the $k+1$-th summand of

$$
((1-p)+p)^{N}=(1-p)^{N}+\binom{N}{1} p(1-p)^{N-1}+\ldots+\binom{N}{k} p^{k}(1-p)^{N-k}+\ldots
$$

Independence of events

Equation (1) is on the form:
$\mathbb{P}\left(\bigcap_{k=1}^{N}\left\{X_{k}=a_{k}\right\}\right)=\mathbb{P}($ intersection of events $)=$ Product of $[\mathbb{P}($ each event $)]$

Definition 9

A finite sequence of events $H_{1}, H_{2}, \ldots, H_{N}$ that belongs to \mathcal{F} are independent provided

$$
\begin{equation*}
\mathbb{P}\left(\bigcap_{k=1}^{N} H_{k}\right)=\prod_{k=1}^{N} \mathbb{P}\left(H_{k}\right) \tag{2}
\end{equation*}
$$

A countable sequence of events A_{1}, A_{2}, belonging to \mathcal{F} are independent provided finite subsequence $\left\{A_{k_{j}}\right\}_{j}$ satisfies (2).

Connection between independence of rv and independence

 of eventsGiven a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we can assign an rv to each event $H \in \mathcal{F}$ as follows

$$
\mathbb{1}_{H}(\omega):=\left\{\begin{array}{ll}
1 & \omega \in H \\
0 & \text { otherwise }
\end{array} .\right.
$$

Easy consequence of preceding definition: $\mathbb{1}_{H_{1}}$ and $\mathbb{1}_{H_{2}}$ are independent if and only if

$$
\mathbb{P}\left(H_{1} \cap H_{2}\right)=\mathbb{P}\left(H_{1}\right) \mathbb{P}\left(H_{2}\right) .
$$

Expectation of $r v$

Definition 10

For a discrete rv $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$, the expectation X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\sum_{a \in A} a \mathbb{P}(X=a)
$$

Motivation of the above integral:

$$
\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=
$$

- The condition

$$
\mathbb{E}[|X|]=\sum_{a \in A}|a| \mathbb{P}(X=a)<\infty
$$

is a sufficent condition for $\mathbb{E}[X]$ being defined and bounded.

- Example for $X \sim \operatorname{Beronoulli}(p)$

$$
\mathbb{E}[X]=?
$$

Expectation of $r v$

Definition 11

For a discrete rv $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$, the expectation X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\sum_{a \in A} a \mathbb{P}(X=a)
$$

- The condition

$$
\mathbb{E}[|X|]=\sum_{a \in A}|a| \mathbb{P}(X=a)<\infty
$$

is a sufficent condition for $\mathbb{E}[X]$ being defined and bounded.
■ For mappings $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ and $r v f(X)$ the above definition readily extends:

$$
\mathbb{E}[f(X)]=\sum_{a \in A} f(a) \mathbb{P}(X=a)
$$

- Example for $X \sim \operatorname{Beronoulli}(p)$

$$
\mathbb{E}[X]=
$$

Properties of the expectation

■ For mappings $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ and $r v f(X)$, the expectation becomes

$$
\mathbb{E}[f(X)]=\sum_{a \in A} f(a) \mathbb{P}(X=a)
$$

- For a pair of $r v X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{d}$, it holds for any $c \in \mathbb{R}$, that

$$
\mathbb{E}[X+c Y]=\mathbb{E}[X]+c \mathbb{E}[Y]
$$

provided $\mathbb{E}[|X|]+\mathbb{E}[|Y|]<\infty$ (sufficient condition).
Motivation:

Properties of the expectation 2

■ Probability of events can be expressed through expectations:

$$
\mathbb{P}(H)=
$$

$$
=\mathbb{E}\left[\mathbb{1}_{H}\right]
$$

for any $H \in \mathcal{F}$.
■ Expectation of discrete rv of the form $f(X, Y)$ where $X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow B$:

$$
\mathbb{E}[f(X, Y)]=
$$

Variance of an rv

■ For $X: \Omega \rightarrow A \subset \mathbb{R}$

$$
F(k)=\mathbb{E}\left[(X-k)^{2}\right]
$$

is the squared deviation of X from k in expectation.
■ For $\mu:=\mathbb{E}[X]$, and provided $\mathbb{E}\left[X^{2}\right]<\infty$, it can be shown that

$$
F(\mu) \leq F(k) \quad \text { for all } \quad k \in \mathbb{R}
$$

- Which motivates the variance of X :

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mu)^{2}\right]
$$

■ For $X \sim \operatorname{Bernolli}(p), \mu=p$ and

$$
\operatorname{Var}(X)=
$$

Notation with same meaning

For events $H_{1}, H_{2}, \ldots \in \mathcal{F}$, the following notation is used interchangeably in the literature

$$
\mathbb{P}\left(H_{1} H_{2} \ldots H_{n}\right)=\mathbb{P}\left(H_{1}, H_{2}, \ldots, H_{n}\right)=\mathbb{P}\left(\bigcap_{j=1}^{n} H_{j}\right) .
$$

And since

$$
\mathbb{1}_{\bigcap_{j=1}^{n} H_{j}}=\prod_{i=1}^{n} \mathbb{1}_{H_{j}}
$$

we have that

$$
\mathbb{P}\left(\bigcap_{j=1}^{n} H_{j}\right)=\mathbb{E}\left[\mathbb{1}_{\bigcap_{j=1}^{n} H_{j}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} \mathbb{1}_{H_{j}}\right]
$$

Next time

■ Conditional expectations and probabilities

■ Convergence of random variables

■ Random walks and discrete time Markov Chains

