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On ubungs, presentation and lectures

10:30-12:00 on most Fridays.

Structure: 5-10 questions, which I will put up in pdf form on course
webpage and on Moodle. Roughly 30 minutes work in groups or
alone, where I will be present for discussions, thereafter solutions in
plenary by me and/or you.

No hand-ins, unless you want to (i.e., only for feedbac, kdoes not
affect grade).

The only “graded” part of the course, in the form of bonus points, is
the presentation early July, and, of course, the final exam.

Presentations can be done alone or in groups of maximum 2 people.

Lectures after July 17th moved to first week of June.
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Measurable spaces and probability measures

introduced a probabilty space (Ω,F ,P)

discrete random variable X : Ω→ A = {a1, a2, . . . , } satisfies the
event constraints

X−1(a) = {ω ∈ Ω | X (ω) = a} ∈ F for all a ∈ A.

X can be represented by a simple function

X (ω) =
∑
a∈A

a1X=a(ω). where 1X=a(ω) :=

{
1 if X (ω) = a

0 otherwise
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Discrete random variables 2

Example 1 (Coin toss, X ∼ Bernoulli(p))

image-space outcomes A = {0, 1},

Ω = {Heads,Tails}, F = {∅, {Heads}, {Tails},Ω}

X (Heads) = 1 and X (Tails) = 0 and

P(X = 1) = P(X−1(1)) = P(Heads) = p, P(X = 0) = P(Tails) = 1− p.

Comment from last lecture: image-outcomes {a1, a2, . . . , } may not be
associated uniquely to (probability-space) outcomes in Ω.
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Larger set of outcomes in Ω than in A
Alternative, and admittedly confusing, probability space for the same rv as
in the preceding example:

Example 2 (Coin toss, X ∼ Bernoulli(p) )

image-space outcomes A = {0, 1} ⊂ R,

Ω = {Heads,Tails,Nose} and

F = {∅, {Nose}, {Heads}, {Tails}, {Nose,Heads},
{Nose,Tails}, {Heads,Tails},Ω}

X−1(1) = {Heads,Nose} and X−1(0) = {Tails} and

P(X = 1) = P(X−1(1)) = P({Heads,Nose}) = p,

P(X = 0) = P(Tails) = 1− p.

Motivation: if, for instance, you want to represent both a coin toss and a
three-sided-die toss in the same probability space.
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Joint rv
If X : Ω→ A and Y : Ω→ B = {b1, b2, . . .} are two discrete rv on the
same probability space, then

(X ,Y ) : Ω→ A× B is also a discrete rv with countable set of
outcomes

A× B = {(a, b) | a ∈ A, b ∈ B}.

with joint distribution:

P(X ,Y )((a, b)) = P(X = a,Y = b).

Question: why is P(X = a,Y = b) defined? Answer: when we say X
and Y are defined on the same probability space, this entails that

{X = a}, {Y = b} ∈ F =⇒︸ ︷︷ ︸
since F is σ−algebra

{X = a} ∩ {Y = b} ∈ F ,

and
P(X = a,Y = b) = P({X = a} ∩ {Y = b}).
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Definition 3 (Independence of two rv)

If X : Ω→ A and Y : Ω→ B = {b1, b2, . . .} are two discrete rv on the
same probability spacea are said to be independent random variables if

P(X = a,Y = b) = P(X = a)P(Y = b), ∀a ∈ A b ∈ B.

Notation: X ⊥ Y .

aFrom now on, it will be implicitly assumed that all rv are defined on the
same probability space, unless otherwise stated.

Example 4

Given independent coin tosses Xk ∼ Bernoulli(1/2) for k = 1, 2, describe
the smallest possible σ-algebra on which the rv (X1,X2) is defined.
Solution:
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Example 5 (one coin toss and one three-sided-die toss)

Consider X : Ω→ {0, 1} and and Y : Ω→ {1, 2, 3}
both defined on the probability space from
Example 2.

Recall that X−1(1) = {Heads,Nose} and
X−1(0) = {Tails} and let us assume that

P(X = 1) = 1/2, P(X = 0) = 1/2

and that Y−1(1) = {Heads}, Y−1(2) = {Nose} and
Y−1(3) = {Tails}.
Quation: For p = 1/2, what is

P(X = 0,Y ∈ {1, 2}) =?

Question: Are X and Y independent?
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Independence of multiple rv

Definition 6

Let Xk : Ω→ Ak for k = 1, 2, . . . ,N, be a finite sequence of discrete rv.
Then X1,X2, . . . ,XN are independent provided

P (X1 = a1,X2 = a2, . . . ,XN = aN) =
N∏

k=1

P (Xk = ak) (1)

for all a1 ∈ A1, a2 ∈ A2, . . . , an ∈ AN .
Extension: A countable sequence of discrete rv X1,X2, . . . are
independent provided every finite subsequence {Xkj}j satisfies (1).
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Example 7

Let Xi ∼ Bernoulli(p) for i = 1, . . . ,N with joint distribution

P (X1 = a1,X2 = a2, . . . ,XN = aN) = p
∑N

k=1 ak (1− p)N−
∑N

k=1 ak

for any a1, . . . , aN ∈ {0, 1}. Then X1,X2, . . . are independent and
identically distributed (iid).
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Example 8 (Functions of joint discrete rv are also discrete rv)

Let Xi ∼ Bernoulli(p) be independent for i = 1, 2, . . . ,N and

SN = f (X1, . . . ,XN) :=
N∑
i=1

Xi .

Then

P (SN = k) =

(
N

k

)
(1− p)N−kpk

SN is called the Binomial distribution with degrees of freedom N and p,
and we write SN ∼ B(N, p).

Comment: the number of different ways the event {SN = k} when flipping
N independent coins once equals factor in the k + 1-th summand of

((1−p)+p)N = (1−p)N +

(
N

1

)
p(1−p)N−1 +. . .+

(
N

k

)
pk(1−p)N−k +. . .
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Independence of events

Equation (1) is on the form:

P

(
N⋂

k=1

{Xk = ak}

)
= P(intersection of events) = Product of

[
P(each event)

]
.

Definition 9

A finite sequence of events H1,H2, . . . ,HN that belongs to F are
independent provided

P

(
N⋂

k=1

Hk

)
=

N∏
k=1

P (Hk) (2)

A countable sequence of events A1,A2, belonging to F are independent
provided finite subsequence {Akj}j satisfies (2).
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Connection between independence of rv and independence
of events

Given a probability space (Ω,F ,P), we can assign an rv to each event
H ∈ F as follows

1H(ω) :=

{
1 ω ∈ H

0 otherwise
.

Easy consequence of preceding definition: 1H1 and 1H2 are independent if
and only if

P(H1 ∩ H2) = P(H1)P(H2).
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Expectation of rv

Definition 10

For a discrete rv X : Ω→ A ⊂ Rd , the expectation X is defined as

E[X ] :=

∫
Ω
X (ω)P(dω) =

∑
a∈A

aP (X = a)

Motivation of the above integral:∫
Ω
X (ω)P(dω) =

The condition
E[|X |] =

∑
a∈A
|a|P (X = a) <∞

is a sufficent condition for E[X ] being defined and bounded.

Example for X ∼ Beronoulli(p)
E[X ] =?
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Expectation of rv

Definition 11

For a discrete rv X : Ω→ A ⊂ Rd , the expectation X is defined as

E[X ] :=

∫
Ω
X (ω)P(dω) =

∑
a∈A

aP (X = a)

The condition
E[|X |] =

∑
a∈A
|a|P (X = a) <∞

is a sufficent condition for E[X ] being defined and bounded.

For mappings f : Rd → Rk and rv f (X ) the above definition readily
extends:

E[f (X )] =
∑
a∈A

f (a)P (X = a) .

Example for X ∼ Beronoulli(p)
E[X ] =
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Properties of the expectation

For mappings f : Rd → Rk and rv f (X ), the expectation becomes

E[f (X )] =
∑
a∈A

f (a)P (X = a) .

For a pair of rv X : Ω→ A ⊂ Rd and Y : Ω→ B ⊂ Rd , it holds for
any c ∈ R, that

E[X + cY ] = E[X ] + c E[Y ]

provided E[|X |] + E[|Y |] <∞ (sufficient condition).

Motivation:
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Properties of the expectation 2

Probability of events can be expressed through expectations:

P (H) = = E[1H ]

for any H ∈ F .

Expectation of discrete rv of the form f (X ,Y ) where X : Ω→ A and
Y : Ω→ B:

E[f (X ,Y )] =
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Variance of an rv

For X : Ω→ A ⊂ R
F (k) = E[(X − k)2]

is the squared deviation of X from k in expectation.

For µ := E[X ], and provided E[X 2] <∞, it can be shown that

F (µ) ≤ F (k) for all k ∈ R,

Which motivates the variance of X :

Var(X ) := E[(X − µ)2]

For X ∼ Bernolli(p), µ = p and

Var(X ) =
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Notation with same meaning

For events H1,H2, . . . ∈ F , the following notation is used interchangeably
in the literature

P (H1H2 . . .Hn) = P (H1,H2, . . . ,Hn) = P

 n⋂
j=1

Hj

 .

And since

1⋂n
j=1 Hj

=
n∏

i=1

1Hj
.

we have that

P

 n⋂
j=1

Hj

 = E[1⋂n
j=1 Hj

] = E[
n∏

i=1

1Hj
].
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Next time

Conditional expectations and probabilities

Convergence of random variables

Random walks and discrete time Markov Chains
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