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Summary lecture 19

m [t6 integrals and theory of stochastic differential equations (SDE)

t t
V, = v0+/ b(Vs)ds+/ o (Vs)dW,
0 0

m Plan for today: Fokker-Planck equation, numerical integration of SDE
and applications in filtering problems.
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Overview

The Fokker-Planck equation
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The kernel density for SDE
Our plan is to study filtering problems
1 1 0)
Vi =W(V) 1= Vi + [ b(ea)ds+ [ a(Vyo)awd
0 0
Yit1 = h(Vj1) + njsa
where WU) are independent Wiener processes.

The Bayes filter for this problem takes the form
T(Vit1ly1j+1) Tr(yj+1!vj-+1)/Rd m(virav)m(vilyrj)dvj

with 7y v, (x]y) equal to the kernel density for t € (0, 1],

P(Viy: € dx|V; € dy P(V: € dx|Vy € dy
plexly) = Lt dX’J )_H¥ dJ(O )

(due to the time-independent coefficients the SDE is stationary).
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The density of an SDE
Consider the 1D SDE

dXt = b(Xt)dt + O'(Xt)th, X() ~ p(O,X)
and assume that the density p(t, x) = P(X: € dx)/dx exists for any t > 0.

Recall that for any f € C%(]R) (mapping with compact support),

1
df (Xe) = F'(Xe)dXe + 5 F"(X)(dXe)* = (F'b+ 0% /2f")de + FodW,

By integration,

t o2 t
f(X:) — f(Xo) = /0 (bf" + ?f”)(Xs)ds +/O (f'o)(Xs)dWs.

Recalling that It6 integrals have mean-zero,

E[f(X;) — f(X0)] = /OtJE [(bf’ + ‘ff”)(xs)] ds

Note: expectation is here wrt the density p(s, x) 6 /40



Fokker-Planck equation

T : ()
Aﬂ@@@ﬂ—MQﬂMLZAAJM@”@+J&)2p@@wm

Integration by parts, using the compact support of f (and its derivatives),
we obtain

// x)pe(s, x)dxds

:/O/]Rf(x) —8x(b(x)P(s7x)) +8XX<02§X)p(s,x))}dxds Vf € C3(R)

Conclusion: The density p(t, x) = P(X: € dx)/dx is a solution of the

Fokker-Planck PDE
2

m:@@mﬂﬁd%ﬂ (t.x) €0, T] x R

p(t, X)|f:0 = p(O, X)'
If the SDE coefficients are sufficiently smooth and o > 0, then (1) is
well-posed and a unique classical solution exists for all t > 0. 7/40
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Fokker-Planck for kernel densities
The PDE extends to kernel densities p(t, x|y) = P(X; € dx|y € dy)/dx:
2

e ly) = (= bp( 1Y) + Ol p( 1)) (£X) €0, TIXR )
p(0, x|y) = 0, (x).

Remarks: The operator
2

(£7p)(x) = Ox(=bp)(x) + axx(%P)(X)

may be associated to the transition function of Markov chains (here
denoted P):
p(t + At, x) =~ p(t,x) + At(L p)(x),
Vs
N
nt =3 Pyt =+ ((P - /)Tw"))i
j=1

And just like Markov chains, SDE may have stationary distributions:

L*p =0 <= p stationary , (P—NTn=0 <= 7 stationary.
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Application in filtering
Returning to the filtering problem

1 1 .
Vi =W(V) = Vi + [ b(Vea)ds o [ (v
0 0
Vi1 = h(Vjs1) + mjt1
the iterative Bayes filter equation
m(Virlynjra) o m(yjalvira)m(viralysy)
can be written
T(vitlyrj1) o< m(yjalvi+1)p(1, vita)
where p solves
pt=L"p (t,x)e [0, T] xR
p(t, x)|t=0 = 77\/1-\Y1;,-(X|)’1:j)

Conclusion: In principle we can solve these filtering problems exactly!
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Example
Filtering problem:

1 1 .
Vi =V +/ U'(Vjys)ds +/ dWs(J)
0 0

Yit1 = Vi1 + 41
with U(x) = x2/2 + 0.15sin(27x) and for some j, we have set
m(vilyr) o exp (— 2U(v;) + sin(4;)).
0 Bayes Filter

0
® Yj+1
1| m(vjlyry) 1) 7(0alyy) 1 m(jalyre)
= p(l, U)

0.8 0.8 0.8
0.6 0.6 0.6 -
04 0.4 0.4 -
0.2 0.2 0.2-

0
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Overview

Numerical integration of SDE
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Euler—Maruyama scheme
For the SDE

dXt = b(Xt)dt + O'(Xt)th t e [0, T], Xt|t:0 = XO,

the Euler-Maruyama scheme on a uniform mesh t; = jAt
)_<tj+1 = )_<tj + b()_(tJ)At + U()_(tJ)AVVJ
where AVVJ = Wtj+1 - Wtj and )_<() = Xo_

Motivation:

tiy1 1
th+1 - th = /; b(Xt)dt +/ O'(Xt)th

J

Let X; := LinInterp(t; {(tja)_(tj)}]—:/OAt)'
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Strong convergence rate for Euler—-Maruyama

Under the regularity assumptions in Thm 4, Lecture 19, most importantly

[b(x) = b(y)| + [o(x) = o(y)] < K|x = y|
[b(x)| + [o(x)[* < K(1+ [x]?),

the Euler—-Maruyama method converges strongly with rate 1/2.

\/ max E[|X: — X:2] < CAt'/?
te[0,T]

for some C > 0.
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Weak convergence rate Euler—Maruyama

Under more restrictive regularity conditions, the Euler—Maruyama
converges weakly with rate 1.

E[f(X:) — f(X)] | < CrA
[max [B[F(Xe) — F(X0)]| < CrAt

for any mapping f € C&°(R?,R) with Cr > 0 depending on f. 1

Remark: See [ELV-E 7, 8] for more on results in higher-dimensional state
space, and on higher order numerical methods.

1C§° is set of functions with at most polynomial growth in any partial derivative:

|00 f(x)| < Calx|P> for any a € N?, some p, € N and all x € R.
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Example - geometric Brownian motion
Consider the SDE
dXt - Xtdt + XtdW, Xo - 1,

and let us approximate: E[X;] = e* [Ubung 9].
Monte Carlo strategy:

Fix At = 1/N and generate M numerical solutions of the SDE )_<1(i)
by the EM scheme

X0 = XD+ xPac+ XP0aw?, j=01,.. N-1,

with independent Wiener paths W() and Xéi) =1.
And apply the Monte Carlo method:

M
=( 1 — (i
E[Xl]%EM[Xf)]:MZ 1
i=1
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lllustration of approximation

Figure: From left to right (M, N) = (10,10), (100, 10), (1000, 10).

Figure: From left to right (M, N) = (10,100), (100, 100), (1000, 100)

16 /40



Approximation error
For any f € Cp(RY,R),

E[(E[F(X)] - Eulf(%)])?] = [(E O]+ E (%)) ~ Eulf ()] |
E[E[f(X)] - E[f(X)])’]
+2E [(E[f(X1)] - E [ F(X0)])(E [ (X1)] = Em[f(X1)])]
+E[(E[£(X)] - Emlf(X))’]
— E[FO] ~ B[ ()] + B [(E[ (%] - EnlF(R))?
< C(N24+ M.

Computational cost of the Euler—Maruyama+Monte Carlo approach is of

the order
Cost = M x N.

Minimization of the error as a function of the cost:
M = O(N?) = O(At™?)

Then B
IE[£(X1)] — EmIF(X0)]|| o) = O(At) = Cost ™3, 1740



Overview

Filtering problems with SDE dynamics
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Filtering problem

AT AT i
Vo = W(V,) =V, +/0 b(VTj+t)dt+/o (Vi g1)dW)
Y‘f'j+1 = h( V7'j+1) + Mjt+1

where A7 denotes the observation time interval, and n; e N(O,I), T >0
and k x k matrix, {WU)} are independent Wiener processes and

Vo L {nj} L {wU)}

Shorthand notation: To align with previous notation we occasionally
write Vj := V- and Yj = Y.

Objective: Approximate the Bayes filter TV, |V -
J J
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Exact model EnKF method
Set 7; = 0 and sample initial distribution vp ~ Py,.

and for j =0,1,...:
Prediction: Simulate particles

) ) AT ; AT ”
o) = () = vf(j'hr/0 b(vﬁjlt)dm/o (v )dw .

for i =1,2,..., M, where {W()}, ; are independent Wiener

processes.
Analysis: _
V‘g’ll - 7('131 + K ( ( TJ+1))
fori=1,2,..., M where
i iy iid
Y, =y sty E NG,

and
Kjs1 = Covm[vl) , h(vE) )](Covm[h(vi) )]+ 1)~
Problem: In many cases W must be approximated by numerical

integration.
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Artificial example (where numerical integration is not
needed)

Consider the Ornstein-Uhlenbeck process

AT AT
W(V,,) = vﬁ—/o 9V7j+tdt+/o W,

with 6 > 0.
We can solve this exactly:

D
W(V,,) 2 AV + &

where & ~ N(0,Xa,) and we are in the familiar the linear-Gaussian
setting. [see Ubung 9]
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Approximation of the stochastic integrator

Let WV be the Euler-Maruyama approximation of

AT AT i
W(V,,) =V, +/ b(th)du/ (Vi g 1) dWY)
0 0

using a uniform timestep At = A7/N.

V.

i = \UN(\_/TJ.) is computed as follows

Input: V..
For k=0: N — 1, compute

\_/Tj+(k+1)At = \_/Tj+kAt + b( \_/7-j+kAt)At

+ 0 (Vr+kat) <Wn+(k+1)At a

Output: \_/Tj+1 = Vi inat

Wi +kat

)
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EnKF method using a numerical integrator
Set 7; = 0 and sample initial distribution \/J.(i) iid Py,.
and for j =0,1,...
Prediction: Simulate particles
o) (1)
= v(),

TJ+1

fori=1,2,..., M, where {W(i’j)};J are independent Wiener
processes used in WV,

Analysis: .
v =01 4 Kia (v, — h(ol1))),
fori=1,2,..., M where
i i) iid
)4/31 =Yrat 77]('.217 ( ) ~ N(0,T)

and

Kiv1 = Covm[08), h(95) )I(Covm[h(o4) )]+ 1)

7’+1’
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Overview

Examples using Euler—Maruyama integration
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Ornstein-Uhlenbeck process

VTJ'+1 = W(VTJ) = VT_,- — Z | V7-j+tdt + Z ; th
Y.

Tj+1

= Vi i
with Vo =1, A7 =1/2 and n; ~ N(0,T).

We generate an observation sequence for y,, , for J = 10 from synthetic
data v;ru.

Approximation method: EnKF with numerical integrator WV with
N =100 and At = A7/N.

Note: Continuum dynamics makes it possible to also estimate the filtering
distribution for times between observation times.
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Numerical results

Large uncertainty in observations, [ = 1, yields small correction at
observation times:
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Numerical results

Small uncertainty in observations, ' = 1/1000, yields small correction at
observation times:

EnKF M=1000
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Langevin equation

dXt - tht
with (Xo, Vo) = (0, 1).

Potential:

Observati
servations U(X) = X2 +1/(0.15 + X?)

Y, =V +ne, k=12, ..

10

with  ~ N(0,T).

The state X; will oscillate
between local minima of U(x).

U(x)

Can we infer the pseudo-stable
state of X; from observing V;?

2N W s v o N ® ©
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Numerical results

Small observation noise I' = 1/100 and infrequent observations A7 = 1,

EnKF M=100 N=100

I V)

Vs o kN
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[Imx +24ex
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Numerical results

Large observation noise ' = 1 and infrequent observations AT =1,
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Numerical results

Large observation noise ' = 1 and frequent observations A7 = 0.1,

EnKF M=100 N=10
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Model and approximation error for EnKF

Let 7TJM N denote the EnKF empirical measure at time 7; with ensemble

size M and timestep At = A7/N in the Euler—Maruyama integrator.
Then, under sufficient regularity it holds for Qol f that

MM = 7 o) < Cpyr(MTHZ 4+ N7,

7rj°°’°°— mean-field large-ensemble limit with N = oo exact-model

integration. [Hoel, Law, Tempone (2016)].

Rule of thumb configuration of degrees of freedom in EnKF with
Euler—Maruyama: M = O(N?).

The error may be split into/bounded from above by

I 17 = 7 1 < Ml (7] = 7 A + [l ] = 7N A

bias error statistical error

Bias error is a particular kind of model error, using WN rather than the

exact model V as solver.
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Overview

Model error and model fitting
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Model uncertainty

Assume that we are given a sequence of observations y;.;, or a collection
of such sampled from

Yj = h(V}) + .

The exact dynamics for V;, which we denote W, is unknown, but we can
sample from a set of approximate dynamics {W, }aenro. That is

Unknown dyn: V;y; = W(V}), known approx dyn Vi, = W, (V).

Question: given the collection of observations y;.; and the true
observation model, how can we estimate model errors and compare
models?

Strategy: Estimate error in the data space rather than in the state space.
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Non-Bayesian approach
Assume the setting of exact observations

Y; = h(V)).

Given a collection of My observation sequences {yl J}, 1, We associate it
to an empirical measure 7y, (y1.).

Computing the error for WV :

m Generate Mp path realizations of the dynamics {v; )}MD
m Associate each of these paths to observation sequences
O‘VU) — h av(i)
vy = hv)”).
m Approximate the error/divergence etc with the relevant measure in
the data space. For instance, root-mean-square error,

RMSE(a) = || Y{5 — B[ Vi | 2@ ~ Z 1% L Y P [

m Best model: a* = arg minge o RMSE(a).
[See RC 4.4] for more on scoring rules.
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Bayesian approach to model selection

Assume we are given one observation sequence Yi.; = y;.y from the noisy
observation model

Yi.0=h(Va.y) + .y

where we assume the “truth” VlT:J that produced the observation was
generated from a model ¥, for some a € Mo.

Bayesian framework:

Assign a prior pdf 7, to the model space.
and Bayesian inversion yields

Talvy, (@ly10) < Ty, jja(y1sl)ma()
Select model for instance by
Oé* = MAP(Tra|y1:J(~|y1:J).

Problem: evaluating 7y, o (y1.s/) may not be straightforward.
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Approximating the likelihood
Note that

Ty, la(Y1:dla) _/WYl:J,VI:J|a(Y1:JaV1:J‘04)dV1:J
:/WYLJVl:J,u(}/l:J|V1:JsO‘)WVLJ|a(V1:J|O‘)dV1:J
:/WYMVM(YI:J’V1:J)7TV1:J|a(Vlzj‘a)dvl:J
=E 7y, vy, (v1:0] Vies) ]

Hence, the likelihood can be approximated by the Monte Carlo method:

M (i)
3 Dl (i)

Ty la(Y1ula) & 1.4 V1 - 1)
i=1

where Vlof’J(i) X 7Tvu|a("a)-
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Toy problem
Dynamics
Vit1 = aVj,
with Vo =1 and prior ma(a) = 1;_1,1j(«) Observations

iid
Yit1 = Vit1 + 1, i ~ N(O,1).

Observation sequence y; = (—1) for j = 1,2,...,J.
Since V; = o/ (each « leads to a unique dynamics), we derive that
WQ‘Yl:J(a‘y].:J) X 7TY1;J|a(y1'J|a)7Ta(a)

1

2

M*

o I gp(a eXP( (-1 — o/)

1:1

We conclude that
MAP (7o, (1.4)) = —1.
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Model parameter estimation /selection through filtering
Consider the parameter dependent dynamics

Vi = Wa(V5)

Tj+1
and a sequence of observations

Y.

Tj+1

= h( V"’j+1) + Mj+1

Filtering strategy to parameter estimation: Augment the state space
with a. New dynamics (V5 ar,):
VTj+1 = wa‘rj(VTj)

aTj+1 = aU + Vf

where v; is noise. (Adding noise may improve the exploration of possible o
but, unless careful, it may also render the dynamics unstable!)

Can be implemented using for instance EnKF or particle filtering with the
goal that a.;; — arue. [See ubung 9].
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Summary

m The density of SDE is described by the Fokker-Planck equation.

m Have introduced the Euler—-Maruyama numerical scheme for SDE
studied applications of EnKF+Euler-Maruyama model approximation.

m Similarly, one may combine particle filtering/3DVar/ExKF and
Euler—-Maruyama (and more).

m Next time: continuous-time filtering for linear-coefficient SDEs.
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