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Summary lecture 19

Itô integrals and theory of stochastic differential equations (SDE)

Vt = V0 +

∫ t

0
b(Vs)ds +

∫ t

0
σ(Vs)dWs

Plan for today: Fokker-Planck equation, numerical integration of SDE
and applications in filtering problems.
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The kernel density for SDE
Our plan is to study filtering problems

Vj+1 = Ψ(Vj) := Vj +

∫ 1

0
b(Vj+s)ds +

∫ 1

0
σ(Vj+s)dW

(j)
s

Yj+1 = h(Vj+1) + ηj+1

where W (j) are independent Wiener processes.

The Bayes filter for this problem takes the form

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)

∫
Rd

π(vj+1|vj)π(vj |y1:j)dvj

with πVj+1|Vj
(x |y) equal to the kernel density for t ∈ (0, 1],

p(t, x |y) =
P(Vj+t ∈ dx |Vj ∈ dy)

dx
=

P(Vt ∈ dx |V0 ∈ dy)

dx

(due to the time-independent coefficients the SDE is stationary).
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The density of an SDE
Consider the 1D SDE

dXt = b(Xt)dt + σ(Xt)dWt , X0 ∼ p(0, x)

and assume that the density p(t, x) = P(Xt ∈ dx)/dx exists for any t > 0.

Recall that for any f ∈ C 2
C (R) (mapping with compact support),

df (Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 = (f ′b + σ2/2f ′′)dt + f ′σdWt

By integration,

f (Xt)− f (X0) =

∫ t

0
(bf ′ +

σ2

2
f ′′)(Xs)ds +

∫ t

0
(f ′σ)(Xs)dWs .

Recalling that Itô integrals have mean-zero,

E [ f (Xt)− f (X0)] =

∫ t

0
E
[

(bf ′ +
σ2

2
f ′′)(Xs)

]
ds

Note: expectation is here wrt the density p(s, x)
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Fokker-Planck equation

∫
R
f (x)(p(t, x)−p(0, x))dx =

∫ t

0

∫
R

[
b(x)f ′(x)+σ2(x)

f ′′(x)

2

]
p(s, x)dxds

Integration by parts, using the compact support of f (and its derivatives),
we obtain∫ t

0

∫
R
f (x)pt(s, x)dxds

=

∫ t

0

∫
R
f (x)

[
− ∂x

(
b(x)p(s, x)

)
+ ∂xx

(σ2(x)

2
p(s, x)

)]
dxds ∀f ∈ C 2

C (R)

Conclusion: The density p(t, x) = P(Xt ∈ dx)/dx is a solution of the
Fokker-Planck PDE

pt = ∂x(−bp) + ∂xx(
σ2

2
p) (t, x) ∈ [0,T ]× R

p(t, x)|t=0 = p(0, x).

(1)

If the SDE coefficients are sufficiently smooth and σ > 0, then (1) is
well-posed and a unique classical solution exists for all t > 0. 7 / 40



Fokker-Planck for kernel densities
The PDE extends to kernel densities p(t, x |y) = P(Xt ∈ dx |y ∈ dy)/dx :

pt(·, ·|y) = ∂x(−bp(·, ·|y)) + ∂xx(
σ2

2
p(·, ·|y)) (t, x) ∈ [0,T ]× R

p(0, x |y) = δy (x).

(2)

Remarks: The operator

(L∗p)(x) := ∂x(−bp)(x) + ∂xx(
σ2

2
p)(x)

may be associated to the transition function of Markov chains (here
denoted P):

p(t + ∆t, x) ≈ p(t, x) + ∆t(L∗p)(x),

vs

πn+1
i =

N∑
j=1

Pj iπ
n
j = πni +

(
(P − I )Tπn)

)
i

And just like Markov chains, SDE may have stationary distributions:

L∗p = 0 ⇐⇒ p stationary , (P − I )Tπ = 0 ⇐⇒ π stationary.
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Application in filtering
Returning to the filtering problem

Vj+1 = Ψ(Vj) := Vj +

∫ 1

0
b(Vj+s)ds +

∫ 1

0
σ(Vj+s)dW

(j)
s

Yj+1 = h(Vj+1) + ηj+1

the iterative Bayes filter equation

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)π(vj+1|y1:j)

can be written

π(vj+1|y1:j+1) ∝ π(yj+1|vj+1)p(1, vj+1)

where p solves

pt = L∗p (t, x) ∈ [0,T ]× R
p(t, x)|t=0 = πVj |Y1:j

(x |y1:j)

Conclusion: In principle we can solve these filtering problems exactly!
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Example
Filtering problem:

Vj+1 = Vj +

∫ 1

0
U ′(Vj+s)ds +

∫ 1

0
dW

(j)
s

Yj+1 = Vj+1 + ηj+1

with U(x) = x2/2 + 0.15 sin(2πx) and for some j , we have set
π(vj |y1:j) ∝ exp

(
− 2U(vj) + sin(4vj)

)
.
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Euler–Maruyama scheme
For the SDE

dXt = b(Xt)dt + σ(Xt)dWt t ∈ [0,T ], Xt |t=0 = X0,

the Euler-Maruyama scheme on a uniform mesh tj = j∆t

X̄tj+1 = X̄tj + b(X̄tj )∆t + σ(X̄tj )∆Wj

where ∆Wj = Wtj+1 −Wtj and X̄0 = X0.

Motivation:

Xtj+1 − Xtj =

∫ tj+1

tj

b(Xt)dt +

∫ tj+1

tj

σ(Xt)dWt

≈
∫ tj+1

tj

b(Xtj )dt +

∫ tj+1

tj

σ(Xtj )dWt

Let X̄t := LinInterp(t; {(tj , X̄tj )}
T/∆t
j=0 ).
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Strong convergence rate for Euler–Maruyama

Under the regularity assumptions in Thm 4, Lecture 19, most importantly

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K |x − y |
|b(x)|2 + |σ(x)|2 ≤ K (1 + |x |2),

the Euler–Maruyama method converges strongly with rate 1/2.√
max

t∈[0,T ]
E
[
|X̄t − Xt |2

]
≤ C∆t1/2

for some C > 0.
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Weak convergence rate Euler–Maruyama

Under more restrictive regularity conditions, the Euler–Maruyama
converges weakly with rate 1.

max
t∈[0,T ]

|E
[
f (X̄t)− f (Xt)

]
| ≤ Cf ∆t

for any mapping f ∈ C∞P (Rd ,R) with Cf > 0 depending on f . 1

Remark: See [ELV-E 7, 8] for more on results in higher-dimensional state
space, and on higher order numerical methods.

1C∞
p is set of functions with at most polynomial growth in any partial derivative:

|∂αf (x)| ≤ Cα|x |pα for any α ∈ Nd , some pα ∈ N and all x ∈ Rd .
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Example - geometric Brownian motion
Consider the SDE

dXt = Xtdt + XtdW , X0 = 1,

and let us approximate: E [X1] = et [Ubung 9].
Monte Carlo strategy:

1 Fix ∆t = 1/N and generate M numerical solutions of the SDE X̄
(i)
1

by the EM scheme

X̄
(i)
tj+1

= X̄
(i)
tj + X̄

(i)
tj ∆t + X̄

(i)
tj ∆W

(i)
j , j = 0, 1, . . . ,N − 1,

with independent Wiener paths W (i) and X
(i)
0 = 1.

2 And apply the Monte Carlo method:

E [X1] ≈ EM [X̄
(·)
1 ] =

1

M

M∑
i=1

X̄
(i)
1
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Illustration of approximation

Figure: From left to right (M,N) = (10, 10), (100, 10), (1000, 10).

Figure: From left to right (M,N) = (10, 100), (100, 100), (1000, 100)
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Approximation error
For any f ∈ CP(Rd ,R),

E
[

(E [ f (X1)]− EM [f (X̄1)])2
]

= E
[(

E [ f (X1)]± E
[
f (X̄1)

]
− EM [f (X̄1)]

)2
]

≤ E
[

(E [ f (X1)]− E
[
f (X̄1)

]
)2
]

+ 2E
[

(E [ f (X1)]− E
[
f (X̄1)

]
)(E

[
f (X̄1)

]
− EM [f (X̄1)])

]
+ E

[
(E
[
f (X̄1)

]
− EM [f (X̄1)])2

]
= (E [ f (X1)]− E

[
f (X̄1)

]
)2 + E

[
(E
[
f (X̄1)

]
− EM [f (X̄1)])2

]
≤ C (N−2 + M−1).

Computational cost of the Euler–Maruyama+Monte Carlo approach is of
the order

Cost = M × N.

Minimization of the error as a function of the cost:

M = O(N2) = O(∆t−2)

Then
‖E [ f (X1)]− EM [f (X̄1)]‖L2(Ω) = O(∆t) = Cost−1/3. 17 / 40
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Filtering problem

Vτj+1 = Ψ(Vτj ) := Vτj +

∫ ∆τ

0
b(Vτj+t)dt +

∫ ∆τ

0
σ(Vτj+t)dW

(j)
t

Yτj+1 = h(Vτj+1) + ηj+1

where ∆τ denotes the observation time interval, and ηj
iid∼ N(0, Γ), Γ > 0

and k × k matrix, {W (j)} are independent Wiener processes and

V0 ⊥ {ηj} ⊥ {W (j)}

Shorthand notation: To align with previous notation we occasionally
write Vj := Vτj and Yj := Yτj .

Objective: Approximate the Bayes filter πVτj
|Yτ1:j

.
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Exact model EnKF method
1 Set τj = 0 and sample initial distribution v

(i)
τj

iid∼ PV0 .

and for j = 0, 1, . . .:
2 Prediction: Simulate particles

v̂ (i)
τj+1

= Ψ(v (i)
τj

) = v (i)
τj

+

∫ ∆τ

0
b(v

(i)
τj+t)dt +

∫ ∆τ

0
σ(v

(i)
τj+t)dW

(j ,i)
t ,

for i = 1, 2, . . . ,M, where {W (i ,j)}i ,j are independent Wiener
processes.

3 Analysis:
v (i)
τj+1

= v̂ (i)
τj+1

+ Kj+1(y (i)
τj+1
− h(v̂ (i)

τj+1
)),

for i = 1, 2, . . . ,M where

y (i)
τj+1

= yτj+1 + η
(i)
j+1, η

(i)
j+1

iid∼ N(0, Γ)

and
Kj+1 = CovM [v (·)

τj+1
, h(v (·)

τj+1
)](CovM [h(v (·)

τj+1
)] + Γ)−1.

Problem: In many cases Ψ must be approximated by numerical
integration.
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Artificial example (where numerical integration is not
needed)

Consider the Ornstein-Uhlenbeck process

Ψ(Vτj ) = Vτj −
∫ ∆τ

0
θVτj+tdt +

∫ ∆τ

0
dWs

with θ > 0.
We can solve this exactly:

Ψ(Vτj )
D
= AVτj + ξj

where ξj ∼ N(0,Σ∆τ ) and we are in the familiar the linear-Gaussian
setting. [see Ubung 9]
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Approximation of the stochastic integrator
Let ΨN be the Euler-Maruyama approximation of

Ψ(Vτj ) = Vτj +

∫ ∆τ

0
b(Vτj+t)dt +

∫ ∆τ

0
σ(Vτj+t)dW

(j)
t

using a uniform timestep ∆t = ∆τ/N.

V̄τj+1 = ΨN(V̄τj ) is computed as follows

1 Input: V̄τj .

2 For k = 0 : N − 1, compute

V̄τj+(k+1)∆t = V̄τj+k∆t + b(V̄τj+k∆t)∆t

+ σ(V̄τj+k∆t)
(
Wτj+(k+1)∆t −Wτj+k∆t

)
3 Output: V̄τj+1 = V̄τj+N∆t
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EnKF method using a numerical integrator
1 Set τj = 0 and sample initial distribution v

(i)
j

iid∼ PV0 .

and for j = 0, 1, . . .:

2 Prediction: Simulate particles

v̂ (i)
τj+1

= ΨN(v (i)
τj

),

for i = 1, 2, . . . ,M, where {W (i ,j)}i ,j are independent Wiener
processes used in ΨN .

3 Analysis:
v (i)
τj+1

= v̂ (i)
τj+1

+ Kj+1(y (i)
τj+1
− h(v̂ (i)

τj+1
)),

for i = 1, 2, . . . ,M where

y (i)
τj+1

= yτj+1 + η
(i)
j+1, η

(i)
j+1

iid∼ N(0, Γ)

and
Kj+1 = CovM [v̂ (·)

τj+1
, h(v̂ (·)

τj+1
)](CovM [h(v̂ (·)

τj+1
)] + Γ)−1.
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Ornstein-Uhlenbeck process

Vτj+1 = Ψ(Vτj ) := Vτj −
1

4

∫ ∆τ

0
Vτj+tdt +

1

4

∫ ∆τ

0
dW

(j)
t

Yτj+1 = Vτj+1 + ηj+1

with V0 = 1, ∆τ = 1/2 and ηj ∼ N(0, Γ).

We generate an observation sequence for yτ1:J
for J = 10 from synthetic

data v †τ1:J .

Approximation method: EnKF with numerical integrator ΨN with
N = 100 and ∆t = ∆τ/N.

Note: Continuum dynamics makes it possible to also estimate the filtering
distribution for times between observation times.
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Numerical results

Large uncertainty in observations, Γ = 1, yields small correction at
observation times:
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Numerical results

Small uncertainty in observations, Γ = 1/1000, yields small correction at
observation times:
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Langevin equation

dXt = Vtdt

dVt = (−0.25Vt − U ′(Xt))dt + 0.5dWt

with (X0,V0) = (0, 1).

Observations

Yτk = Vτk + ηk , k = 1, 2, . . .

with η ∼ N(0, Γ).

The state Xt will oscillate
between local minima of U(x).

Can we infer the pseudo-stable
state of Xt from observing Vt?

Potential:
U(X ) = X 2 + 1/(0.15 + X 2)
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Numerical results

Small observation noise Γ = 1/100 and infrequent observations ∆τ = 1,
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Numerical results

Large observation noise Γ = 1 and infrequent observations ∆τ = 1,
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Numerical results

Large observation noise Γ = 1 and frequent observations ∆τ = 0.1,
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Model and approximation error for EnKF
Let πM,N

j denote the EnKF empirical measure at time τj with ensemble
size M and timestep ∆t = ∆τ/N in the Euler–Maruyama integrator.
Then, under sufficient regularity it holds for QoI f that

‖πM,N
j [f ]− π∞,∞j [f ]‖Lp(Ω) ≤ Cp,j ,f (M−1/2 + N−1).

π∞,∞j − mean-field large-ensemble limit with N =∞ exact-model
integration. [Hoel, Law, Tempone (2016)].

Rule of thumb configuration of degrees of freedom in EnKF with
Euler–Maruyama: M = O(N2).

The error may be split into/bounded from above by

‖πM,N
j [f ]− π∞,∞j [f ]‖p ≤ ‖πM,N

j [f ]− π∞,Nj [f ]‖p︸ ︷︷ ︸
bias error

+ ‖πM,N
j [f ]− π∞,Nj [f ]‖p︸ ︷︷ ︸

statistical error

Bias error is a particular kind of model error, using ΨN rather than the
exact model Ψ as solver.
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Model uncertainty

Assume that we are given a sequence of observations y1:J , or a collection
of such sampled from

Yj = h(Vj) + ηj .

The exact dynamics for Vj , which we denote Ψ, is unknown, but we can
sample from a set of approximate dynamics {Ψα}α∈Mo . That is

Unknown dyn: Vj+1 = Ψ(Vj), known approx dyn V α
j+1 = Ψα(V α

j ).

Question: given the collection of observations y1:J and the true
observation model, how can we estimate model errors and compare
models?

Strategy: Estimate error in the data space rather than in the state space.
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Non-Bayesian approach
Assume the setting of exact observations

Yj = h(Vj).

Given a collection of M0 observation sequences {y (i)
1:J}

MO
i=1, we associate it

to an empirical measure πY1:J
(y1:J).

Computing the error for Ψα:

Generate MD path realizations of the dynamics {vα,(i)1:J }
MD
i=1.

Associate each of these paths to observation sequences

y
α,(i)
1:J = h(v

α,(i)
1:J ).

Approximate the error/divergence etc with the relevant measure in
the data space. For instance, root-mean-square error,

RMSE (α) = ‖Y α
1:J − E [Y1:J ] ‖L2(Ω) ≈

√√√√ 1

MD

MD∑
i=1

|yα,(i)1:J − EMO
[y

(·)
1:J ]|2

Best model: α∗ = arg minα∈Mo RMSE (α).

[See RC 4.4] for more on scoring rules.
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Bayesian approach to model selection
Assume we are given one observation sequence Y1:J = y1:J from the noisy
observation model

Y1:J = h(V1:J) + η1:J

where we assume the “truth” V †1:J that produced the observation was
generated from a model Ψα for some α ∈Mo.

Bayesian framework:

1 Assign a prior pdf πα to the model space.

2 and Bayesian inversion yields

πα|Y1:J
(α|y1:J) ∝ πY1:J |α(y1:J |α)πα(α)

3 Select model for instance by

α∗ = MAP(πα|Y1:J
(·|y1:J).

Problem: evaluating πY1:J |α(y1:J |α) may not be straightforward.
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Approximating the likelihood
Note that

πY1:J |α(y1:J |α) =

∫
πY1:J ,V1:J |α(y1:J , v1:J |α)dv1:J

=

∫
πY1:J |V1:J ,α(y1:J |v1:J , α)πV1:J |α(v1:J |α)dv1:J

=

∫
πY1:J |V1:J

(y1:J |v1:J)πV1:J |α(v1:J |α)dv1:J

= E
[
πY1:J |V1:J

(y1:J |V1:J)|α
]

Hence, the likelihood can be approximated by the Monte Carlo method:

πY1:J |α(y1:J |α) ≈
M∑
i=1

πY1:J |V1:J
(y1:J |V

α,(i)
1:J )

M

where V
α,(i)
1:J

iid∼ πV1:J |α(·|α).
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Toy problem
Dynamics

Vj+1 = αVj ,

with V0 = 1 and prior πα(α) = 1[−1,1](α) Observations

Yj+1 = Vj+1 + ηj+1, ηj
iid∼ N(0, 1).

Observation sequence yj = (−1)j for j = 1, 2, . . . , J.

Since Vj = αj (each α leads to a unique dynamics), we derive that

πα|Y1:J
(α|y1:J) ∝ πY1:J |α(y1:J |α)πα(α)

∝ 1[−1,1](α) exp
(
− 1

2

J∑
j=1

(
(−1)j − αj

)2
)

We conclude that
MAP

(
πα|Y1:J

(·|y1:J)
)

= −1.
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Model parameter estimation/selection through filtering
Consider the parameter dependent dynamics

Vτj+1 = Ψα(Vτj )

and a sequence of observations

Yτj+1 = h(Vτj+1) + ηj+1

Filtering strategy to parameter estimation: Augment the state space
with α. New dynamics (Vτj , ατj ):

Vτj+1 = Ψατj
(Vτj )

ατj+1 = ατj + νj

where νj is noise. (Adding noise may improve the exploration of possible α
but, unless careful, it may also render the dynamics unstable!)

Can be implemented using for instance EnKF or particle filtering with the
goal that ατj → αtrue . [See ubung 9].
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Summary

The density of SDE is described by the Fokker-Planck equation.

Have introduced the Euler–Maruyama numerical scheme for SDE
studied applications of EnKF+Euler–Maruyama model approximation.

Similarly, one may combine particle filtering/3DVar/ExKF and
Euler–Maruyama (and more).

Next time: continuous-time filtering for linear-coefficient SDEs.
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