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Summary lecture 20

m Fokker-Planck equation, numerical integration of SDE and
applications in filtering problems. Filtering methods for
continuous-time dynamics and discrete-time observations.

m Plan for today: Model error and fitting. Filtering in continuous-time
dynamics and observations, and filtering in high-dimensional
state-space.



Overview

Model error and model fitting



Model uncertainty

Assume that we are given a sequence of observations y;.;, or a collection
of such sampled from

Yj = h(V}) + 1.
The exact dynamics for V;, which we denote W, is unknown, but we can

sample from a set of approximate dynamics {W,}acro- That is

Unknown dyn: V1 = V(V}), known approx dyn Vi ; = WV, (V).

Question: given a collection y;.; and the true observation model, how
can we estimate model errors to compare different models?

Strategy: Estimate error in the data space rather than in the state space.



Non-Bayesian approach
Assume the setting of exact observations

Y; = h(V)).

Given a collection of My observation sequences {yl J}, 1, We associate it
to an empirical measure 7y, (dyi.y).

Computing the error for WV :

m Generate Mp path realizations of the dynamics {v; )}MD
m Associate each of these paths to observation sequences
O‘VU) — h av(i)
vy = hv)”).
m Approximate the error/divergence etc with the relevant error measure
in the data space. For instance, root-mean-square error,

RMSE(a) = || Y{5 — B[ Vi | 2@ ~ Z 1% L Y P [

m Best model: a* = arg minge o RMSE(a).
[See RC 4.4] for more on scoring rules.



Bayesian approach to model selection

Assume we are given one observation sequence Yi.; = y;.y from the noisy
observation model

Yi.0=h(Va.y) + .y

where we assume the “truth” VI:J that produced the observation was
generated from a model ¥, for some a € Mo.

Bayesian framework:

Assign a prior pdf 7, to the model space.
and Bayesian inversion yields

Talvy, (@ly10) < Ty, jja(y1sl)ma()
Select model for instance by

o = MAP(T('OAYLJ(“YI:J))'

Problem: evaluating 7y, o (y1.s/) may not be straightforward.



Approximating the likelihood

Note that
Ty, la(Y1ula) = /WYLJ,VLAa(yl:JaV1:J|a)dV1:J
—/WYUVltj,a()/l:J‘VI:J-/O‘)WVI:Aa(Vl:J‘a)dVl:J

= /WYLJ Vl;_j (yllJ’Vl:J)7TV1:J|Ot(V11J|a)dV1:J'

Hence, the likelihood can be approximated by the Monte Carlo method:

M o, (f)

) :WY- vi, (1 V1 )
Ty la(yila) ~ 1| V1 -

i=1

where Vﬁj(i) S Ty la ().



Toy problem

Dynamics

and with prior 7, (a) = 1[_1 3j(@).
Observations

iid
Yir1 = Vip1 +nj41, i ~ N(0,1),

and given obs sequence y; = (=1yY forj=1,2,...,J.

Since V; = o/ (each « leads to a unique dynamics), we derive that

DNE

J=1

[y

7T04|Y1:J(04‘y1:J) X 7TY1:J|a(y1:J‘Oé)’/’l'a(Ct) X ]l[—l 1] exp (

We conclude that
AP (e Clr)) = 1.



Model parameter estimation /selection through filtering
Consider the parameter dependent dynamics

Vi = Wa(V5)

Tj+1
and a sequence of observations

Y.

Tj+1

= h( V"’j+1) + Mj+1
Filtering strategy to parameter estimation: Augment the state space
with a. New dynamics (V5 ar,):

VTj+1 = wa‘rj(VTj)
aTj+1 = aU + Vf

where v; is noise. (Adding noise may improve the exploration of possible o
but, unless careful, it may also render the dynamics unstable!)

Can be implemented using for instance EnKF or particle filtering with the
goal that a.;; — arue. [See ubung 9].



Overview

Kalman—Bucy filter



Continuous-time observations
We now shift to studying filtering problems with dynamics

dVi = b(Vy)dt + o(V:)dW, t>0
and continuous-time observations
Yy = h(Ve) +9(Ve)U;,  t2>0,

where W and U are independent Wiener processes (and U is white noise:
in this case, the formal derivative of a Wiener process).

For mathematical convenience (to go from white noise to 1t6 SDE), one
rather consider the observation

t t t dUs
zt_/O sts—/o h(Vs)ds+/0 ’y(\/s)g,df

or, equivalently,

dZt = h( Vt)dt + ’7( Vt)dUt, ZO =0.



1D linear filtering problem
Dynamics
dV; = LV,dt + odW,, Vo ~ N(mo, Co)
and observations
dZ; = HVidt + vdUe, 2o =0,
with scalars H, L,0,v and v > 0, and {W;} L {U:} L W.
Theorem 1 (1D Kalman-Bucy filter)

Both V; and Z; are Gaussian processes, and Vt|Z[0’t] =Zjo,q] ~ N(my, Cy)
with )
H4C HC;
dmy = (L— 5 t)mtd + Sldz:,  mo=E[Vo],
Y

and C; solving the Riccati equation

. H?
C=2LC — ?CE + 0%, Cy= Var[Vy],

Remark: The result is typically presented as SDE for V; = E [ Vt\Z[o’t]].



Example [Oksendal 6.2.9]

Noisy observations of a constant process

th == 0, Vo ~ N(mo, Co)
dZt = tht + ’}/dUt, ZO = 0,

Equations for moments in V[ Zjo s = Zjo,5) ~ N(m:, Ct):

C HC
dmt = —%mtdt + —Qtdzt,
B gl
and o2
. 1 0
Ct — —72 Ctz — Ct — 277
vy 74 + Cot
Plugging C; into equation for m; gives
my = 72 mo + Co z
t 72+C0t 0 ’y2+Cot t

Hence m; ~ z;/t for t > 1.



[[lustration

With vy =1, Vo ~ N(mo =1, Co = 4) and v = 3 and

zy = vgt + uI, (and numerical approx of) y; = Z;

-40




Example [Oksendal 6.2.10]

Noisy observation of a Wiener process
dVi = dW, Vo ~ N(mg =0,Cy =0)
dZ; = Vidt + dUs, Zp=0

Yields that Vi[Zjg ¢ = 2j0,5) ~ N(m;, C;) where

dC: exp(2t) — 1
- =dt = CG=——"——
02— C? " exp(2t) + 1

1 ‘ S —S
mt:m | (e —e )dzs

Observation: the conditional mean weights recent observations more

than the distant past:
t .s t s
e e
me %/ jdzs :/ ﬁ}/sds
o ¢ o €

for t > 1, recalling that z; = fot ysds.

= tanh(t),

and



[[lustration

Numerical approximations of

Z

t
zt:/ vsTds-l—uI, and y;
0
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Overview

Continuous-time limit of discrete-time filtering



From discrete to continuous time
The continuous-time filtering problem

th - b( Vt)dt + vV Zoth
dZt - h(Vt) + V rodUt

with positive definite g, > can be formally derived as the
continuous-time limit of
Vit = Vi + b(V,)AT + VEE

Y”fj+1 - h( VT'+1) + \frnj

J
where &;, 7y iid standard Gaussians.

First introduce the discrete primitive

Zin "4y lling that f i blem  Z, =Y,
—Ar = Yo (reca ing that for continuous problem r = t)
and the scaling
1
Y =ArY,, T[=-—T

AT



Then

Viy — Vi = (V) AT + v/ ToATE;

/ To
Zry — Zy = h(Vy, )AT + AT A

Recalling that

Wy, — Wy, ~ N(O,A7) and Uy, — Uy, ~ N(0,AT),
we rewrite
Vi — Vi = b(Vi)AT + \/ZoAW,
Z,. —Z, = h(vTj+1 )AT + \/ToAU;

and obtain in the limit A7 | 0,

th = b( Vt)dt + V ZOth
dZt - h(Vt)dt + \V rodUt



A second look at the Kalman-Bucy filter

Theorem 2 (Multidimensional Kalman-Bucy filter [LSZ Thm 8.1])
Consider

dV, = LV,dt + /TodWs, Vo ~ N(mg, Co)
dZ; = HV,dt + \/TodUs,  Zo =0,

with L, Yo € R9*9 H e Rk*9 and Iy € RK*K, positive definite Tg, Lo,
and independence {W;} L {U;} L V.

Then Vi and Z; are Gaussian processes, and Vi|Zjg 4 = zjo.4) ~ N(m¢, C;)
with

dmy = Lmdt + C;H Ty (dze — Hmedt),  mg =E[ V],
and (the matrix ODE)

Ci = LG+ CiL+ %o — CGHTTIHC,, Co = Var[Vg],




Sketch of proof

Let us look at the continuous-time limit of the Kalman filter

Vi — Vo = LV AT + VE0AT

Z —Zs Mo
A Mty

\/TJ.Jr1 = (/ =+ LAT)VTJ. + Z()AT J

)
=HVy, + EWJ

i.e., of

Y.

Tj+1

With V.|Yr, = yn,; ~ N(m., C;), Kalman filtering (with
A = (I + LAT)) yields the prediction

My, = (I + LAT)mTj = m; + Lm; AT
¢

Tj+1

= (I + LAT)C, (1 + LAT)T + ATY,
=G+ (LG, + CTJ.LT + Xo)AT + o(AT)



And for the analysis

N

K=C¢C. HT(HC

Tj+1

-
HT +-2)1 = ¢, HTT; AT + o(AT)

Tj+1 AT J
and
Yo — Hbe = yr — H(my, + Lmp A7)
so that
My, = ’ﬁTjH + K(.y7'j+1 - H'ﬁ’qﬂ)

= my, + Lmy AT+ CH T (yry,, — Hm)AT + o( AT).

And, recalling that C;,, = C; + (LG, + C;, LT + o) A7 + o(AT),

A

= (I - KH)C

Tj+1

=Gy + (LG + C LT + To)AT — C H T HC, AT + o( AT).

C

Tj+1

Next, truncate o(Ar) terms and rewrite as follows



Up to order AT,

My — My = LmTjAT + CTJ.HTI_(jl(yTjJrl — HmTJ.)AT
= Lm At + CH To Nz, — 2, — Hm A7),

where we used that y-, AT =z, — 2, and

C

T Tr—
i — G = (LG, + G LT + Xo)AT — CH T HC, AT
Taking the limit A7 | 0 leads to Kalman-Bucy equations:
dm = Lmdt + CH' Ty (dz — Hmdt),

and
dC = (LC+ CLT + ¥ — CHTIGTHC ) dt,



Nonlinear filtering methods
For the nonlinear filtering problem

dVi = b(V,)dt + \/TodW; )
de_— - HVt + \V rodUt

there exist, as in the discrete-time setting, approximate Gaussian filtering
methods: 3DVAR, ExKF, EnKF, and (also non-Gaussian methods, e.g.,
particle filters) [LSZ Chapter 8.2].

Definition 3 (Continuous-time ExKF)
The distribution of V;[Zjg 4 = Zjo,¢ is approximated by N(m;, C;) where

dm = b(m;)dt + CtH Ty (dze — Hmedt), — mg=E[ V],
and
C; = Db(m;)Cy + Ce(Db(me)) T + To — C:H T3 HC:, Co = Var[ V],

with Db denoting the Jacobian of b : RY — RY,




Derivation of continuous-time ExKF:

m Apply ExKF on discrete-time approximation of (2),

Vi = Vi + bV )AT + VE -
YTj+1 = h( VTj+1) + ﬁnj

leading to a system of difference equations for m;, and C;.

m Taking the continuous-time limit A7 | 0 leads to the ExKF system of
differential equations for m and C, similarly as for Kalman-Bucy.



Example — Nonlinear filtering
Consider the following stochastic version of Lorenz 63

dvi = a(vy — wp)dt + odW(t)
dvp = — (avv +vo + V1V3>dt + odWa(t) (4)
dvz = vivo — bvz + b(r + o) + cdWs(t)

with o = 2 and standard coefficient values (a, b, r) = (10,8/3,28).

On compact form, with v = (v1, v, 3)" and W = (Wy, Wa, W3), we

rewrite
dv = f(v)dt +odW.

Observations:
dz = Hvdt + ~dU, z(0) =0,

with either H = (0,0,1) or (1,0,0) and v = 1/2.
Objective: “continuous-time” ExKF filtering with estimates of mg and

Co given (in practice, fine-timestep numerical integration of associated
discrete-time filtering problem).



Main steps in code (more details in [LSZ pl16c.m])

%Initial data

mO=zeros(3,1); CO=eye(3);’% prior initial condition covariance
v(:,1)=m0+sqrtm(CO)*randn(3,1);% initial truth
m(:,1)=10*randn(3,1) ;% initial mean/ESTIMATE

c(:,:,1)=10%C0;% initial covariance operator/ESTIMATE
H=[1,0,0];% observation operator

tau=le-4;% time discretization is tau

%% solution % assimilate!

for j=1:J
% truth
v(:,j+)=v(:,j)+tauxf(v(:,j))+sigmax*sqrt (tau)*randn(3,1);
z(:,j+1)=z(:,j)+tauxH*v(:,j+1) + gamma*sqrt(tau)*randn;% observ
mhat=m(:,j)+tau*f(m(:,j)) ;% estimator predict
chat=(I+tau*Df (m(:,j)))*c(:,:,j)* ...

(I+tauxDf (m(:,j))) ’+sigma”2*taux*I;% covariance predict
d=(z(j+1)-z(j))/tau-H*mhat;’ innovation
K=(tauxchat*H’)/(H*chat*H’*tau+gamma~2) ;% Kalman gain
m(:,j+1)=mhat+K*d;’ estimator update
c(:,:,j+1)=(I-K*H) *chat;% covariance update

end



ExKF, L63 when u; is observed ExKF, L63 when uj is observed

—m
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Overview

The Kushner—Stratonovich equation



In linear-Gaussian settings, the continuous-time filtering problem can be
solved exactly.

Under sufficient regularity, we have the following extension to nonlinear
settings:

Theorem 4 (Kushner=Stratonovich equation)

Consider the filtering problem

th = b(Vt)dt + \/ Z()th7 VO ~ p(O,X)
dZ, = h(Vi)dt + /TedUs, Zo = 0.

If b and h are sufficiently smooth, then there exists a pdf p(t,x) for
Vi|Zjo,) = 2[0,¢1, and it is the solution of

pe(t. x) = £p(t x)+p(t,x) (h(x) - /

Rd

h(y)p(t,)/)dy) 5 (%—/}Rd h(y)p(t,y)dy

over (x,t) € RY x [0, T], and (cf. the Fokker-Planck equation)

d
£7p(t3) = =i (bRt X)) + 5 D Bu(Zo,5p(E, %))
ij=1




Overview

Filtering in high/infinite-dimensional state space



Problem description
Filtering problem

Dynamics Ur,, = V(ur,) o1
Observations Y7, = Huy | +nj1 R

With
® uy, almost surely belongs to an infinite-dimensional Hilbert space H,
e.g., u(tj,") € L*(R).
= dynamics is possibly non-linear W : [2(Q,H) — L2(Q,H),
m linear operator H : H — Rk,
= hence finite-dimensional observations ., and 7; i N(0,T) with
nj L {us}, and T € RF*K,



Problem description
Filtering problem

Dynamics Ur,, = V(ur,) } i—o1
Observations Y7, = Huy | +nj1 .
With
® uy, almost surely belongs to an infinite-dimensional Hilbert space H,
e.g., u(tj,") € L*(R).
= dynamics is possibly non-linear W : [2(Q,H) — L2(Q,H),
m linear operator H : H — Rk,
= hence finite-dimensional observations ., and 7; i N(0,T) with
nj L {us}, and T € RF*K,

Objective: Approximate pdf of ur|Yr, = yr..

Forward model approximation: W ~ WNeNx with discretization both
time and space. Something like At = A7/N; and Ax = O(N;1).



Numerical example, 1D SPDE
1D stochastic reaction-diffusion equation
du=((A—Nu+ f(u))dt+dW (t,x) € [0,00) x (0,1),
u(0,x) = 4(x — 1/2)?
u(t,0) = u(t,1), vt € [0, 00).

m operator A is spectral decomposition of A — /

[e.e]
A=) Ng@¢j, with = —j
j=1
where ¢;(x) are Fourier series functions {1, sin(2mx), cos(2mx), ...}.
m With space-time colored noise

W(t,x)=>_j ' WO(t)g;(x)
JEN
m consider mild solutions

VY
Uryyy = W(uy) = e T“Tj+/0

AT

AT
AT (up,ys)ds+ /0 A= dw,



Simulation of SPDE

t=0 t=27% t=27"
1 1 1
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Simulation of the SPDE with reaction term f(u) = sin(mwu) over one
observation-time interval A7 = 1/2, by WNeNx with N, = N, = 212, See
arxiv preprint A. CHERNOV ET AL. “Multilevel ensemble Kalman
filtering for spatio-temporal processes” for more details.



EnKF filtering in high-dimensions

Approximate W a~ WNoNx with elements uj € HNe  H (let us here
assume HNx is an Ny -dimensional state-space).

Sample iid v{” ~ Projectionsm Py, for i = 1,2,..., M and (using the
shorthand vj(') = vT() below)
Prediction

“J(Jr)l \UN“NX(VJ.(')), i=1,2,..., M, and

C\_.j+]_ :COVM[OJ.(J'F)l], or rather CJHH = CovM[ J+1’ er)l]
—_————

ERNXXNX G]RNXXk

Analysis

v =08+ KOS - HO),  where K = G HA(HG 1 H +T) !




Localization for EnKF

m When state-space dimension N > 1, the sample-covariance

C"-J_I\/I — COVM["}J'(.)]?

tend to have “spurious correlations”, meaning that for some /, m
M itm — Jg Toml > GG, with éj’o denoting the reference cov.

m Not a problem that can be easily solved through increasing M, as

there is a cost associated to that.
m Two diametrically opposite approaches for dealing with this (cf. Reich
and Cotter chp 8.2-8.3)
m Variance inflation: To increase the magnitude of components of
CJ ».m Where you expect it to be underestimated, inflate for instance
the model uncertainty.
m Covariance localization: To reduce the magnitude of components of

CJ ».m Where you expect it to be overestimated, do for instance
spatial /spectral localiazation: replace (_A“J-M by po (:"J.M

where o is the element-wise product and pgm = 1| m|<, is @ banded
filter matrix.



Summary

m Have treated filtering in the continuous-time dynamics and
observations setting.

m The Kalman-Bucy filter solves the linear-Gaussian filtering problem,
while the Kushner-Stratonovich equation applies more generally.

m Described extension of EnKF to filtering problems with
high/infinite-dimensional state-space.

m Still unclear how well particle filtering can perform in
high-dimensional filtering. The number of particles required to avoid
degeneracy is conjectured to typically scale exponentially with
state-space dimension.

m Next time: Presentations by Dmitry Kabanov on Ensemble Kalman
Inversion applied to machine learning, and by Luis Espath on Bayesian
optimal experimental design.



	Model error and model fitting
	Kalman–Bucy filter
	Continuous-time limit of discrete-time filtering
	The Kushner–Stratonovich equation
	Filtering in high/infinite-dimensional state space

