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Summary lecture 20

Fokker-Planck equation, numerical integration of SDE and
applications in filtering problems. Filtering methods for
continuous-time dynamics and discrete-time observations.

Plan for today: Model error and fitting. Filtering in continuous-time
dynamics and observations, and filtering in high-dimensional
state-space.
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Model uncertainty

Assume that we are given a sequence of observations y1:J , or a collection
of such sampled from

Yj = h(Vj) + ηj .

The exact dynamics for Vj , which we denote Ψ, is unknown, but we can
sample from a set of approximate dynamics {Ψα}α∈Mo . That is

Unknown dyn: Vj+1 = Ψ(Vj), known approx dyn V α
j+1 = Ψα(V α

j ).

Question: given a collection y1:J and the true observation model, how
can we estimate model errors to compare different models?

Strategy: Estimate error in the data space rather than in the state space.
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Non-Bayesian approach
Assume the setting of exact observations

Yj = h(Vj).

Given a collection of M0 observation sequences {y (i)
1:J}

MO
i=1, we associate it

to an empirical measure πY1:J
(dy1:J).

Computing the error for Ψα:

Generate MD path realizations of the dynamics {vα,(i)1:J }
MD
i=1.

Associate each of these paths to observation sequences

y
α,(i)
1:J = h(v

α,(i)
1:J ).

Approximate the error/divergence etc with the relevant error measure
in the data space. For instance, root-mean-square error,

RMSE (α) = ‖Y α
1:J − E [Y1:J ] ‖L2(Ω) ≈

√√√√ 1

MD

MD∑
i=1

|yα,(i)1:J − EMO
[y

(·)
1:J ]|2

Best model: α∗ = arg minα∈Mo RMSE (α).

[See RC 4.4] for more on scoring rules.
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Bayesian approach to model selection
Assume we are given one observation sequence Y1:J = y1:J from the noisy
observation model

Y1:J = h(V1:J) + η1:J

where we assume the “truth” v †1:J that produced the observation was
generated from a model Ψα for some α ∈Mo.

Bayesian framework:

1 Assign a prior pdf πα to the model space.

2 and Bayesian inversion yields

πα|Y1:J
(α|y1:J) ∝ πY1:J |α(y1:J |α)πα(α)

3 Select model for instance by

α∗ = MAP(πα|Y1:J
(·|y1:J)).

Problem: evaluating πY1:J |α(y1:J |α) may not be straightforward.
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Approximating the likelihood

Note that

πY1:J |α(y1:J |α) =

∫
πY1:J ,V1:J |α(y1:J , v1:J |α)dv1:J

=

∫
πY1:J |V1:J ,α(y1:J |v1:J , α)πV1:J |α(v1:J |α)dv1:J

=

∫
πY1:J |V1:J

(y1:J |v1:J)πV1:J |α(v1:J |α)dv1:J .

Hence, the likelihood can be approximated by the Monte Carlo method:

πY1:J |α(y1:J |α) ≈
M∑
i=1

πY1:J |V1:J
(y1:J |V

α,(i)
1:J )

M

where V
α,(i)
1:J

iid∼ πV1:J |α(·|α).

8 / 38



Toy problem
Dynamics

Vj+1 = αVj , V0 = 1,

and with prior πα(α) = 1[−1,1](α).
Observations

Yj+1 = Vj+1 + ηj+1, ηj
iid∼ N(0, 1),

and given obs sequence yj = (−1)j for j = 1, 2, . . . , J.

Since Vj = αj (each α leads to a unique dynamics), we derive that

πα|Y1:J
(α|y1:J) ∝ πY1:J |α(y1:J |α)πα(α) ∝ 1[−1,1](α) exp

(
−1

2

J∑
j=1

(
(−1)j−αj

)2
)

We conclude that
MAP

(
πα|Y1:J

(·|y1:J)
)

= −1.
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Model parameter estimation/selection through filtering
Consider the parameter dependent dynamics

Vτj+1 = Ψα(Vτj )

and a sequence of observations

Yτj+1 = h(Vτj+1) + ηj+1

Filtering strategy to parameter estimation: Augment the state space
with α. New dynamics (Vτj , ατj ):

Vτj+1 = Ψατj
(Vτj )

ατj+1 = ατj + νj

where νj is noise. (Adding noise may improve the exploration of possible α
but, unless careful, it may also render the dynamics unstable!)

Can be implemented using for instance EnKF or particle filtering with the
goal that ατj → αtrue . [See ubung 9].

10 / 38



Overview

1 Model error and model fitting

2 Kalman–Bucy filter

3 Continuous-time limit of discrete-time filtering

4 The Kushner–Stratonovich equation

5 Filtering in high/infinite-dimensional state space

11 / 38



Continuous-time observations
We now shift to studying filtering problems with dynamics

dVt = b(Vt)dt + σ(Vt)dWt , t ≥ 0

and continuous-time observations

Yt = h(Vt) + γ(Vt)U̇t , t ≥ 0,

where W and U are independent Wiener processes (and U̇ is white noise:
in this case, the formal derivative of a Wiener process).

For mathematical convenience (to go from white noise to Itô SDE), one
rather consider the observation

Zt =

∫ t

0
Ysds =

∫ t

0
h(Vs)ds +

∫ t

0
γ(Vs)

dUs

��ds
��ds

or, equivalently,

dZt = h(Vt)dt + γ(Vt)dUt , Z0 = 0.
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1D linear filtering problem
Dynamics

dVt = LVtdt + σdWt , V0 ∼ N(m0,C0)

and observations

dZt = HVtdt + γdUt , Z0 = 0,

with scalars H, L, σ, γ and γ > 0, and {Wt} ⊥ {Ut} ⊥ V0.

Theorem 1 (1D Kalman-Bucy filter)

Both Vt and Zt are Gaussian processes, and Vt |Z[0,t] = z[0,t] ∼ N(mt ,Ct)
with

dmt =
(
L− H2Ct

γ2

)
mtdt +

HCt

γ2
dzt , m0 = E [V0] ,

and Ct solving the Riccati equation

Ċt = 2LCt −
H2

γ2
C 2
t + σ2, C0 = Var[V0],

Remark: The result is typically presented as SDE for V̂t = E
[
Vt |Z[0,t]

]
.
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Example [Oksendal 6.2.9]
Noisy observations of a constant process

dVt = 0, V0 ∼ N(m0,C0)

dZt = Vtdt + γdUt , Z0 = 0,

Equations for moments in Vt |Z[0,t] = z[0,t] ∼ N(mt ,Ct):

dmt = −Ct

γ2
mtdt +

HCt

γ2
dzt ,

and

Ċt = − 1

γ2
C 2
t =⇒ Ct =

C0γ
2

γ2 + C0t

Plugging Ct into equation for mt gives

mt =
γ2

γ2 + C0t
m0 +

C0

γ2 + C0t
zt

Hence mt ≈ zt/t for t � 1.
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Illustration

With γ = 1, V0 ∼ N(m0 = 1,C0 = 4) and v †0 = 3 and

zt = v †0 t + u†t , (and numerical approx of) yt = żt

0 20 40 60 80 100

-40

-20

0

20

40

60

15 / 38



Example [Oksendal 6.2.10]
Noisy observation of a Wiener process

dVt = dWt , V0 ∼ N(m0 = 0,C0 = 0)

dZt = Vtdt + dUt , Z0 = 0

Yields that Vt |Z[0,t] = z[0,t] ∼ N(mt ,Ct) where

dCt

σ2 − C 2
t

= dt =⇒ Ct =
exp(2t)− 1

exp(2t) + 1
= tanh(t),

and

mt =
1

et + e−t

∫ t

0

(
es − e−s

)
dzs

Observation: the conditional mean weights recent observations more
than the distant past:

mt ≈
∫ t

0

es

et
dzs =

∫ t

0

es

et
ysds

for t � 1, recalling that zt =
∫ t

0 ysds.
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Illustration

Numerical approximations of

zt =

∫ t

0
v †s ds + u†t , and yt = żt

0 2 4 6 8 10

-150

-100

-50

0

50

100

150

17 / 38



Overview

1 Model error and model fitting

2 Kalman–Bucy filter

3 Continuous-time limit of discrete-time filtering

4 The Kushner–Stratonovich equation

5 Filtering in high/infinite-dimensional state space

18 / 38



From discrete to continuous time
The continuous-time filtering problem

dVt = b(Vt)dt +
√

Σ0dWt

dZt = h(Vt) +
√

Γ0dUt

with positive definite Γ0,Σ0 can be formally derived as the
continuous-time limit of

Vτj+1 = Vτj + b(Vτj )∆τ +
√

Σξj

Yτj+1 = h(Vτj+1) +
√

Γηj
(1)

where ξj , ηk iid standard Gaussians.

First introduce the discrete primitive

Zτj+1 − Zτj
∆τ

= Yτj+1 (recalling that for continuous problem Żt = Yt)

and the scaling

Σ = ∆τΣ0, Γ =
1

∆τ
Γ0
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Then

Vτj+1 − Vτj = b(Vτj )∆τ +
√

Σ0∆τξj

Zτj+1 − Zτj = h(Vτj+1)∆τ + ∆τ

√
Γ0

∆τ
ηj

Recalling that

Wτj+1 −Wτj ∼ N(0,∆τ) and Uτj+1 − Uτj ∼ N(0,∆τ),

we rewrite

Vτj+1 − Vτj = b(Vτj )∆τ +
√

Σ0∆Wj

Zτj+1 − Zτj = h(Vτj+1)∆τ +
√

Γ0∆Uj

and obtain in the limit ∆τ ↓ 0,

dVt = b(Vt)dt +
√

Σ0dWt

dZt = h(Vt)dt +
√

Γ0dUt
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A second look at the Kalman-Bucy filter

Theorem 2 (Multidimensional Kalman-Bucy filter [LSZ Thm 8.1])

Consider

dVt = LVtdt +
√

Σ0dWt , V0 ∼ N(m0,C0)

dZt = HVtdt +
√

Γ0dUt , Z0 = 0,

with L,Σ0 ∈ Rd×d , H ∈ Rk×d and Γ0 ∈ Rk×k , positive definite Γ0,Σ0,
and independence {Wt} ⊥ {Ut} ⊥ V0.
Then Vt and Zt are Gaussian processes, and Vt |Z[0,t] = z[0,t] ∼ N(mt ,Ct)
with

dmt = Lmtdt + CtH
TΓ−1

0 (dzt − Hmtdt), m0 = E [V0] ,

and (the matrix ODE)

Ċt = LCt + CtL + Σ0 − CtH
TΓ−1

0 HCt , C0 = Var[V0],
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Sketch of proof
Let us look at the continuous-time limit of the Kalman filter

Vτj+1 − Vτj = LVτj ∆τ +
√

Σ0∆τξj

Zτj+1 − Zτj
∆τ

= HVτj+1 +

√
Γ0

∆τ
ηj

i.e., of

Vτj+1 = (I + L∆τ)Vτj +
√

Σ0∆τξj

Yτj+1 = HVτj+1 +

√
Γ0

∆τ
ηj

With Vτj |Yτ1:j = yτ1:j ∼ N(mτj ,Cτj ), Kalman filtering (with
A = (I + L∆τ)) yields the prediction

m̂τj+1 = (I + L∆τ)mτj = mτj + Lmτj ∆τ

Ĉτj+1 = (I + L∆τ)Cτj (I + L∆τ)T + ∆τΣ0

= Cτj + (LCτj + CτjL
T + Σ0)∆τ + o(∆τ)
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And for the analysis

K = Ĉτj+1H
T (HĈτj+1H

T +
Γ0

∆τ
)−1 = CτjH

TΓ−1
0 ∆τ + o(∆τ)

and
yτj+1 − Hm̂τj+1 = yτj+1 − H(mτj + Lmτj ∆τ)

so that

mτj+1 = m̂τj+1 + K (yτj+1 − Hm̂τj+1)

= mτj + Lmτj ∆τ + CτjH
TΓ−1

0 (yτj+1 − Hmτj )∆τ + o(∆τ).

And, recalling that Ĉτj+1 = Cτj + (LCτj + CτjL
T + Σ0)∆τ + o(∆τ),

Cτj+1 = (I − KH)Ĉτj+1

= Cτj + (LCτj + CτjL
T + Σ0)∆τ − CτjH

TΓ−1
0 HCτj ∆τ + o(∆τ).

Next, truncate o(∆τ) terms and rewrite as follows
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Up to order ∆τ ,

mτj+1 −mτj = Lmτj ∆τ + CτjH
TΓ−1

0 (yτj+1 − Hmτj )∆τ

= Lmτj ∆τ + CτjH
TΓ−1

0 (zτj+1 − zτj − Hmτj ∆τ),

where we used that yτj+1∆τ = zτj+1 − zτj , and

Cτj+1 − Cτj = (LCτj + CτjL
T + Σ0)∆τ − CτjH

TΓ−1
0 HCτj ∆τ.

Taking the limit ∆τ ↓ 0 leads to Kalman-Bucy equations:

dm = Lmdt + CHTΓ−1
0 (dz − Hmdt),

and
dC =

(
LC + CLT + Σ0 − CHTΓ−1

0 HC
)
dt.
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Nonlinear filtering methods
For the nonlinear filtering problem

dVt = b(Vt)dt +
√

Σ0dWt

dZt = HVt +
√

Γ0dUt

(2)

there exist, as in the discrete-time setting, approximate Gaussian filtering
methods: 3DVAR, ExKF, EnKF, and (also non-Gaussian methods, e.g.,
particle filters) [LSZ Chapter 8.2].

Definition 3 (Continuous-time ExKF)

The distribution of Vt |Z[0,t] = z[0,t] is approximated by N(mt ,Ct) where

dm = b(mt)dt + CtH
TΓ−1

0 (dzt − Hmtdt), m0 = E [V0] ,

and

Ċt = Db(mt)Ct + Ct(Db(mt))T + Σ0 − CtH
TΓ−1

0 HCt , C0 = Var[V0],

with Db denoting the Jacobian of b : Rd → Rd .
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Derivation of continuous-time ExKF:

Apply ExKF on discrete-time approximation of (2),

Vτj+1 = Vτj + b(Vτj )∆τ +
√

Σξj

Yτj+1 = h(Vτj+1) +
√

Γηj
(3)

leading to a system of difference equations for mτj and Cτj .

Taking the continuous-time limit ∆τ ↓ 0 leads to the ExKF system of
differential equations for m and C , similarly as for Kalman-Bucy.
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Example – Nonlinear filtering
Consider the following stochastic version of Lorenz 63

dv1 = α(v1 − v2)dt + σdW1(t)

dv2 = −
(
αvv + v2 + v1v3

)
dt + σdW2(t)

dv3 = v1v2 − bv3 + b(r + α) + σdW3(t)

(4)

with σ = 2 and standard coefficient values (α, b, r) = (10, 8/3, 28).

On compact form, with v = (v1, v2, v3)T and W = (W1,W2,W3), we
rewrite

dv = f (v)dt + σdW .

Observations:
dz = Hvdt + γdU, z(0) = 0,

with either H = (0, 0, 1) or (1, 0, 0) and γ = 1/2.

Objective: “continuous-time” ExKF filtering with estimates of m0 and
C0 given (in practice, fine-timestep numerical integration of associated
discrete-time filtering problem).
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Main steps in code (more details in [LSZ p16c.m])
%Initial data

m0=zeros(3,1); C0=eye(3);% prior initial condition covariance

v(:,1)=m0+sqrtm(C0)*randn(3,1);% initial truth

m(:,1)=10*randn(3,1);% initial mean/ESTIMATE

c(:,:,1)=10*C0;% initial covariance operator/ESTIMATE

H=[1,0,0];% observation operator

tau=1e-4;% time discretization is tau

%% solution % assimilate!

for j=1:J

% truth

v(:,j+1)=v(:,j)+tau*f(v(:,j))+sigma*sqrt(tau)*randn(3,1);

z(:,j+1)=z(:,j)+tau*H*v(:,j+1) + gamma*sqrt(tau)*randn;% observation

mhat=m(:,j)+tau*f(m(:,j));% estimator predict

chat=(I+tau*Df(m(:,j)))*c(:,:,j)* ...

(I+tau*Df(m(:,j)))’+sigma^2*tau*I;% covariance predict

d=(z(j+1)-z(j))/tau-H*mhat;% innovation

K=(tau*chat*H’)/(H*chat*H’*tau+gamma^2);% Kalman gain

m(:,j+1)=mhat+K*d;% estimator update

c(:,:,j+1)=(I-K*H)*chat;% covariance update
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In linear-Gaussian settings, the continuous-time filtering problem can be
solved exactly.

Under sufficient regularity, we have the following extension to nonlinear
settings:

Theorem 4 (Kushner–Stratonovich equation)

Consider the filtering problem

dVt = b(Vt)dt +
√

Σ0dWt , V0 ∼ p(0, x)

dZt = h(Vt)dt +
√

Γ0dUt , Z0 = 0.

If b and h are sufficiently smooth, then there exists a pdf p(t, x) for
Vt |Z[0,t] = z[0,t], and it is the solution of

pt(t, x) = L∗p(t, x)+p(t, x)
(
h(x)−

∫
Rd

h(y)p(t, y)dy
)

Γ−1
0

(dz
dt
−
∫
Rd

h(y)p(t, y)dy
)

over (x , t) ∈ Rd × [0,T ], and (cf. the Fokker-Planck equation)

L∗p(t, x) = −∇x · (b(x)p(t, x)) +
1

2

d∑
i ,j=1

∂xixj (Σ0,ijp(t, x)).
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Problem description
Filtering problem

Dynamics uτj+1 = Ψ(uτj )

Observations Yτj+1 = Huτj+1 + ηj+1

}
j = 0, 1, . . .

With

uτj almost surely belongs to an infinite-dimensional Hilbert space H,
e.g., u(τj , ·) ∈ L2(R).

dynamics is possibly non-linear Ψ : L2(Ω,H)→ L2(Ω,H),

linear operator H : H → Rk .

hence finite-dimensional observations yτj , and ηj
iid∼ N(0, Γ) with

ηj ⊥ {uτj}, and Γ ∈ Rk×k .

Objective: Approximate pdf of uτj |Yτ1:j = yτ1:j .

Forward model approximation: Ψ ≈ ΨNt ,Nx with discretization both
time and space. Something like ∆t = ∆τ/Nt and ∆x = O(N−1

x ).
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Numerical example, 1D SPDE
1D stochastic reaction-diffusion equation

du = ((∆− I )u + f (u))dt + dW (t, x) ∈ [0,∞)× (0, 1),

u(0, x) = 4(x − 1/2)2

u(t, 0) = u(t, 1), ∀t ∈ [0,∞).

operator A is spectral decomposition of ∆− I

A =
∞∑
j=1

λjφj ⊗ φj , with λj h −j2

where φj(x) are Fourier series functions {1, sin(2πx), cos(2πx), . . .}.
With space-time colored noise

W (t, x) =
∑
j∈N

j−1W (j)(t)φj(x)

consider mild solutions

uτj+1 = Ψ(uτj ) := eA∆τuτj +

∫ ∆τ

0
eA(T−s)f (uτj+s)ds+

∫ ∆τ

0
eA(t−s)dWτj+s
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Simulation of SPDE
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Simulation of the SPDE with reaction term f (u) = sin(πu) over one
observation-time interval ∆τ = 1/2, by ΨNt ,Nx with Nx = Nt = 212. See
arxiv preprint A. Chernov et al. “Multilevel ensemble Kalman
filtering for spatio-temporal processes” for more details.
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EnKF filtering in high-dimensions
Approximate Ψ ≈ ΨNt ,Nx , with elements uj ∈ HNx ⊂ H (let us here
assume HNx is an Nx -dimensional state-space).

Sample iid v
(i)
0 ∼ ProjectionHNx Pu0 for i = 1, 2, . . . ,M and (using the

shorthand v
(i)
j := v

(i)
τj below)

Prediction

v̂
(i)
j+1 = ΨNt ,Nx (v

(i)
j ), i = 1, 2, . . . ,M, and

Ĉj+1 = CovM [v̂
(·)
j+1]︸ ︷︷ ︸

∈RNx×Nx

, or rather Ĉj+1H
∗ = CovM [v̂

(·)
j+1, v̂

(·)
j+1]︸ ︷︷ ︸

∈RNx×k

,

Analysis

v
(i)
j+1 = v̂

(i)
j+1 + K (y

(i)
j+1 − Hv̂

(i)
j+1), where K = Ĉj+1H

∗(HĈj+1H
∗ + Γ)−1.
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Localization for EnKF
When state-space dimension Nx � 1, the sample-covariance

ĈM
j = CovM [v̂

(·)
j ],

tend to have “spurious correlations”, meaning that for some `,m

|ĈM
j ,`,m − Ĉ∞j ,`,m| � Ĉ∞j ,`,m, with Ĉ∞j denoting the reference cov.

Not a problem that can be easily solved through increasing M, as
there is a cost associated to that.
Two diametrically opposite approaches for dealing with this (cf. Reich
and Cotter chp 8.2-8.3)

Variance inflation: To increase the magnitude of components of
ĈM
j,`,m where you expect it to be underestimated, inflate for instance

the model uncertainty.
Covariance localization: To reduce the magnitude of components of
ĈM
j,`,m where you expect it to be overestimated, do for instance

spatial/spectral localiazation: replace ĈM
j by ρ ◦ ĈM

j

where ◦ is the element-wise product and ρ`m = 1|`−m|≤n is a banded
filter matrix.
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Summary

Have treated filtering in the continuous-time dynamics and
observations setting.

The Kalman-Bucy filter solves the linear-Gaussian filtering problem,
while the Kushner-Stratonovich equation applies more generally.

Described extension of EnKF to filtering problems with
high/infinite-dimensional state-space.

Still unclear how well particle filtering can perform in
high-dimensional filtering. The number of particles required to avoid
degeneracy is conjectured to typically scale exponentially with
state-space dimension.

Next time: Presentations by Dmitry Kabanov on Ensemble Kalman
Inversion applied to machine learning, and by Luis Espath on Bayesian
optimal experimental design.
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