Mathematics and numerics for data assimilation and state estimation - Lecture 3

Mathematics
for Uncertainty Quantification

Summer semester 2020

Summary of lecture 2

■ Random vectors $(X, Y): \Omega \rightarrow A \times B$ and joint distributions

$$
\mathbb{P}_{(X, Y)}((a, b))=\mathbb{P}(X=a, Y=b)
$$

- Independence of rv

$$
\mathbb{P}(X=a, Y=b)=\mathbb{P}(X=a) \mathbb{P}(Y=b), \quad \forall a \in A \quad b \in B
$$

and of events

$$
\mathbb{P}\left(H_{1} \cap H_{2}\right)=\mathbb{P}\left(H_{1}\right) \mathbb{P}\left(H_{2}\right)
$$

■ Expectation of $X: \Omega \rightarrow A$,

$$
\mu=\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\sum_{a \in A} a \mathbb{P}(X=a)
$$

Summary of lecture 2

■ Variance of X. Defined for a scalar-valued rv (meaning $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ with $d=1$),

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mu)^{2}\right]
$$

■ Property: μ is the best constant-value approximation of X in the following sense

$$
\mathbb{E}\left[(X-\mu)^{2}\right] \leq \mathbb{E}\left[(X-k)^{2}\right] \quad \text { for all } \quad k \in \mathbb{R}
$$

Plan for this lecture

■ Conditional probabilities and expectations
■ Conditioning on events: "probability of X given H "

$$
\mathbb{P}(X=a \mid H) \quad H \in \mathcal{F}
$$

■ Conditioning on rv: "probability of X given rv Y^{\prime} ":

$$
\mathbb{P}(X=a \mid Y)
$$

Interesting property

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right]=\mathbb{E}\left[|X-f(Y)|^{2}\right]
$$

for any mapping $f(Y) \in \mathbb{R}^{d}$.

Conditional probability

Definition 1

For two events $G, H \in \mathcal{F}$ where $\mathbb{P}(H)>0$, the conditional probability of G given H is given by

$$
\mathbb{P}(G \mid H)=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

Whenever $\mathbb{P}(H)>0$, the mapping $\mathbb{P}(\cdot \mid H): \mathcal{F} \rightarrow[0,1]$ is a probability measure. ${ }^{1}$
Verification:

[^0]Simplification in some settings (direct use of conditioning):
For X, Y and $f(X, Y)$ discrete rv,

$$
\begin{equation*}
\mathbb{P}(f(X, Y)=c \mid Y=b)=\frac{\mathbb{P}(f(X, b)=c)}{\mathbb{P}(Y=b)}, \quad \text { if } \mathbb{P}(Y=b)>0 \tag{1}
\end{equation*}
$$

Example 2

Let $X_{1}, X_{2}, X_{3} \sim \operatorname{Bernoulli}(p)$ and independent rv. Let $Z=X_{1}+X_{2}+X_{3}$. Compute

$$
\mathbb{P}\left(Z \geq 1 \mid X_{1}=0\right)
$$

Solution:

Example 3 (Example where conditioning information is used "implicitly")
Let $X_{1}, X_{2}, X_{3} \sim \operatorname{Bernoulli}(p)$ and independent rv. Let $Z=X_{1}+X_{2}+X_{3}$. Compute

$$
\mathbb{P}\left(X_{1}=1 \mid Z=2\right)
$$

Solution:

Definition 4 (Conditional expectation)

For a discrete rv $X: \Omega \rightarrow A$ and an event $H \in \mathcal{F}$ with $\mathbb{P}(H)>0$, we define the conditional expectation of X given H as

$$
\mathbb{E}[X \mid H]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega \mid H)=\sum_{a \in A} a \mathbb{P}(X=a \mid H)
$$

- Property:

$$
\begin{equation*}
\mathbb{E}[X \mid H]=\mathbb{E}\left[X \mathbb{1}_{H}\right] / \mathbb{P}(H) \tag{2}
\end{equation*}
$$

Verfication:

■ Implication: $\mathbb{E}[|X| \mid H] \leq \mathbb{E}[|X|] / \mathbb{P}(H)$.

Example 5

Let X be a three-sided fair die, meaning

$$
\mathbb{P}(X=k)=\frac{1}{3} \quad \text { for } k=1,2,3 .
$$

Compute $\mathbb{E}[X \mid X \geq 2]$.

Solution:

Conditioning on zero-probability events

For events $G, H \in \mathcal{F}$, it is not clear how interpret the definition

$$
\mathbb{P}(G \mid H):=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

when $\mathbb{P}(H)=0$.
Is an extension of the definition needed? May not seem needed as zero-probability events "never" happen anyway, but often it is convenient to use the same co-domain for all rv studied, say for example

$$
X_{k}: \Omega \rightarrow \mathbb{N}
$$

with $X_{k}(\Omega)=\mathbb{N} \backslash\{k\}$ for $k=1,2, \ldots$.

Also any event $\{Y=y\}$ is a zero-probability event for a continuous rv!

Conditioning on zero-probability events 2

Definition 6 (Division-by-zero convention)

For any $c \in \mathbb{R}$ we will, in all of this course, make use of the following convention

$$
\frac{c}{0}:=0 .
$$

Motivation: Then $\frac{a}{b}$ is defined for any $a, b \in \mathbb{R}$, but it gives algebra a quirk

$$
b(a / b)= \begin{cases}a & \text { if } b \neq 0 \text { or } a=0 \\ 0 & \text { if } b=0\end{cases}
$$

Definition 7 (Generalization of Definition 1)

For any pair of events $G, H \in \mathcal{F}$, we define

$$
\mathbb{P}(G \mid H):=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

where we note that by the division-by-zero convention

$$
\mathbb{P}(G \mid H)=0 \quad \text { if } \mathbb{P}(H)=0 .
$$

Implications:

■ The definition of conditional expectation "naturally" extends to any zero-probability events $H \in \mathcal{F}$:

$$
\mathbb{E}[X \mid H]:=\sum_{a \in A} a \mathbb{P}(X=a \mid H)=0 .
$$

■ Direct use of conditioning, cf. equation (1), extends. Meaning,

$$
\mathbb{P}(f(X, Y)=c \mid Y=b)=\frac{\mathbb{P}(f(X, b)=c)}{\mathbb{P}(Y=b)}, \quad \text { also if } \mathbb{P}(Y=b)=0
$$

Conditioning on random variables

■ We have defined the conditional probability $\mathbb{P}(G \mid H)$ for any pair events G, H.
■ So for $\mathrm{rv} X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow B$, the following quantities are all defined

$$
\mathbb{P}(X=a \mid Y=b) \quad \text { for any } a \in A, b \in B
$$

■ Fixing the event $\{X=a\}$, we may introduce the function $\psi: B \rightarrow[0,1]$

$$
\psi(b)=\mathbb{P}(G \mid\{Y=b\})
$$

\square and the function $\phi: \Omega \rightarrow[0,1]$ by

$$
\phi(\omega):=\mathbb{P}(X=a \mid\{Y=Y(\omega)\})
$$

(curly brackets in the $\{Y=Y(\omega)\}$ notation here is only used to emphasize that we have events and is not really needed).

Conditioning on random variables 2

- The mapping $\phi(\omega)$ was introduced to clarify that $\mathbb{P}(X=a \mid\{Y=Y(\omega)\})$ is a function of ω.
- The customary notation for these conditional probabilities is as follows:

Definition 8 (Probability of X given Y)

Consider the discrete $\mathrm{rv} X$ and Y on the previous slide. Then for each $a \in A$, the mapping $\mathbb{P}(X=a \mid Y): \Omega \rightarrow[0,1]$ is the discrete $r v$ defined by

$$
\mathbb{P}(X=a \mid Y)(\omega)=\mathbb{P}(X=a \mid\{Y=Y(\omega)\})
$$

Verification that $\phi(\omega)=\mathbb{P}(X=a \mid Y)(\omega)$ is a discrete rv :

- The set of outcomes/ image space

$$
\begin{aligned}
\phi(\Omega) & =\cup_{\omega \in \Omega}\{\mathbb{P}(X=a \mid Y=Y(\omega))\} \\
& =\cup_{b \in B}\{\mathbb{P}(X=a \mid Y=b)\}=: C \subset[0,1]
\end{aligned}
$$

is countable since B is countable.

■ For each $c \in C$, there exists a $b(c) \in B$ such that

$$
c=\mathbb{P}(X=a \mid Y=b(c))
$$

and

$$
\phi^{-1}(c)=\{\omega \in \Omega \mid Y(\omega)=b(c)\} \in \mathcal{F} .
$$

Example 9

Consider the a coin toss $X: \Omega \rightarrow\{0,1\}$ and a die roll $Y: \Omega \rightarrow\{1,2,3\}$, on sample space $\Omega=\{$ Heads, Nose, Tails $\}$ with

$$
X^{-1}(1)=\{\text { Heads, Nose }\} \quad \text { and } \quad X^{-1}(0)=\{\text { Tails }\}
$$

$$
Y^{-1}(1)=\{\text { Heads }\}, \quad Y^{-1}(2)=\{\text { Nose }\} \quad \text { and } \quad Y^{-1}(3)=\{\text { Tails }\} .
$$

and

$$
\mathbb{P}(\text { Heads })=\mathbb{P}(\text { Nose })=1 / 4, \quad \text { and } \quad \mathbb{P}(\text { Tails })=1 / 2 .
$$

Then

$$
\mathbb{P}(X=0 \mid Y)(\text { Heads })=
$$

$$
\mathbb{P}(Y=1 \mid X)(\text { Nose })=
$$

Definition 10 (Expectation of X given Y)

For discrete rv $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, the mapping $\mathbb{E}[X \mid Y]: \Omega \rightarrow \mathbb{R}^{d}$ is defined
$\mathbb{E}[X \mid Y](\omega):=\sum_{a \in A} a \mathbb{P}(X=a \mid Y)(\omega)=\sum_{a \in A} a \mathbb{P}(X=a \mid\{Y=Y(\omega)\})$.
Note, $\mathbb{E}[X \mid Y]$ is a discrete rv.

Example 11

Consider the Bernoulli rv X, Y with joint probabilities

$$
\mathbb{P}(X=i, Y=j)=\left[\begin{array}{ll}
1 / 8 & 1 / 4 \\
1 / 2 & 1 / 8
\end{array}\right] \quad i, j \in\{0,1\}
$$

$\mathbb{E}[Y \mid X]($ Heads $)=$

Definition 10 (Expectation of X given Y)

For discrete $\mathrm{rv} X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, the mapping $\mathbb{E}[X \mid Y]: \Omega \rightarrow \mathbb{R}^{d}$ is defined
$\mathbb{E}[X \mid Y](\omega):=\sum_{a \in A} a \mathbb{P}(X=a \mid Y)(\omega)=\sum_{a \in A} a \mathbb{P}(X=a \mid\{Y=Y(\omega)\})$.
Note, $\mathbb{E}[X \mid Y]$ is a discrete rv.
Note that,

$$
\mathbb{E}[X \mid Y](\omega)=\mathbb{E}[X \mid\{Y=Y(\omega)\}]
$$

and that it can be associated to a deterministic mapping $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ as follows

$$
\begin{equation*}
g(Y(\omega))=\mathbb{E}[X \mid Y=Y(\omega)] \tag{3}
\end{equation*}
$$

Motivation for $\mathbb{E}[X \mid Y]$

Say you have an observation $Y(\omega)$ (i.e., you know $Y(\omega)$ but not ω), and that what you really seek is the value of $X(\omega)$. Then what is the best function $g(Y(\omega))$ to approximate $X(\omega)$?

Theorem 11 (Mean-square sense best approximation)

For discrete $r v X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $\mathbb{E}\left[X^{2}\right]<\infty$, it holds that

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-f(Y)|^{2}\right]
$$

for all $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ such that $\mathbb{E}\left[|f(Y)|^{2}\right]<\infty$.
Interpretation Since the constant function $f(Y)=\mathbb{E}[X]$ is one possible mapping, we conclude that

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-\mathbb{E}[X]|^{2}\right]
$$

To prove Theorem 11, we will need a few intermediary results.

Lemma 12 (The tower property)

For discrete $r \mathrm{X}: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, it holds that

$$
\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X] .
$$

Proof:

Lemma 13 (The Direct conditioning of expectations)

For the setting in Lemma 12, it holds for any mapping $f: \mathbb{R}^{d} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $|\mathbb{E}[f(X, Y)]|<\infty$ that

$$
\mathbb{E}[f(X, Y) \mid Y=b]=\mathbb{E}[f(X, b) \mid Y=b] \quad \forall b \in B
$$

Special case: $f(x, y)=g(x) h(y)$ yields

$$
\mathbb{E}[g(X) h(Y) \mid Y=b]=h(b) \mathbb{E}[g(X) \mid Y=b] \quad \forall b \in B
$$

Since this holds for all b,

$$
\mathbb{E}[g(X) h(Y) \mid Y=b]=h(Y) \mathbb{E}[g(X) \mid Y]
$$

And tower property 2:

$$
\begin{equation*}
\mathbb{E}[h(Y) \mathbb{E}[g(X) \mid Y]]=\mathbb{E}[h(Y) g(X)] \tag{4}
\end{equation*}
$$

Using (4), let us prove Theorem 11 in the 1D setting, i.e., that

$$
\mathbb{E}\left[(X-\mathbb{E}[X \mid Y])^{2}\right] \leq \mathbb{E}\left[(X-f(Y))^{2}\right]
$$

for all $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\mathbb{E}\left[(f(Y))^{2}\right]<\infty$.

Proof:

$$
\begin{aligned}
& \mathbb{E}\left[(X-f(Y))^{2}\right]=\mathbb{E}\left[((X-\mathbb{E}[X \mid Y])+(\mathbb{E}[X \mid Y]-f(Y)))^{2}\right] \\
& =
\end{aligned}
$$

For $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B$, the mapping

$$
g(b):=\mathbb{E}[X \mid Y=b]
$$

satisfies

$$
g(Y(\omega)):=\mathbb{E}[X \mid Y=Y(\omega)]
$$

Concludsion: $\mathbb{E}[X \mid Y]$ is an rv induced from the rv Y through the mapping g.

Question: Is $\mathbb{E}[X \mid Y]$ in some sense unique?

Question: Given a candidate mapping $g: B \rightarrow \mathbb{R}^{d}$, is there a way to verify whether $g(Y)=\mathbb{E}[Y \mid X]$?

Definition 14 (P-almost surely equal)

Two rv X, Y are said to be \mathbb{P}-almost surely equal provided

$$
\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=Y(\omega)\})=1 .
$$

We write

$$
X=Y \quad \mathbb{P}-\text { a.s. }
$$

(or just "a.s." whenever it is clear which probability measure \mathbb{P} is considered).

Motivation:

Example 15

$X: \Omega \rightarrow\{0,1\}$ and $Y: \Omega \rightarrow\{0,1,2\}$ with

$$
\mathbb{P}(X=Y)=1 \quad \text { and } \quad\{Y=2\} \neq \emptyset
$$

Then $X(\omega) \neq Y(\omega)$ for any $\omega \in\{Y=2\}$, but $X=Y$ a.s.

Theorem 16

Consider the setting in Lemma 12. If $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ is a mapping such that for every bounded mapping $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E}[f(Y) g(Y)]=\mathbb{E}[f(Y) X] \tag{5}
\end{equation*}
$$

then

$$
g(Y)=\mathbb{E}[X \mid Y] \quad \text { a.s. }
$$

Interpretation: $\mathbb{E}[X \mid Y]$ is a a.s. unique rv of form $g(Y)$ satisfying (5).
Usage: If a mapping $B \ni b \mapsto g(b) \in \mathbb{R}^{d}$ satisfies (5), i.e.,
$\sum_{b \in B} f(b) g(b) P(Y=b)=\sum_{a \in A, b \in B} f(b) a P(X=a, Y=b) \quad \forall f: B \rightarrow \mathbb{R}$,
then $g(Y(\omega))=\mathbb{E}[X \mid Y](\omega)$ for \mathbb{P}-almost all $\omega \in \Omega$.

Next time

- Convergence of random variables

■ Random walks and discrete time Markov Chains

[^0]: ${ }^{1}$ And it remains to define $\mathbb{P}(\cdot \mid H)$ for zero-probability events H.

