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Summary of lecture 2

m Random vectors (X, Y) : Q — A x B and joint distributions
Pix,vy((a, b)) =P(X = a,Y = b).
m Independence of rv
P(X =a,Y =b)=P(X =a)P(Y = b), VYVacA beB

and of events
P(Hl N HQ) = ]P)(H]_)]P)(HQ)

m Expectation of X : Q — A,

p=E[X] = /QX(W)P(C/W) —Y P (X =)

acA



Summary of lecture 2

m Variance of X. Defined for a scalar-valued rv (meaning
X :Q — Ac RY with d=1),

Var(X) :=E [ (X — p)?].

m Property: p is the best constant-value approximation of X in the
following sense

E[(X —p)?] <E[(X—k))]  forall keR.



Plan for this lecture

m Conditional probabilities and expectations

m Conditioning on events: “probability of X given H”

P(X=a|H) HeF,

m Conditioning on rv: “probability of X given rv Y":
P(X=alY)
Interesting property
E[IX -E[X | Y]] =E[IX - f(Y)[]

for any mapping f(Y) € R€.



Conditional probability

Definition 1

For two events G, H € F where P(H) > 0, the conditional probability of G
given H is given by
P(G N H)
P(G|H)= ———
(61H) =5

Whenever P(H) > 0, the mapping P(- | H) : F — [0, 1] is a probability
measure.’
Verification:

'And it remains to define P(- | H) for zero-probability events H.



Simplification in some settings (direct use of conditioning):
For X, Y and (X, Y) discrete rv,
P(f(X,b) =c)

PAXY) = e Y =b) = =502

if P(Y=b)>0. (1)
Example 2

Let X1, X2, X3 ~ Bernoulli(p) and independent rv. Let Z = Xj + X2 + X3.
Compute
P(Z>1| Xy =0)

Solution:




Example 3 (Example where conditioning information is used
“implicitly”)
Let X1, X2, X3 ~ Bernoulli(p) and independent rv. Let Z = X + Xp + X3.
Compute

P(X,=1|Z=2)

Solution:




Definition 4 (Conditional expectation)

For a discrete rv X : Q — A and an event H € F with P(H) > 0, we
define the conditional expectation of X given H as

E[X!H]_/X P(dw | H) =Y aP(X = a| H)

acA

m Property:
E[X [ H] =E[X14] /P(H) (2)

Verfication:

m Implication: E[|X| | H] < E[|X]|] /P(H).



Example 5
Let X be a three-sided fair die, meaning

1
P(X=k =5 fork=123.

Compute E[X | X > 2].
Solution:




Conditioning on zero-probability events

For events G, H € F, it is not clear how interpret the definition

P (G N H)

P61 H) = —pe

when P (H) = 0.

Is an extension of the definition needed? May not seem needed as
zero-probability events “never” happen anyway, but often it is convenient
to use the same co-domain for all rv studied, say for example

X, Q>N

with X (Q) = N\ {k} for k=1,2,.. ..

Also any event {Y = y} is a zero-probability event for a continuous rv!



Conditioning on zero-probability events 2

Definition 6 (Division-by-zero convention)
For any ¢ € R we will, in all of this course, make use of the following

convention

c
—:=0.
0

Motivation: Then £ is defined for any a, b € R, but it gives algebra a
quirk
a ifb#0o0ra=0

bla/b) = {o if b=0.



Definition 7 (Generalization of Definition 1)

For any pair of events G, H € F, we define

P(G | H) 1= —prps

where we note that by the division-by-zero convention

P(G|H)=0 ifP(H)=0.

P(G N H)

Implications:

m The definition of conditional expectation “naturally” extends to any

zero-probability events H € F:

E[X|H]:=) aP(X =a| H)=0.

acA

m Direct use of conditioning, cf. equation (1), extends. Meaning,

P (f(X,b) = c)

PIAXY) =l Y =b)= =50

)

also if P(Y = b) = 0.



Conditioning on random variables

m We have defined the conditional probability P (G | H) for any pair
events G, H.

m Soforrv X:Q2 — Aand Y :Q — B, the following quantities are all
defined
P(X=a|Y=b) foranyac A beB.

m Fixing the event {X = a}, we may introduce the function
Y : B —0,1]
P(b) =P (G [{Y = b})

m and the function ¢ : Q — [0, 1] by
pw) =P(X=a|{Y =Y(w)})

( curly brackets in the {Y = Y(w)} notation here is only used to
emphasize that we have events and is not really needed).



Conditioning on random variables 2

m The mapping ¢(w) was introduced to clarify that
P(X=al|{Y = Y(w)}) is a function of w.

m The customary notation for these conditional probabilities is as
follows:

Definition 8 (Probability of X given Y)

Consider the discrete rv X and Y on the previous slide. Then for each
a € A, the mapping P(X =a| Y):Q — [0,1] is the discrete rv defined by

P(X=a|Y)(w)=P(X=a|{Y=Yw)}).




Verification that ¢(w) =P (X = a| Y)(w) is a discrete rv:

m The set of outcomes/ image space

() = UpefP(X =a| Y = Y(w))}
— Upes{P(X =a| Y =b)} = Cc[01]

is countable since B is countable.

m For each ¢ € C, there exists a b(c) € B such that
c=P(X=al|Y=05b(c))

and

¢71(c) = {w € Q| Y(w) = b(c)} € F.



Example 9

Consider the a coin toss X : Q — {0,1} and a die roll Y : Q — {1,2,3},
on sample space Q = {Heads, Nose, Tails} with

X71(1) = {Heads, Nose} and X1(0) = { Tails}

Y~1(1) = {Heads}, Y(2)={Nose} and Y 1(3)= {Tails}.

and
P (Heads) = P(Nose) =1/4, and P(Tails)=1/2.

Then
P(X =0]Y)(Heads) =

P(Y =11 X)(Nose) =




Definition 10 (Expectation of X given Y)
For discrete rv X : Q -+ ACRY and Y : Q — B C R with |[E[X]| < oo,
the mapping E[ X | Y] : Q — RY is defined

E[X|Y](w):=) aP(X=a|Y)(w)=> aP(X=a|{Y=Y(w)}).

acA acA

Note, E[ X | Y] is a discrete rv.

Example 11
Consider the Bernoulli rv X, Y with joint probabilities

P(X=i,Y =)= Eg i;g] i,j €40,1}

E[Y | X] (Heads) =




Definition 10 (Expectation of X given Y)
For discrete rv X : Q - ACRY and Y : Q — B C R with [E[X]| < oo,
the mapping E[ X | Y] : Q — R is defined

E[X|Y](w):=) aP(X=a|Y)(w)=> aP(X=a|{Y=Y(w)}).

acA acA

Note, E[ X | Y] is a discrete rv.

Note that,
E[X[Y](w) =E[X|{Y =Y(w)}]

and that it can be associated to a deterministic mapping g : RK — R as

follows
g(Y(w) =E[X|Y =Y(w)]. (3)




Motivation for E[ X | Y]

Say you have an observation Y(w) (i.e., you know Y(w) but not w), and
that what you really seek is the value of X(w). Then what is the best
function g(Y(w)) to approximate X(w)?

Theorem 11 (Mean-square sense best approximation)

For discrete rv X : Q — ACR? and Y : Q — B C R* with E [ X?] < o0,
it holds that

E[IX -E[X| Y]] <E[IX = f(Y)[]

for all f : R* — R9 such that E [ |f(Y)|?] < <.

v

Interpretation Since the constant function f(Y) = E[X] is one possible
mapping, we conclude that

E[IX ~E[X| V]2 <E[IX ~E[X][].

To prove Theorem 11, we will need a few intermediary results.



Lemma 12 (The tower property )

For discrete rv X : Q —+ ACRY and Y : Q — B C R¥ with |[E[X]| < oo,
it holds that
E[E[X | Y]]=E[X].

Proof:



Lemma 13 (The Direct conditioning of expectations )

For the setting in Lemma 12, it holds for any mapping f : R? x Rk - R
such that |E[f(X, Y)]| < oo that

E[f(X,Y)|Y =b=E[f(X,b)| Y =b] VbeB.

Special case: f(x,y) = g(x)h(y) yields
E[g(X)h(Y) | Y = b] = h(bE[g(X)| Y = b] Vbe B
Since this holds for all b,
E[g(X)h(Y)| Y = b = h(Y)E[g(X) | Y].
And tower property 2:

ETA(Y)E[g(X) | Y]] = E[h(Y)g(X)] (4)



Using (4), let us prove Theorem 11 in the 1D setting, i.e., that
E[(X-E[X]|Y])?] <E[(X-f(Y))?]

forall f: R — R with E [ (f(Y))?] < .

Proof:

B~ ()] =5 | (X ~BLX| YD + BIX | Y- 7()]



For X :Q—= ACRYand Y :Q — B, the mapping
g(b):i=E[X | Y = b]
satisfies

g(Y(@) =E[X|Y = Y(w).

Concludsion: E[X | Y] is an rv induced from the rv Y through the
mapping g.

Question: Is E[X | Y] in some sense unique?

Question: Given a candidate mapping g : B — RY, is there a way to
verify whether g(Y)=E[Y | X] ?



Definition 14 (IP-almost surely equal)
Two rv X, Y are said to be P-almost surely equal provided

P({we Q| X(w) = Y(w)}) = 1.

We write
X=Y P-as.

(or just “a.s.” whenever it is clear which probability measure P is
considered).

Motivation:

Example 15
X:Q—{0,1} and Y : Q — {0,1,2} with

P(X=Y)=1 and {Y =2} #0.

Then X(w) # Y(w) for any w € {Y =2}, but X =Y ass.




Theorem 16
Consider the setting in Lemma 12.
If g : Rk — RY is a mapping such that for every bounded mapping
f:RK 5 R,
E[f(Y)e(Y)]=E[f(Y)X] (5)
then
g(Y)=E[X]|Y] as

Interpretation: E[X | Y] is a a.s. unique rv of form g(Y) satisfying (5).
Usage: If a mapping B > b — g(b) € R satisfies (5), i.e.,

D f(b)g(b)P(Y =b)= > f(b)aP(X=a, Y =b) Vf:B—=R,
beB acA,beB

then g(Y(w)) = E[X]|Y](w) for P-almost all w € Q.




Next time

m Convergence of random variables

m Random walks and discrete time Markov Chains



