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Summary of lecture 2

Random vectors (X ,Y ) : Ω→ A× B and joint distributions

P(X ,Y )((a, b)) = P(X = a,Y = b).

Independence of rv

P(X = a,Y = b) = P(X = a)P(Y = b), ∀a ∈ A b ∈ B

and of events
P (H1 ∩ H2) = P (H1)P (H2)

Expectation of X : Ω→ A,

µ = E [X ] :=

∫
Ω
X (ω)P(dω) =

∑
a∈A

aP (X = a)
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Summary of lecture 2

Variance of X . Defined for a scalar-valued rv (meaning
X : Ω→ A ⊂ Rd with d = 1),

Var(X ) := E
[

(X − µ)2
]
.

Property: µ is the best constant-value approximation of X in the
following sense

E
[

(X − µ)2
]
≤ E

[
(X − k)2

]
for all k ∈ R.
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Plan for this lecture

Conditional probabilities and expectations

Conditioning on events: “probability of X given H”

P(X = a | H) H ∈ F ,

Conditioning on rv: “probability of X given rv Y ”:

P(X = a | Y )

Interesting property

E
[
|X − E [X | Y ] |2

]
= E

[
|X − f (Y )|2

]
for any mapping f (Y ) ∈ Rd .
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Conditional probability

Definition 1

For two events G ,H ∈ F where P(H) > 0, the conditional probability of G
given H is given by

P(G | H) =
P (G ∩ H)

P(H)

Whenever P(H) > 0, the mapping P(· | H) : F → [0, 1] is a probability
measure.1

Verification:

1And it remains to define P(· | H) for zero-probability events H.
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Simplification in some settings (direct use of conditioning):
For X ,Y and f (X ,Y ) discrete rv,

P (f (X ,Y ) = c | Y = b) =
P (f (X , b) = c)

P (Y = b)
, if P (Y = b) > 0. (1)

Example 2

Let X1,X2,X3 ∼ Bernoulli(p) and independent rv. Let Z = X1 + X2 + X3.
Compute

P (Z ≥ 1 | X1 = 0)

Solution:
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Example 3 (Example where conditioning information is used
“implicitly”)

Let X1,X2,X3 ∼ Bernoulli(p) and independent rv. Let Z = X1 + X2 + X3.
Compute

P (X1 = 1 | Z = 2)

Solution:
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Definition 4 (Conditional expectation)

For a discrete rv X : Ω→ A and an event H ∈ F with P(H) > 0, we
define the conditional expectation of X given H as

E [X | H] :=

∫
Ω
X (ω)P(dω | H) =

∑
a∈A

aP(X = a | H)

Property:
E [X | H] = E [X1H ] /P(H) (2)

Verfication:

Implication: E [ |X | | H] ≤ E [ |X |] /P(H).
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Example 5

Let X be a three-sided fair die, meaning

P(X = k) =
1

3
for k = 1, 2, 3.

Compute E [X | X ≥ 2].

Solution:
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Conditioning on zero-probability events

For events G ,H ∈ F , it is not clear how interpret the definition

P (G | H) :=
P (G ∩ H)

P(H)

when P (H) = 0.
Is an extension of the definition needed? May not seem needed as
zero-probability events “never” happen anyway, but often it is convenient
to use the same co-domain for all rv studied, say for example

Xk : Ω→ N

with Xk(Ω) = N \ {k} for k = 1, 2, . . ..

Also any event {Y = y} is a zero-probability event for a continuous rv!
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Conditioning on zero-probability events 2

Definition 6 (Division-by-zero convention)

For any c ∈ R we will, in all of this course, make use of the following
convention

c

0
:= 0.

Motivation: Then a
b is defined for any a, b ∈ R, but it gives algebra a

quirk

b(a/b) =

{
a if b 6= 0 or a = 0

0 if b = 0.
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Definition 7 (Generalization of Definition 1)

For any pair of events G ,H ∈ F , we define

P(G | H) :=
P (G ∩ H)

P(H)

where we note that by the division-by-zero convention

P(G | H) = 0 if P(H) = 0.

Implications:

The definition of conditional expectation “naturally” extends to any
zero-probability events H ∈ F :

E [X |H] :=
∑
a∈A

aP (X = a | H) = 0.

Direct use of conditioning, cf. equation (1), extends. Meaning,

P (f (X ,Y ) = c | Y = b) =
P (f (X , b) = c)

P (Y = b)
, also if P (Y = b) = 0.
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Conditioning on random variables

We have defined the conditional probability P (G | H) for any pair
events G ,H.

So for rv X : Ω→ A and Y : Ω→ B, the following quantities are all
defined

P (X = a | Y = b) for any a ∈ A, b ∈ B.

Fixing the event {X = a}, we may introduce the function
ψ : B → [0, 1]

ψ(b) = P (G | {Y = b})

and the function φ : Ω→ [0, 1] by

φ(ω) := P (X = a | {Y = Y (ω)})

( curly brackets in the {Y = Y (ω)} notation here is only used to
emphasize that we have events and is not really needed).
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Conditioning on random variables 2

The mapping φ(ω) was introduced to clarify that
P (X = a | {Y = Y (ω)}) is a function of ω.

The customary notation for these conditional probabilities is as
follows:

Definition 8 (Probability of X given Y )

Consider the discrete rv X and Y on the previous slide. Then for each
a ∈ A, the mapping P (X = a | Y ) : Ω→ [0, 1] is the discrete rv defined by

P (X = a | Y ) (ω) = P (X = a | {Y = Y (ω)}) .
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Verification that φ(ω) = P (X = a | Y ) (ω) is a discrete rv:

The set of outcomes/ image space

φ(Ω) = ∪ω∈Ω{P (X = a | Y = Y (ω))}
= ∪b∈B{P (X = a | Y = b)} =: C ⊂ [0, 1]

is countable since B is countable.

For each c ∈ C , there exists a b(c) ∈ B such that

c = P (X = a | Y = b(c))

and
φ−1(c) = {ω ∈ Ω | Y (ω) = b(c)} ∈ F .

15 / 25



Example 9

Consider the a coin toss X : Ω→ {0, 1} and a die roll Y : Ω→ {1, 2, 3},
on sample space Ω = {Heads,Nose,Tails} with

X−1(1) = {Heads,Nose} and X−1(0) = {Tails}

Y−1(1) = {Heads}, Y−1(2) = {Nose} and Y−1(3) = {Tails}.

and
P (Heads) = P (Nose) = 1/4, and P (Tails) = 1/2.

Then
P (X = 0 | Y ) (Heads) =

P (Y = 1 | X ) (Nose) =
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Definition 10 (Expectation of X given Y )

For discrete rv X : Ω→ A ⊂ Rd and Y : Ω→ B ⊂ Rk with |E [X ] | <∞,
the mapping E [X | Y ] : Ω→ Rd is defined

E [X | Y ] (ω) :=
∑
a∈A

aP (X = a | Y ) (ω) =
∑
a∈A

aP (X = a | {Y = Y (ω)}) .

Note, E [X | Y ] is a discrete rv.

Example 11

Consider the Bernoulli rv X ,Y with joint probabilities

P(X = i ,Y = j) =

[
1/8 1/4
1/2 1/8

]
i , j ∈ {0, 1}

E [Y | X ] (Heads) =
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Definition 10 (Expectation of X given Y )

For discrete rv X : Ω→ A ⊂ Rd and Y : Ω→ B ⊂ Rk with |E [X ] | <∞,
the mapping E [X | Y ] : Ω→ Rd is defined

E [X | Y ] (ω) :=
∑
a∈A

aP (X = a | Y ) (ω) =
∑
a∈A

aP (X = a | {Y = Y (ω)}) .

Note, E [X | Y ] is a discrete rv.

Note that,
E [X | Y ] (ω) = E [X | {Y = Y (ω)}]

and that it can be associated to a deterministic mapping g : Rk → Rd as
follows

g(Y (ω)) = E [X | Y = Y (ω)] . (3)
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Motivation for E [X | Y ]
Say you have an observation Y (ω) (i.e., you know Y (ω) but not ω), and
that what you really seek is the value of X (ω). Then what is the best
function g(Y (ω)) to approximate X (ω)?

Theorem 11 (Mean-square sense best approximation)

For discrete rv X : Ω→ A ⊂ Rd and Y : Ω→ B ⊂ Rk with E
[
X 2
]
<∞,

it holds that

E
[
|X − E [X | Y ] |2

]
≤ E

[
|X − f (Y )|2

]
for all f : Rk → Rd such that E

[
|f (Y )|2

]
<∞.

Interpretation Since the constant function f (Y ) = E [X ] is one possible
mapping, we conclude that

E
[
|X − E [X | Y ] |2

]
≤ E

[
|X − E [X ] |2

]
.

To prove Theorem 11, we will need a few intermediary results.
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Lemma 12 (The tower property )

For discrete rv X : Ω→ A ⊂ Rd and Y : Ω→ B ⊂ Rk with |E [X ] | <∞,
it holds that

E [E [X | Y ] ] = E [X ] .

Proof:
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Lemma 13 (The Direct conditioning of expectations )

For the setting in Lemma 12, it holds for any mapping f : Rd × Rk → R
such that |E [ f (X ,Y )] | <∞ that

E [ f (X ,Y ) | Y = b] = E [ f (X , b) | Y = b] ∀b ∈ B.

Special case: f (x , y) = g(x)h(y) yields

E [ g(X )h(Y ) | Y = b] = h(b)E [ g(X ) | Y = b] ∀b ∈ B

Since this holds for all b,

E [ g(X )h(Y ) | Y = b] = h(Y )E [ g(X ) | Y ] .

And tower property 2:

E [ h(Y )E [ g(X ) | Y ]] = E [ h(Y )g(X )] (4)
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Using (4), let us prove Theorem 11 in the 1D setting, i.e., that

E
[

(X − E [X | Y ])2
]
≤ E

[
(X − f (Y ))2

]
for all f : R→ R with E

[
(f (Y ))2

]
<∞.

Proof:

E
[

(X − f (Y ))2
]

= E
[(

(X − E [X | Y ]) + (E [X | Y ]− f (Y ))
)2
]

=
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For X : Ω→ A ⊂ Rd and Y : Ω→ B, the mapping

g(b) := E [X | Y = b]

satisfies
g(Y (ω)) := E [X | Y = Y (ω)] .

Concludsion: E [X | Y ] is an rv induced from the rv Y through the
mapping g .

Question: Is E [X | Y ] in some sense unique?

Question: Given a candidate mapping g : B → Rd , is there a way to
verify whether g(Y ) = E [Y | X ] ?
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Definition 14 (P-almost surely equal)

Two rv X ,Y are said to be P-almost surely equal provided

P ({ω ∈ Ω | X (ω) = Y (ω)}) = 1.

We write
X = Y P− a.s.

(or just “a.s.” whenever it is clear which probability measure P is
considered).

Motivation:

Example 15

X : Ω→ {0, 1} and Y : Ω→ {0, 1, 2} with

P (X = Y ) = 1 and {Y = 2} 6= ∅.

Then X (ω) 6= Y (ω) for any ω ∈ {Y = 2}, but X = Y a.s.
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Theorem 16

Consider the setting in Lemma 12.
If g : Rk → Rd is a mapping such that for every bounded mapping
f : Rk → R,

E [ f (Y )g(Y )] = E [ f (Y )X ] (5)

then
g(Y ) = E [X | Y ] a.s.

Interpretation: E [X | Y ] is a a.s. unique rv of form g(Y ) satisfying (5).

Usage: If a mapping B 3 b 7→ g(b) ∈ Rd satisfies (5), i.e.,∑
b∈B

f (b)g(b)P(Y = b) =
∑

a∈A,b∈B
f (b)aP(X = a,Y = b) ∀f : B → R,

then g(Y (ω)) = E [X |Y ] (ω) for P-almost all ω ∈ Ω.
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Next time

Convergence of random variables

Random walks and discrete time Markov Chains
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