# Mathematics and numerics for data assimilation and state estimation – Lecture 3



Summer semester 2020

# Summary of lecture 2

Random vectors  $(X, Y) : \Omega \to A \times B$  and joint distributions

$$\mathbb{P}_{(X,Y)}((a,b)) = \mathbb{P}(X = a, Y = b).$$

Independence of rv

$$\mathbb{P}(X = a, Y = b) = \mathbb{P}(X = a)\mathbb{P}(Y = b), \quad \forall a \in A \quad b \in B$$

and of events

$$\mathbb{P}\left(H_{1}\cap H_{2}\right)=\mathbb{P}\left(H_{1}\right)\mathbb{P}\left(H_{2}\right)$$

• Expectation of  $X : \Omega \to A$ ,

$$\mu = \mathbb{E}\left[X
ight] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \sum_{a \in A} a \mathbb{P}\left(X = a
ight)$$

# Summary of lecture 2

• Variance of X. Defined for a scalar-valued rv (meaning  $X : \Omega \to A \subset \mathbb{R}^d$  with d = 1),

$$\operatorname{Var}(X) := \mathbb{E}\left[\left(X - \mu\right)^2\right].$$

Property: µ is the best constant-value approximation of X in the following sense

$$\mathbb{E}\left[(X-\mu)^{2}\right] \leq \mathbb{E}\left[(X-k)^{2}\right] \quad \text{for all } k \in \mathbb{R}.$$

$$\left(\mathcal{E}\left[\left|X-\mu\right|^{2}\right] \leq \left(\mathcal{E}\left[\left|X-k\right|^{2}\right]\right]$$

$$\left(\mathcal{M} \in \mathbb{R}^{d}\right) \quad \forall k \in \mathbb{R}^{d}$$

# Plan for this lecture

- Conditional probabilities and expectations
- Conditioning on events: "probability of X given H"

$$\mathbb{P}(X = a \mid H) \qquad H \in \mathcal{F},$$

■ Conditioning on rv: "probability of X given rv Y":

$$\mathbb{P}(X = a \mid Y)$$

Interesting property

$$\mathbb{E}\left[|X - \mathbb{E}\left[X \mid Y\right]|^2\right] \stackrel{}{\leftarrow} \mathbb{E}\left[|X - f(Y)|^2\right]$$

for any mapping  $f(Y) \in \mathbb{R}^d$ .

# Conditional probability

## Definition 1

For two events  $G, H \in \mathcal{F}$  where  $\mathbb{P}(H) > 0$ , the conditional probability of G given H is given by

$$\mathbb{P}(G \mid H) = \frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$$

Whenever  $\mathbb{P}(H) > 0$ , the mapping  $\mathbb{P}(\cdot \mid H) : \mathcal{F} \to [0, 1]$  is a probability Verification:  $P(\emptyset|H) = 0$ ,  $P(\Omega|H) = \frac{P(\Omega|H)}{D(H)}$ Need to verily for the F which are Pairwise disjoint then P(VHi|H) = Z, P(Hi|H) <sup>1</sup>And it remains to define  $\mathbb{P}(\cdot \mid H)$  for zero-probability events H.

Observe that  $if Hi \cap Hj = \emptyset$  for all  $i \neq j$ then  $(H: \cap H) \cap (H; \cap H) = \emptyset \forall i \neq j$  $and(UHi) \cap H = U(Hi \cap H)$  $Consequently P((UHi) \cap H) \\ P(UHi|H) = \frac{P(UHi)}{P(H)}$ 

 $\mathbb{P}(\mathcal{Q}(\mathcal{H}; \mathcal{O}\mathcal{H}))$ R(H)  $Z_{i} \mathbb{P}(H_{i}(H))$ R(H)  $= \Sigma R(H; (H))$ 

Simplification in some settings (direct use of conditioning): For X, Y and f(X, Y) discrete rv,  $\mathcal{P}(f(X,b) = C | \Sigma = b)$ 

$$\mathbb{P}\left(f(X,Y)=c\mid Y=b\right)=\frac{\mathbb{P}\left(f(X,b)=c\right)}{\mathbb{P}\left(Y=b\right)}, \quad \text{if } \mathbb{P}\left(Y=b\right)>0. \quad (1)$$

#### Example 2

Let  $X_1, X_2, X_3 \sim Bernoulli(p)$  and independent rv. Let  $Z = X_1 + X_2 + X_3$ . Compute

 $\mathbb{P}\left(Z\geq 1\mid X_1=0\right)$ 

#### Solution:

 $Z = f(X_1, X_2, X_3) = X_1 + X_2 + X_3$   $IP(f(X_1, X_2, X_3) \ge 1 \mid X_1 = 0) = P(f(0, X_2, X_3) \ge 1 \mid X_1 = 0)$  $= P(X_2 + X_3 \ge 1 \mid X_1 = 0)$ 

 $= P(\{X_1 + X_3 \ge 1\} \cap \{X_c = 0\})$  $\mathbb{P}(\mathcal{S}_{i}=\mathcal{O})$  $= \mathbb{P}((\mathbb{X}_{1},\mathbb{X}_{2},\mathbb{X}_{3}) \in \{(0,0,1), (0,1,0), (0,1,1)\})$ 1-1  $2(1-P)^{2}P + (1-P)P^{2}$ 1-P

Example 3 (Example where conditioning information is used "implicitly")

Let  $X_1, X_2, X_3 \sim Bernoulli(p)$  and independent rv. Let  $Z = X_1 + X_2 + X_3$ . Compute

$$\mathbb{P}\left(X_1=1\mid Z=2\right)$$

Solution:

 $\{Z = 2^{2}, (\{X_{i} = 1\} = \{X_{i}, X_{2}, X_{3}\} \in \{(I, 0, 1)\}$ 33 (1, 1, 0) $P(X_{i}=1 | Z=2) = P(Z=23 \cap Z_{i}=13)$ P(z=2)

 $\{Z = 2\} = \{(X_1, X_2, X_3) \in \{(0, 1, 1), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 01), (1, 0$  $(l_{l}, l_{o})$ 

 $\Rightarrow \mathbb{P}(X_{l}=1|Z=2)=\frac{2P^{2}(l-P)}{3P^{2}(l-P)}$ = 43

## Definition 4 (Conditional expectation)

For a discrete rv  $X : \Omega \to A$  and an event  $H \in \mathcal{F}$  with  $\mathbb{P}(H) > 0$ , we define the conditional expectation of X given H as

$$\mathbb{E}\left[X \mid H\right] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega \mid H) = \sum_{a \in A} a \mathbb{P}(X = a \mid H)$$

Property:

$$\mathbb{E}\left[X \mid H\right] = \mathbb{E}\left[X\mathbb{1}_{H}\right] / \mathbb{P}(H) \tag{2}$$

Verfication: Recall that for any GEF and for and Implication:  $\mathbb{E}[|X| \mid H] < \mathbb{E}$ 

 $[E[X|H] = \sum a P(X=a|H)$  $= Za \frac{IP(\xi \mathcal{Z} = \mathcal{Z} \land \mathcal{H})}{IP(\mathcal{H})}$  $=\frac{1}{(P(H))}\sum_{\alpha\in A} E\left[1\right]_{X=a_{\alpha}^{2}(H)}$  $=\frac{1}{P(H)} \sum_{a \in A} \left( E\left[ a \prod_{z \in X} = a_{z}^{z} \prod_{t} \right] \right)$ IE LEA TEX=a3, IH JP(H)

## Example 5

Let X be a three-sided fair die, meaning

$$\mathbb{P}(X = k) = \frac{1}{3}$$
 for  $k = 1, 2, 3$ .

Compute  $\mathbb{E}[X | X \ge 2]$ . Solution:  $\left(E\left[X | X \ge 2\right] = \sum_{K=1}^{3} K \left[P\left[X = 1 \times \left(X \ge 2\right)\right] + K = 1\right]$  K = 1 $= 2 \left[P(X = 2 \mid X \ge 2) + 3 \left[P(X = 3 \mid X \ge 2)\right]$ 

# Conditioning on zero-probability events

For events  $G, H \in \mathcal{F}$ , it is not clear how interpret the definition

$$\mathbb{P}(G \mid H) := rac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$$

when  $\mathbb{P}(H) = 0$ .

**Is an extension of the definition needed?** May not seem needed as zero-probability events "never" happen anyway, but often it is convenient to use the same co-domain for all rv studied, say for example

$$X_k: \Omega \to \mathbb{N}$$

with  $X_k(\Omega) = \mathbb{N} \setminus \{k\}$  for k = 1, 2, ...

**Also** any event  $\{Y = y\}$  is a zero-probability event for a continuous rv!

# Conditioning on zero-probability events 2

## Definition 6 (Division-by-zero convention)

For any  $c \in \mathbb{R}$  we will, in all of this course, make use of the following convention

$$\frac{c}{0}:=0.$$

**Motivation:** Then  $\frac{a}{b}$  is defined for any  $a, b \in \mathbb{R}$ , but it gives algebra a quirk

$$b(a/b) = egin{cases} a & ext{if } b 
eq 0 ext{ or } a = 0 \ 0 & ext{if } b = 0. \end{cases}$$

## Definition 7 (Generalization of Definition 1)

For **any** pair of events  $G, H \in \mathcal{F}$ , we define

$$\mathbb{P}(G \mid H) := rac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$$

where we note that by the division-by-zero convention

 $\mathbb{P}(G \mid H) = 0$  if  $\mathbb{P}(H) = 0$ .

#### Implications:

• The definition of conditional expectation "naturally" extends to any zero-probability events  $H \in \mathcal{F}$ :

$$\mathbb{E}\left[X|H\right] := \sum_{a \in A} a \mathbb{P}\left(X = a \mid H\right) = 0.$$

Direct use of conditioning, cf. equation (1), extends. Meaning,

$$\mathbb{P}(f(X,Y)=c\mid Y=b)=\frac{\mathbb{P}(f(X,b)=c)}{\mathbb{P}(Y=b)}, \quad \text{also if } \mathbb{P}(Y=b)=0.$$

# Conditioning on random variables

- We have defined the conditional probability  $\mathbb{P}(G \mid H)$  for any pair events G, H.
- So for rv X : Ω → A and Y : Ω → B, the following quantities are all defined

$$\mathbb{P}(X = a \mid Y = b)$$
 for any  $a \in A, b \in B$ .

- Fixing the event  $\{X = a\}$ , we may introduce the function  $\psi: B \to [0, 1]$  $\psi(b) = \mathbb{P}(G \mid \{Y = b\})$
- and the function  $\phi:\Omega\to [0,1]$  by

$$\phi(\omega) := \mathbb{P}\left(X = a \mid \{Y = Y(\omega)\}\right)$$

( curly brackets in the  $\{Y = Y(\omega)\}$  notation here is only used to emphasize that we have events and is not really needed).

# Conditioning on random variables 2

- The mapping  $\phi(\omega)$  was introduced to clarify that  $\mathbb{P}(X = a \mid \{Y = Y(\omega)\})$  is a function of  $\omega$ .
- The customary notation for these conditional probabilities is as follows:

## Definition 8 (Probability of X given Y)

Consider the discrete rv X and Y on the previous slide. Then for each  $a \in A$ , the mapping  $\mathbb{P}(X = a \mid Y) : \Omega \to [0, 1]$  is the discrete rv defined by

$$\mathbb{P}(X = a \mid Y)(\omega) = \mathbb{P}(X = a \mid \{Y = Y(\omega)\}).$$

Verification that  $\phi(\omega) = \mathbb{P}(X = a \mid Y)(\omega)$  is a discrete rv:

The set of outcomes/ image space

$$\phi(\Omega) = \bigcup_{\omega \in \Omega} \{ \mathbb{P} \left( X = a \mid Y = Y(\omega) \right) \}$$
$$= \bigcup_{b \in B} \{ \mathbb{P} \left( X = a \mid Y = b \right) \} =: C \subset [0, 1]$$

is countable since B is countable.

For each  $c \in C$ , there exists a  $b(c) \in B$  such that

$$c = \mathbb{P}\left(X = a \mid Y = b(c)\right)$$

and

$$\phi^{-1}(c) = \{\omega \in \Omega \mid Y(\omega) = b(c)\} \in \mathcal{F}.$$

#### Example 9

Consider the a coin toss  $X : \Omega \to \{0, 1\}$  and a die roll  $Y : \Omega \to \{1, 2, 3\}$ , on sample space  $\Omega = \{\text{Heads}, \text{Nose}, \text{Tails}\}$  with

$$X^{-1}(1) = \{ Heads, Nose \}$$
 and  $X^{-1}(0) = \{ Tails \}$ 

$$Y^{-1}(1) = \{Heads\}, Y^{-1}(2) = \{Nose\} \text{ and } Y^{-1}(3) = \{Tails\}.$$

and

$$\mathbb{P}(Heads) = \mathbb{P}(Nose) = 1/4$$
, and  $\mathbb{P}(Tails) = 1/2$ .

Then  $\mathbb{P}(X = 0 \mid Y) (Heads) = \|P(Tails \mid Y = Y(Hecds))^{2}$   $= (P(Tails \mid Y = 1)) = (P(Tails \mid Heads)) = 0$   $\mathbb{P}(Y = 1 \mid X) (Nose) = \|P(Heads \mid X = X(Nose))$   $= P(Heads \mid X = 1) = P(Heads \mid X = X(Nose))$   $= P(Heads \mid X = 1) = P(Heads \mid X = X(Nose))$ 

## Definition 10 (Expectation of X given Y)

For discrete rv  $X : \Omega \to A \subset \mathbb{R}^d$  and  $Y : \Omega \to B \subset \mathbb{R}^k$  with  $|\mathbb{E}[X]| < \infty$ , the mapping  $\mathbb{E}[X | Y] : \Omega \to \mathbb{R}^d$  is defined

$$\mathbb{E}\left[X \mid Y\right](\omega) := \sum_{a \in A} a \mathbb{P}\left(X = a \mid Y\right)(\omega) = \sum_{a \in A} a \mathbb{P}\left(X = a \mid \{Y = Y(\omega)\}\right).$$

Note,  $\mathbb{E}[X | Y]$  is a discrete rv.

#### Example 11

Consider the Bernoulli rv X, Y with joint probabilities

S= E Heads,

## Definition 10 (Expectation of X given Y)

For discrete rv  $X : \Omega \to A \subset \mathbb{R}^d$  and  $Y : \Omega \to B \subset \mathbb{R}^k$  with  $|\mathbb{E}[X]| < \infty$ , the mapping  $\mathbb{E}[X | Y] : \Omega \to \mathbb{R}^d$  is defined

$$\mathbb{E}\left[X \mid Y\right](\omega) := \sum_{a \in A} a \mathbb{P}\left(X = a \mid Y\right)(\omega) = \sum_{a \in A} a \mathbb{P}\left(X = a \mid \{Y = Y(\omega)\}\right).$$

Note,  $\mathbb{E}[X | Y]$  is a discrete rv.

Note that,

$$\mathbb{E}\left[X \mid Y\right](\omega) = \mathbb{E}\left[X \mid \{Y = Y(\omega)\}\right]$$

and that it can be associated to a deterministic mapping  $g:\mathbb{R}^k\to\mathbb{R}^d$  as follows

$$g(Y(\omega)) = \mathbb{E}\left[X \mid Y = Y(\omega)\right].$$
(3)

# Motivation for $\mathbb{E}[X \mid Y]$

Say you have an observation  $Y(\omega)$  (i.e., you know  $Y(\omega)$  but not  $\omega$ ), and that what you really seek is the value of  $X(\omega)$ . Then what is the best function  $g(Y(\omega))$  to approximate  $X(\omega)$ ?

Theorem 11 (Mean-square sense best approximation)

For discrete  $rv X : \Omega \to A \subset \mathbb{R}^d$  and  $Y : \Omega \to B \subset \mathbb{R}^k$  with  $\mathbb{E} [X^2] < \infty$ , it holds that

$$\mathbb{E}\left[\,|X-\mathbb{E}\left[\,X\mid\,Y
ight]\,|^2
ight] \leq \mathbb{E}\left[\,|X-f(Y)|^2
ight]$$

for all  $f : \mathbb{R}^k \to \mathbb{R}^d$  such that  $\mathbb{E}\left[|f(Y)|^2\right] < \infty$ .

**Interpretation** Since the constant function  $f(Y) = \mathbb{E}[X]$  is one possible mapping, we conclude that

$$\mathbb{E}\left[\left|X - \mathbb{E}\left[X \mid Y\right]\right|^2
ight] \leq \mathbb{E}\left[\left|X - \mathbb{E}\left[X
ight]\right|^2
ight].$$

To prove Theorem 11, we will need a few intermediary results.

 $\begin{array}{l} \left( \mathcal{I}(\omega) \right) = \underbrace{\left( E\left[ \mathcal{X} \mid \mathcal{Y} = \mathcal{I}(\omega) \right] \right)}_{\left[ E\left[ \mathcal{G}\left( \mathcal{Y} \right) \right] = \mathcal{Z} \quad g(b) \quad IP(\mathcal{Y} = b) \right]} \\ \text{Lemma 12 (The tower property )} \end{array}$ 

For discrete  $rv X : \Omega \to A \subset \mathbb{R}^d$  and  $Y : \Omega \to B \subset \mathbb{R}^k$  with  $|\mathbb{E}[X]| < \infty$ , it holds that

 $\mathbb{E}\left[\mathbb{E}\left[X \mid Y\right]\right] = \mathbb{E}\left[X\right].$ 

Proof:  $\mathbb{E}[\mathbb{E}[\mathbb{X}|\mathbb{Y}]] = \sum_{b \in \mathcal{B}} \mathbb{E}[\mathbb{X}|\mathbb{Y}=b] \mathbb{P}(\mathbb{Y}=b)$  $= \sum_{b \in \mathbf{B}} \sum_{a \in \mathbf{A}} a P(X = a | Y = b) P(Y = b)$  $= \sum_{a \in A} \sum_{b \in B} P(X=a | Y=b) = Z^{a} R(X=a)$ 

Lemma 13 (The **Direct conditioning of expectations** )

For the setting in Lemma 12, it holds for any mapping  $f : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}$  such that  $|\mathbb{E}[f(X, Y)]| < \infty$  that

 $\mathbb{E}\left[f(X,Y) \mid Y=b\right] = \mathbb{E}\left[f(X,b) \mid Y=b\right] \quad \forall b \in B.$ 

**Special case:** f(x, y) = g(x)h(y) yields

 $\mathbb{E}\left[g(X)h(Y) \mid Y = b\right] = h(b)\mathbb{E}\left[g(X) \mid Y = b\right] \quad \forall b \in B$ 

Since this holds for all b,

 $\mathbb{E}[g(X)h(Y) \mid Y \neq ] = h(Y)\mathbb{E}[g(X) \mid Y]. \quad (\bigstar)$ And tower property  $\mathcal{E}\left(\left[\left[X \mid Y\right]\right] = \mathcal{E}\left[X\right]\right)$   $\stackrel{(\bigstar)}{\leftarrow} \mathbb{E}[h(Y)\mathbb{E}[g(X) \mid Y]] = \mathbb{E}[h(Y)g(X)] \quad (4)$ 

Using (4), let us prove Theorem 11 in the 1D setting, i.e., that

$$\mathbb{E}\left[\left(X - \mathbb{E}\left[X \mid Y\right]\right)^2\right] \leq \mathbb{E}\left[\left(X - f(Y)\right)^2\right]$$

for all  $f : \mathbb{R} \to \mathbb{R}$  with  $\mathbb{E}\left[(f(Y))^2\right] < \infty$ .



Use tower property (4) to verify that II = 0

 $= \sum_{\substack{E \in [X-f(T)]^2 = E \in [X-E[X]^2] \\ + E \left( E[X|T] - f(T)^2 \right)}$  $Z(E[(X-E[X(Y])^2])$ 

For  $X : \Omega \to A \subset \mathbb{R}^d$  and  $Y : \Omega \to B$ , the mapping

$$g(b) := \mathbb{E}\left[X \mid Y = b\right]$$

satisfies

$$g(Y(\omega)) := \mathbb{E} \left[ X \mid Y = Y(\omega) \right].$$

**Conclusion:**  $\mathbb{E}[X | Y]$  is an rv induced from the rv Y through the mapping g.

**Question:** Is  $\mathbb{E}[X | Y]$  in some sense unique?

**Question:** Given a candidate mapping  $g : B \to \mathbb{R}^d$ , is there a way to verify whether  $g(Y) = \mathbb{E}[Y | X]$ ?

Definition 14 ( $\mathbb{P}$ -almost surely equal)

Two rv X, Y are said to be  $\mathbb{P}$ -almost surely equal provided

$$\mathbb{P}\left(\{\omega\in\Omega\mid X(\omega)=Y(\omega)\}
ight)=1$$

We write

$$X=Y \quad \mathbb{P}-a.s.$$

(or just "a.s." whenever it is clear which probability measure  ${\mathbb P}$  is considered).

Motivation:

Example 15

 $X:\Omega \rightarrow \{0,1\}$  and  $Y:\Omega \rightarrow \{0,1,2\}$  with

$$\mathbb{P}(X = Y) = 1$$
 and  $\{Y = 2\} \neq \emptyset$ .

Then  $X(\omega) \neq Y(\omega)$  for any  $\omega \in \{Y = 2\}$ , but X = Y a.s.

## Theorem 16

Consider the setting in Lemma 12. If  $g : \mathbb{R}^k \to \mathbb{R}^d$  is a mapping such that for every bounded mapping  $f : \mathbb{R}^k \to \mathbb{R}$ ,

$$\mathbb{E}\left[f(Y)g(Y)\right] = \mathbb{E}\left[f(Y)X\right]$$
(5)

then

$$g(Y) = \mathbb{E}[X \mid Y]$$
 a.s.

**Interpretation:**  $\mathbb{E}[X | Y]$  is  $\mathfrak{A}$  a.s. unique rv of form g(Y) satisfying (5).

**Usage:** If a mapping  $B \ni b \mapsto g(b) \in \mathbb{R}^d$  satisfies (5), i.e.,

$$\sum_{b\in B} f(b)g(b)P(Y=b) = \sum_{a\in A, b\in B} f(b)aP(X=a, Y=b) \qquad \forall f: B \to \mathbb{R},$$

then  $g(Y(\omega)) = \mathbb{E}[X|Y](\omega)$  for  $\mathbb{P}$ -almost all  $\omega \in \Omega$ .

## Next time

#### Convergence of random variables

#### Random walks and discrete time Markov Chains