# Mathematics and numerics for data assimilation and state estimation - Lecture 3 

Mathematics
for Uncertainty Quantification

Summer semester 2020

## Summary of lecture 2

■ Random vectors $(X, Y): \Omega \rightarrow A \times B$ and joint distributions

$$
\mathbb{P}_{(X, Y)}((a, b))=\mathbb{P}(X=a, Y=b)
$$

- Independence of rv

$$
\mathbb{P}(X=a, Y=b)=\mathbb{P}(X=a) \mathbb{P}(Y=b), \quad \forall a \in A \quad b \in B
$$

and of events

$$
\mathbb{P}\left(H_{1} \cap H_{2}\right)=\mathbb{P}\left(H_{1}\right) \mathbb{P}\left(H_{2}\right)
$$

■ Expectation of $X: \Omega \rightarrow A$,

$$
\mu=\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\sum_{a \in A} a \mathbb{P}(X=a)
$$

## Summary of lecture 2

■ Variance of $X$. Defined for a scalar-valued rv (meaning $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ with $d=1$ ),

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mu)^{2}\right] .
$$

■ Property: $\mu$ is the best constant-value approximation of $X$ in the following sense

$$
\begin{aligned}
& \mathbb{E}\left[(X-\mu)^{2}\right] \leq \mathbb{E}\left[(X-k)^{2}\right] \quad \text { for all } k \in \mathbb{R} . \\
& \left(E\left[|\bar{X}-\mu|^{2}\right] \leq\left(E \left[\mid \bar{X}-\left(<\left.\right|^{2}\right]\right.\right.\right. \\
& \left(\mu t\left[\mathbb{R}^{d}\right) \quad \forall k \in[\mid<d\right.
\end{aligned}
$$

## Plan for this lecture

■ Conditional probabilities and expectations
■ Conditioning on events: "probability of $X$ given $H^{\prime \prime}$

$$
\mathbb{P}(X=a \mid H) \quad H \in \mathcal{F}
$$

■ Conditioning on rv: "probability of $X$ given rv $Y^{\prime}$ ":

$$
\mathbb{P}(X=a \mid Y)
$$

Interesting property

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-f(Y)|^{2}\right]
$$

for any mapping $f(Y) \in \mathbb{R}^{d}$.

## Conditional probability

## Definition 1

For two events $G, H \in \mathcal{F}$ where $\mathbb{P}(H)>0$, the conditional probability of $G$ given $H$ is given by

$$
\mathbb{P}(G \mid H)=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

Whenever $\mathbb{P}(H)>0$, the mapping $\mathbb{P}(\cdot \mid H): \mathcal{F} \rightarrow[0,1]$ is a probability measure.
Verification:
Need to over: 1 for $H_{i} \in F$
Pairwise disjoint then $=1$ Need to var dis ont which are

$$
H)=\Sigma
$$

${ }^{1}$ And it remains to define $\mathbb{P}(\cdot \mid H)$ for zero-probability events $H$.

Observe that

$$
\text { if } H_{i} \cap H_{j}=\varnothing \quad \text { forall } i \neq j
$$

then

$$
\left(H_{i} \cap H\right) \cap\left(H_{j} \cap H\right)=\phi \forall_{i j}
$$

and $\left(\bigcup_{i} H_{i}\right) \cap H=U_{i}\left(H_{i} \cap H\right)$
consequent $H$ ll $\mathbb{P}\left(\left(U_{i} H_{i}\right) \cap H\right)$

$$
\mathbb{P}\left(\bigcup_{i} H_{i} \mid H\right)=\frac{\mathbb{1}\left(X_{i} H_{i}\right)}{\mathbb{P}(H)}
$$

$$
\begin{aligned}
& =\frac{\mathbb{P}\left(U_{i}\left(H_{i} \cap H\right)\right)}{\mathbb{P}(H)} \\
& =\frac{\sum_{i} \mathbb{P}\left(H_{i} \cap H\right)}{\mathbb{P}(H)} \\
& =\sum_{i} \mathbb{P}\left(H_{i}(H)\right.
\end{aligned}
$$

Simplification in some settings (direct use of conditioning):
For $X, Y$ and $f(X, Y)$ discrete rv ,

$$
\begin{align*}
& \text { or } X, Y \text { and } f(X, Y) \text { discrete rv, }  \tag{1}\\
& \mathbb{P}(f(X, Y)=c \mid Y=b)=\frac{\mathbb{P}(f(X, b)=c)}{\mathbb{P}(Y=b)}, \quad \begin{array}{l}
\mathbb{P}(f(\bar{X}, b)=c \\
\text { if } \mathbb{P}(Y=b)>0 .
\end{array}
\end{align*}
$$

## Example 2

Let $X_{1}, X_{2}, X_{3} \sim \operatorname{Bernoulli}(p)$ and independent rv. Let $Z=X_{1}+X_{2}+X_{3}$. Compute

$$
\mathbb{P}\left(Z \geq 1 \mid X_{1}=0\right)
$$

## Solution:

$$
\begin{aligned}
& z=f\left(\bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}\right)=\bar{X}_{1}+\bar{X}_{2}+\bar{x}_{3} \\
& \mathbb{P}\left(f\left(\bar{x}_{1}, \mathbb{X}_{2}, \mathbb{X}_{3}\right) \geq 1 \mid \bar{x}_{1}=0\right)=\mathbb{P}\left(f\left(0, \bar{x}_{2}, \bar{x}_{3}\right) \geq 1 \mathbb{X}_{=0}\right) \\
& =\mathbb{P}\left(\bar{x}_{2}+\bar{x}_{3} \geq 1 \mid \bar{x}_{1}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathbb{P}\left(\left\{\bar{x}_{2}+\bar{x}_{3} \geq 1\right\} \cap\left\{\bar{x}_{1}=0\right\}\right)}{\mathbb{P}\left(\Sigma_{1}=0\right)} \\
& =\frac{\mathbb{P}\left(\left(x_{1}, z_{2}, \bar{z}_{3}\right) \in\{(0,0,1),(0,1,0),(0,1,1)\}\right)}{1-P} \\
& =\frac{2(1-P)^{2} p+(1-P) p^{2}}{1-P}
\end{aligned}
$$

Example 3 (Example where conditioning information is used "implicitly")
Let $X_{1}, X_{2}, X_{3} \sim \operatorname{Bernoulli}(p)$ and independent rv. Let $Z=X_{1}+X_{2}+X_{3}$. Compute

$$
\mathbb{P}\left(X_{1}=1 \mid Z=2\right)
$$

Solution:

$$
\begin{aligned}
&\{z=2\} \cap\left\{\bar{x}_{1}=1\right\}=\left\{\left(x_{1}, \bar{x}_{2}, x_{3}\right) \in\{(1,0,1),\right. \\
&\} \\
& \mathbb{P}\left(\underline{x}_{1}=1,0\right) \\
& \mathbb{P}(z=2)= \frac{\mathbb{P}\left(\{z=2\} \cap\left\{\bar{x}_{1}=1\right\}\right)}{\mathbb{P}=2)}
\end{aligned}
$$

$$
\begin{aligned}
&\{z=2\}=\left\{\left(\bar{x}_{1}, \bar{z}_{2}, \bar{z}_{3}\right) \in\{(0,1,1),(1,01),\right. \\
&(1,1,0)\} \\
& \Rightarrow \mathbb{P}\left(\bar{x}_{1}=1 \mid z=2\right)=\frac{2 p^{2}(1-p)}{3 p^{2}(1-p)} \\
&=\frac{2}{3}
\end{aligned}
$$

Definition 4 (Conditional expectation)
For a discrete $\mathrm{rv} X: \Omega \rightarrow A$ and an event $H \in \mathcal{F}$ with $\mathbb{P}(H)>0$, we define the conditional expectation of $X$ given H as

$$
\mathbb{E}[X \mid H]:=\int_{\Omega} X(\omega) \mathbb{P}(d \omega \mid H)=\sum_{a \in A} a \mathbb{P}(X=a \mid H)
$$

Property:

$$
\begin{equation*}
\mathbb{E}[X \mid H]=\mathbb{E}\left[X_{H}\right] / \mathbb{P}(H) \tag{2}
\end{equation*}
$$

Verfication:
Recall that for any $G \in F$

$$
\begin{aligned}
& \mathbb{P}\left(G_{Q}\right)=\mathbb{E}\left[\mathbb{I}_{\sigma_{0}}\right] \text { and for and } \sigma_{1}, \sigma_{2} f f
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}[X \mid H]=\sum_{a \in A} a \mathbb{P}(\mathbb{Z}=a \mid H) \\
& =\sum_{a \in A} a \frac{\mathbb{P}(\Sigma Z=\xi \cap H)}{\mathbb{P}(H)} \\
& =\frac{1}{\mathbb{P}(H)} \sum_{a \in A} a\left(\mathbb{E}\left[\mathbb{I}_{\{X=a\} \cap H}\right]\right. \\
& =\frac{1}{\mathbb{P}(H)} \sum_{a \in A}\left(\mathbb{E}\left[a \mathbb{I}_{\{X=a\}} \mathbb{I}_{H}\right]\right. \\
& =\mathbb{E}\left[\sum_{a \in A} a \mathbb{I}_{\{X=a 3}, \mathbb{I}_{H}\right] / \mathbb{P}(H)
\end{aligned}
$$

Example 5
Let $X$ be a three-sided fair die, meaning

$$
\mathbb{P}(X=k)=\frac{1}{3} \quad \text { for } k=1,2,3 .
$$

Compute $\mathbb{E}[X \mid X \geq 2]$.

$$
\begin{aligned}
& {\left[E[\mathbb{Z} \mid \bar{X} \geq 2]=\sum_{k=1}^{3} k \mathbb{P}(\bar{X}=k \mid \bar{X} \geq 2]\right.} \\
& =2 \mathbb{P}(\bar{X}=2(\bar{x} \geq 2)+3 \mathbb{P}(\bar{x}=3 \mid \bar{x} \geq 2) \\
& =\frac{5}{2}
\end{aligned}
$$

## Conditioning on zero-probability events

For events $G, H \in \mathcal{F}$, it is not clear how interpret the definition

$$
\mathbb{P}(G \mid H):=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

when $\mathbb{P}(H)=0$.
Is an extension of the definition needed? May not seem needed as zero-probability events "never" happen anyway, but often it is convenient to use the same co-domain for all rv studied, say for example

$$
X_{k}: \Omega \rightarrow \mathbb{N}
$$

with $X_{k}(\Omega)=\mathbb{N} \backslash\{k\}$ for $k=1,2, \ldots$.

Also any event $\{Y=y\}$ is a zero-probability event for a continuous rv!

## Conditioning on zero-probability events 2

## Definition 6 (Division-by-zero convention)

For any $c \in \mathbb{R}$ we will, in all of this course, make use of the following convention

$$
\frac{c}{0}:=0 .
$$

Motivation: Then $\frac{a}{b}$ is defined for any $a, b \in \mathbb{R}$, but it gives algebra a quirk

$$
b(a / b)= \begin{cases}a & \text { if } b \neq 0 \text { or } a=0 \\ 0 & \text { if } b=0\end{cases}
$$

## Definition 7 (Generalization of Definition 1)

For any pair of events $G, H \in \mathcal{F}$, we define

$$
\mathbb{P}(G \mid H):=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

where we note that by the division-by-zero convention

$$
\mathbb{P}(G \mid H)=0 \quad \text { if } \mathbb{P}(H)=0 .
$$

## Implications:

■ The definition of conditional expectation "naturally" extends to any zero-probability events $H \in \mathcal{F}$ :

$$
\mathbb{E}[X \mid H]:=\sum_{a \in A} a \mathbb{P}(X=a \mid H)=0 .
$$

■ Direct use of conditioning, cf. equation (1), extends. Meaning,

$$
\mathbb{P}(f(X, Y)=c \mid Y=b)=\frac{\mathbb{P}(f(X, b)=c)}{\mathbb{P}(Y=b)}, \quad \text { also if } \mathbb{P}(Y=b)=0
$$

## Conditioning on random variables

■ We have defined the conditional probability $\mathbb{P}(G \mid H)$ for any pair events $G, H$.
■ So for $\mathrm{rv} X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow B$, the following quantities are all defined

$$
\mathbb{P}(X=a \mid Y=b) \quad \text { for any } a \in A, b \in B
$$

$\square$ Fixing the event $\{X=a\}$, we may introduce the function $\psi: B \rightarrow[0,1]$

$$
\psi(b)=\mathbb{P}(G \mid\{Y=b\}) \text { here }\{\mathbb{x}=a\}
$$

■ and the function $\phi: \Omega \rightarrow[0,1]$ by

$$
\phi(\omega):=\mathbb{P}(X=a \mid\{Y=Y(\omega)\})
$$

(curly brackets in the $\{Y=Y(\omega)\}$ notation here is only used to emphasize that we have events and is not really needed).

## Conditioning on random variables 2

- The mapping $\phi(\omega)$ was introduced to clarify that $\mathbb{P}(X=a \mid\{Y=Y(\omega)\})$ is a function of $\omega$.
- The customary notation for these conditional probabilities is as follows:


## Definition 8 (Probability of $X$ given $Y$ )

Consider the discrete $\mathrm{rv} X$ and $Y$ on the previous slide. Then for each $a \in A$, the mapping $\mathbb{P}(X=a \mid Y): \Omega \rightarrow[0,1]$ is the discrete $r v$ defined by

$$
\mathbb{P}(X=a \mid Y)(\omega)=\mathbb{P}(X=a \mid\{Y=Y(\omega)\})
$$

Verification that $\phi(\omega)=\mathbb{P}(X=a \mid Y)(\omega)$ is a discrete rv :

- The set of outcomes/ image space

$$
\begin{aligned}
\phi(\Omega) & =\cup_{\omega \in \Omega}\{\mathbb{P}(X=a \mid Y=Y(\omega))\} \\
& =\cup_{b \in B}\{\mathbb{P}(X=a \mid Y=b)\}=: C \subset[0,1]
\end{aligned}
$$

is countable since $B$ is countable.

■ For each $c \in C$, there exists a $b(c) \in B$ such that

$$
c=\mathbb{P}(X=a \mid Y=b(c))
$$

and

$$
\phi^{-1}(c)=\{\omega \in \Omega \mid Y(\omega)=b(c)\} \in \mathcal{F} .
$$

## Example 9

Consider the a coin toss $X: \Omega \rightarrow\{0,1\}$ and a die roll $Y: \Omega \rightarrow\{1,2,3\}$, on sample space $\Omega=\{$ Heads, Nose, Tails $\}$ with

$$
X^{-1}(1)=\{\text { Heads, Nose }\} \quad \text { and } \quad X^{-1}(0)=\{\text { Tails }\}
$$

$$
Y^{-1}(1)=\{\text { Heads }\}, \quad Y^{-1}(2)=\{\text { Nose }\} \quad \text { and } \quad Y^{-1}(3)=\{\text { Tails }\} .
$$

and

$$
\mathbb{P}(\text { Heads })=\mathbb{P}(\text { Nose })=1 / 4, \quad \text { and } \quad \mathbb{P}(\text { Tails })=1 / 2
$$

$$
\begin{aligned}
& \text { Then } \\
& \mathbb{P}(X=0 \mid Y)(\text { Heads })=\mathbb{P}(\text { Tails } \mid \bar{Y}=\underline{Y}(\text { Heads })\} \\
& =\mathbb{P}(\text { Tails } \mid \bar{Y}=1)=\mathbb{P}(\text { Tails } \mid \text { Heads })=0 \\
& \mathbb{P}(Y=1 \mid X)(\text { Nose })=\mathbb{P}(\text { Heads } \mid \bar{X}=\mathbb{X}(\text { Nose })) \\
& =\mathbb{P}\left(\text { Heals } \left\lvert\, \underline{Z}=\frac{1}{Y 4}\right.\right)=\mathbb{P}(\text { Heads } \mid \text { (Heads, Noses) })
\end{aligned}
$$

## Definition 10 (Expectation of $X$ given $Y$ )

For discrete rv $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, the mapping $\mathbb{E}[X \mid Y]: \Omega \rightarrow \mathbb{R}^{d}$ is defined
$\mathbb{E}[X \mid Y](\omega):=\sum_{a \in A} a \mathbb{P}(X=a \mid Y)(\omega)=\sum_{a \in A} a \mathbb{P}(X=a \mid\{Y=Y(\omega)\})$.
Note, $\mathbb{E}[X \mid Y]$ is a discrete rv.

## Example 11

Consider the Bernoulli rv $X, Y$ with joint probabilities

$$
\Omega=\{\text { Heads, }
$$ $\nabla$ Tails 3

$$
\mathbb{P}(X=i, Y=j)=\left[\begin{array}{ll}
1 / 8 & 1 / 4 \\
1 / 2 & 1 / 8
\end{array}\right] \quad i, j \in\{0,1\} \quad \mathbb{X}\left(T_{\text {a }} i(s)=0 .\right.
$$

$\mathbb{E}[Y \mid X]($ Heads $)=\sum j \mathbb{P}(\underline{Y}=j \mid X=\Omega$ (Heads))
$j \in\{0,1\}$
$=\mathbb{P}(I=1 \mid \bar{X}=1)=\frac{\mathbb{P}(\bar{X}=1, \bar{I}=1)}{\mathbb{P}(\bar{X}=1)}$.

## Definition 10 (Expectation of $X$ given $Y$ )

For discrete $\mathrm{rv} X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, the mapping $\mathbb{E}[X \mid Y]: \Omega \rightarrow \mathbb{R}^{d}$ is defined
$\mathbb{E}[X \mid Y](\omega):=\sum_{a \in A} a \mathbb{P}(X=a \mid Y)(\omega)=\sum_{a \in A} a \mathbb{P}(X=a \mid\{Y=Y(\omega)\})$.
Note, $\mathbb{E}[X \mid Y]$ is a discrete rv.
Note that,

$$
\mathbb{E}[X \mid Y](\omega)=\mathbb{E}[X \mid\{Y=Y(\omega)\}]
$$

and that it can be associated to a deterministic mapping $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ as follows

$$
\begin{equation*}
g(Y(\omega))=\mathbb{E}[X \mid Y=Y(\omega)] \tag{3}
\end{equation*}
$$

## Motivation for $\mathbb{E}[X \mid Y]$

Say you have an observation $Y(\omega)$ (i.e., you know $Y(\omega)$ but not $\omega$ ), and that what you really seek is the value of $X(\omega)$. Then what is the best function $g(Y(\omega))$ to approximate $X(\omega)$ ?

## Theorem 11 (Mean-square sense best approximation)

For discrete $r v X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $\mathbb{E}\left[X^{2}\right]<\infty$, it holds that

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-f(Y)|^{2}\right]
$$

for all $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ such that $\mathbb{E}\left[|f(Y)|^{2}\right]<\infty$.
Interpretation Since the constant function $f(Y)=\mathbb{E}[X]$ is one possible mapping, we conclude that

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-\mathbb{E}[X]|^{2}\right]
$$

To prove Theorem 11, we will need a few intermediary results.

$$
\begin{aligned}
g(I(\omega)) & =(E[\Sigma \mid \Psi=I(\omega)] \\
\operatorname{lE} g(\Sigma)] & =\sum_{b \in B} g(b) \mathbb{P}(I=b)
\end{aligned}
$$

Lemma 12 (The tower property )
For discrete $r v X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B \subset \mathbb{R}^{k}$ with $|\mathbb{E}[X]|<\infty$, it holds that
$\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.

$$
\begin{aligned}
& \text { Proof: }[\mid E[X \mid Y]]=\sum_{b \in B} \mathbb{E}[Z \mid Z=b] \mathbb{P}(I=b) \\
& =\sum_{b \in B} \sum_{a \in A} a \mathbb{P}(\bar{X}=a \mid \underline{Z}=b) \mathbb{P}(Z=b) \\
& =\sum_{a \in A} a \sum_{b \in B} \mathbb{P}(\underline{X}=a / Z=b)=\sum_{a \in A} a \mathbb{P}(\mathbb{E}=a) \\
& =\mathbb{E}[\bar{X}]
\end{aligned}
$$

## Lemma 13 (The Direct conditioning of expectations )

For the setting in Lemma 12, it holds for any mapping $f: \mathbb{R}^{d} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $|\mathbb{E}[f(X, Y)]|<\infty$ that

$$
\mathbb{E}[f(X, Y) \mid Y=b]=\mathbb{E}[f(X, b) \mid Y=b] \quad \forall b \in B
$$

Special case: $f(x, y)=g(x) h(y)$ yields

$$
\mathbb{E}[g(X) h(Y) \mid Y=b]=h(b) \mathbb{E}[g(X) \mid Y=b] \quad \forall b \in B
$$

Since this holds for all $b$,

$$
\mathbb{E}[g(X) h(Y) \mid Y \not X]=h(Y) \mathbb{E}[g(X) \mid Y]
$$

And tower property $\frac{1 \neq}{2:}\left(\left\lvert\, \dot{L}\left[\left.\frac{X}{X} \right\rvert\, \Psi\right]\right.\right]=\| E[\bar{X}]$

$$
\begin{align*}
& (*) \mathbb{E}[h(Y) \mathbb{E}[g(X) \mid Y]]=\mathbb{E}[h(Y) g(X)]  \tag{4}\\
& \lll \mathbb{E}[(\mathbb{E}[g(Z) h(Z)) \mid I]]^{\prime}
\end{align*}
$$

Using (4), let us prove Theorem 11 in the 1D setting, i.e., that
$\mathbb{E}\left[\left(x-\mathbb{E}[x \mid y)^{2}\right] \leq \mathbb{E}\left[(X-f(\gamma))^{2}\right]\right.$
for all $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\mathbb{E}[(f(y))]^{2}<\infty$.
Proof: $\mathbb{E E [ X 1 Q ]}$

$$
\begin{aligned}
& \left.\mathbb{E}\left[(x-f(y))^{2}\right]=\mathbb{E}[((x-\mathbb{E}[x \mid y])+\mathbb{E}[x \mid y]-f(y)))^{2}\right] \\
& =\mathbb{E}\left[(\bar{x}-\mathbb{E}[\bar{x} \mid \bar{z}])^{2}\right] \\
& +2[E[(X-\mathbb{E}[\bar{X} \mid \Sigma])(E[E \mid \bar{Z}]-f(Z))] \\
& +E\left[(E[\underline{X} \mid I]-f(I))^{2}\right]=I+I I+\mathbb{I I}
\end{aligned}
$$

Use tower property (4) to verity that II $=0$

$$
\begin{aligned}
& \underset{E}{\Rightarrow}\left((\bar{z}-f(\underline{q}))^{2}\right]=\mathbb{E}\left[\left(\bar{X}-\mathbb{E}[\bar{\Sigma}(y])^{2}\right]\right. \\
& +\mathbb{E}\left[(\operatorname{CE}[\bar{x} \mid \bar{y}]-f(\bar{y}))^{2}\right] \\
& \geq E\left[(\bar{X}-E[\bar{Z} \mid Y])^{2}\right]
\end{aligned}
$$

For $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B$, the mapping

$$
g(b):=\mathbb{E}[X \mid Y=b]
$$

satisfies

$$
g(Y(\omega)):=\mathbb{E}[X \mid Y=Y(\omega)]
$$

Concludsion: $\mathbb{E}[X \mid Y]$ is an rv induced from the rv $Y$ through the mapping $g$.

Question: Is $\mathbb{E}[X \mid Y]$ in some sense unique?

Question: Given a candidate mapping $g: B \rightarrow \mathbb{R}^{d}$, is there a way to verify whether $g(Y)=\mathbb{E}[Y \mid X]$ ?

## Definition 14 (P-almost surely equal)

Two rv $X, Y$ are said to be $\mathbb{P}$-almost surely equal provided

$$
\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=Y(\omega)\})=1 .
$$

We write

$$
X=Y \quad \mathbb{P}-\text { a.s. }
$$

(or just "a.s." whenever it is clear which probability measure $\mathbb{P}$ is considered).

Motivation:

## Example 15

$X: \Omega \rightarrow\{0,1\}$ and $Y: \Omega \rightarrow\{0,1,2\}$ with

$$
\mathbb{P}(X=Y)=1 \quad \text { and } \quad\{Y=2\} \neq \emptyset
$$

Then $X(\omega) \neq Y(\omega)$ for any $\omega \in\{Y=2\}$, but $X=Y$ a.s.

## Theorem 16

Consider the setting in Lemma 12. If $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ is a mapping such that for every bounded mapping $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E}[f(Y) g(Y)]=\mathbb{E}[f(Y) X] \tag{5}
\end{equation*}
$$

then

$$
g(Y)=\mathbb{E}[X \mid Y] \quad \text { a.s. }
$$

## the

Interpretation: $\mathbb{E}[X \mid Y]$ is 体a.s. unique rv of form $g(Y)$ satisfying (5).
Usage: If a mapping $B \ni b \mapsto g(b) \in \mathbb{R}^{d}$ satisfies (5), i.e.,
$\sum_{b \in B} f(b) g(b) P(Y=b)=\sum_{a \in A, b \in B} f(b) a P(X=a, Y=b) \quad \forall f: B \rightarrow \mathbb{R}$,
then $g(Y(\omega))=\mathbb{E}[X \mid Y](\omega)$ for $\mathbb{P}$-almost all $\omega \in \Omega$.

## Next time

- Convergence of random variables

■ Random walks and discrete time Markov Chains

