
Mathematics and numerics for data assimilation and
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Summer semester 2020
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Summary of lecture 2

Random vectors (X ,Y ) : ⌦ ! A⇥ B and joint distributions

P(X ,Y )((a, b)) = P(X = a,Y = b).

Independence of rv

P(X = a,Y = b) = P(X = a)P(Y = b), 8a 2 A b 2 B

and of events

P (H1 \ H2) = P (H1)P (H2)

Expectation of X : ⌦ ! A,

µ = E [X ] :=

Z

⌦
X (!)P(d!) =

X

a2A
aP (X = a)
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Summary of lecture 2

Variance of X . Defined for a scalar-valued rv (meaning

X : ⌦ ! A ⇢ Rd
with d = 1),

Var(X ) := E
⇥
(X � µ)2

⇤
.

Property: µ is the best constant-value approximation of X in the

following sense

E
⇥
(X � µ)2

⇤
 E

⇥
(X � k)

2
⇤

for all k 2 R.
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Plan for this lecture

Conditional probabilities and expectations

Conditioning on events: “probability of X given H”

P(X = a | H) H 2 F ,

Conditioning on rv: “probability of X given rv Y ”:

P(X = a | Y )

Interesting property

E
⇥
|X � E [X | Y ] |2

⇤
= E

⇥
|X � f (Y )|2

⇤

for any mapping f (Y ) 2 Rd
.
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Conditional probability

Definition 1

For two events G ,H 2 F where P(H) > 0, the conditional probability of G

given H is given by

P(G | H) =
P (G \ H)

P(H)

Whenever P(H) > 0, the mapping P(· | H) : F ! [0, 1] is a probability

measure.
1

Verification:

1And it remains to define P(· | H) for zero-probability events H.
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Observe that
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Simplification in some settings (direct use of conditioning):

For X ,Y and f (X ,Y ) discrete rv,

P (f (X ,Y ) = c | Y = b) =
P (f (X , b) = c)

P (Y = b)
, if P (Y = b) > 0. (1)

Example 2

Let X1,X2,X3 ⇠ Bernoulli(p) and independent rv. Let Z = X1 + X2 + X3.

Compute

P (Z � 1 | X1 = 0)

Solution:
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Example 3 (Example where conditioning information is used
“implicitly”)

Let X1,X2,X3 ⇠ Bernoulli(p) and independent rv. Let Z = X1 + X2 + X3.

Compute

P (X1 = 1 | Z = 2)

Solution:
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Definition 4 (Conditional expectation)

For a discrete rv X : ⌦ ! A and an event H 2 F with P(H) > 0, we

define the conditional expectation of X given H as

E [X | H] :=

Z

⌦
X (!)P(d! | H) =

X

a2A
aP(X = a | H)

Property:

E [X | H] = E [X H ] /P(H) (2)

Verfication:

Implication: E [ |X | | H]  E [ |X |] /P(H).

8 / 25

Recall that forany GEF

IP ( G) = E[ Is] and forang Gyaef
Ignaz= Ia ,

NIG
.
⇒ IPCGMGZHELIA

,Iad



ELI IHI =¥aa BC#alt)

=¥zalPkE=a3AH)_PCH)

=¥µ, Eaa ELIE and
= Eat, FERGIE# as # ]
=

e-CEatIex II#3k¥,=I





Example 5

Let X be a three-sided fair die, meaning

P(X = k) =
1

3
for k = 1, 2, 3.

Compute E [X | X � 2].

Solution:
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Conditioning on zero-probability events

For events G ,H 2 F , it is not clear how interpret the definition

P (G | H) :=
P (G \ H)

P(H)

when P (H) = 0.

Is an extension of the definition needed? May not seem needed as

zero-probability events “never” happen anyway, but often it is convenient

to use the same co-domain for all rv studied, say for example

Xk : ⌦ ! N

with Xk(⌦) = N \ {k} for k = 1, 2, . . ..

Also any event {Y = y} is a zero-probability event for a continuous rv!
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Conditioning on zero-probability events 2

Definition 6 (Division-by-zero convention)

For any c 2 R we will, in all of this course, make use of the following

convention
c

0
:= 0.

Motivation: Then a

b
is defined for any a, b 2 R, but it gives algebra a

quirk

b(a/b) =

(
a if b 6= 0 or a = 0

0 if b = 0.

11 / 25



Definition 7 (Generalization of Definition 1)

For any pair of events G ,H 2 F , we define

P(G | H) :=
P (G \ H)

P(H)

where we note that by the division-by-zero convention

P(G | H) = 0 if P(H) = 0.

Implications:
The definition of conditional expectation “naturally” extends to any

zero-probability events H 2 F :

E [X |H] :=

X

a2A
aP (X = a | H) = 0.

Direct use of conditioning, cf. equation (1), extends. Meaning,

P (f (X ,Y ) = c | Y = b) =
P (f (X , b) = c)

P (Y = b)
, also if P (Y = b) = 0.
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Conditioning on random variables

We have defined the conditional probability P (G | H) for any pair

events G ,H.

So for rv X : ⌦ ! A and Y : ⌦ ! B , the following quantities are all

defined

P (X = a | Y = b) for any a 2 A, b 2 B .

Fixing the event {X = a}, we may introduce the function

 : B ! [0, 1]
 (b) = P (G | {Y = b})

and the function � : ⌦ ! [0, 1] by

�(!) := P (X = a | {Y = Y (!)})

( curly brackets in the {Y = Y (!)} notation here is only used to

emphasize that we have events and is not really needed).
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Conditioning on random variables 2

The mapping �(!) was introduced to clarify that

P (X = a | {Y = Y (!)}) is a function of !.

The customary notation for these conditional probabilities is as

follows:

Definition 8 (Probability of X given Y )

Consider the discrete rv X and Y on the previous slide. Then for each

a 2 A, the mapping P (X = a | Y ) : ⌦ ! [0, 1] is the discrete rv defined by

P (X = a | Y ) (!) = P (X = a | {Y = Y (!)}) .
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Verification that �(!) = P (X = a | Y ) (!) is a discrete rv:

The set of outcomes/ image space

�(⌦) = [!2⌦{P (X = a | Y = Y (!))}
= [b2B{P (X = a | Y = b)} =: C ⇢ [0, 1]

is countable since B is countable.

For each c 2 C , there exists a b(c) 2 B such that

c = P (X = a | Y = b(c))

and

��1
(c) = {! 2 ⌦ | Y (!) = b(c)} 2 F .
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Example 9

Consider the a coin toss X : ⌦ ! {0, 1} and a die roll Y : ⌦ ! {1, 2, 3},
on sample space ⌦ = {Heads,Nose,Tails} with

X
�1

(1) = {Heads,Nose} and X
�1

(0) = {Tails}

Y
�1

(1) = {Heads}, Y
�1

(2) = {Nose} and Y
�1

(3) = {Tails}.

and

P (Heads) = P (Nose) = 1/4, and P (Tails) = 1/2.

Then

P (X = 0 | Y ) (Heads) =

P (Y = 1 | X ) (Nose) =
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Definition 10 (Expectation of X given Y )

For discrete rv X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B ⇢ Rk

with |E [X ] | < 1,

the mapping E [X | Y ] : ⌦ ! Rd
is defined

E [X | Y ] (!) :=
X

a2A
aP (X = a | Y ) (!) =

X

a2A
aP (X = a | {Y = Y (!)}) .

Note, E [X | Y ] is a discrete rv.

Example 11

Consider the Bernoulli rv X ,Y with joint probabilities

P(X = i ,Y = j) =


1/8 1/4
1/2 1/8

�
i , j 2 {0, 1}

E [Y | X ] (Heads) =
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Definition 10 (Expectation of X given Y )

For discrete rv X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B ⇢ Rk

with |E [X ] | < 1,

the mapping E [X | Y ] : ⌦ ! Rd
is defined

E [X | Y ] (!) :=
X

a2A
aP (X = a | Y ) (!) =

X

a2A
aP (X = a | {Y = Y (!)}) .

Note, E [X | Y ] is a discrete rv.

Note that,

E [X | Y ] (!) = E [X | {Y = Y (!)}]

and that it can be associated to a deterministic mapping g : Rk ! Rd
as

follows

g(Y (!)) = E [X | Y = Y (!)] . (3)
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Motivation for E [X | Y ]
Say you have an observation Y (!) (i.e., you know Y (!) but not !), and
that what you really seek is the value of X (!). Then what is the best

function g(Y (!)) to approximate X (!)?

Theorem 11 (Mean-square sense best approximation)

For discrete rv X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B ⇢ Rk

with E
⇥
X

2
⇤
< 1,

it holds that

E
⇥
|X � E [X | Y ] |2

⇤
 E

⇥
|X � f (Y )|2

⇤

for all f : Rk ! Rd
such that E

⇥
|f (Y )|2

⇤
< 1.

Interpretation Since the constant function f (Y ) = E [X ] is one possible

mapping, we conclude that

E
⇥
|X � E [X | Y ] |2

⇤
 E

⇥
|X � E [X ] |2

⇤
.

To prove Theorem 11, we will need a few intermediary results.
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Lemma 12 (The tower property )

For discrete rv X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B ⇢ Rk

with |E [X ] | < 1,

it holds that

E [E [X | Y ] ] = E [X ] .

Proof:
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Lemma 13 (The Direct conditioning of expectations )

For the setting in Lemma 12, it holds for any mapping f : Rd ⇥ Rk ! R
such that |E [ f (X ,Y )] | < 1 that

E [ f (X ,Y ) | Y = b] = E [ f (X , b) | Y = b] 8b 2 B .

Special case: f (x , y) = g(x)h(y) yields

E [ g(X )h(Y ) | Y = b] = h(b)E [ g(X ) | Y = b] 8b 2 B

Since this holds for all b,

E [ g(X )h(Y ) | Y = b] = h(Y )E [ g(X ) | Y ] .

And tower property 2:

E [ h(Y )E [ g(X ) | Y ]] = E [ h(Y )g(X )] (4)
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Using (4), let us prove Theorem 11 in the 1D setting, i.e., that

E
⇥
(X � E [X | Y ])

2
⇤
 E

⇥
(X � f (Y ))

2
⇤

for all f : R ! R with E
⇥
(f (Y ))

2
⇤
< 1.

Proof:

E
⇥
(X � f (Y ))

2
⇤
= E

⇣
(X � E [X | Y ]) + (E [X | Y ]� f (Y ))

⌘2
�

=
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For X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B , the mapping

g(b) := E [X | Y = b]

satisfies

g(Y (!)) := E [X | Y = Y (!)] .

Concludsion: E [X | Y ] is an rv induced from the rv Y through the

mapping g .

Question: Is E [X | Y ] in some sense unique?

Question: Given a candidate mapping g : B ! Rd
, is there a way to

verify whether g(Y ) = E [Y | X ] ?
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Definition 14 (P-almost surely equal)

Two rv X ,Y are said to be P-almost surely equal provided

P ({! 2 ⌦ | X (!) = Y (!)}) = 1.

We write

X = Y P� a.s.

(or just “a.s.” whenever it is clear which probability measure P is

considered).

Motivation:

Example 15

X : ⌦ ! {0, 1} and Y : ⌦ ! {0, 1, 2} with

P (X = Y ) = 1 and {Y = 2} 6= ;.

Then X (!) 6= Y (!) for any ! 2 {Y = 2}, but X = Y a.s.
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Theorem 16
Consider the setting in Lemma 12.

If g : Rk ! Rd
is a mapping such that for every bounded mapping

f : Rk ! R,
E [ f (Y )g(Y )] = E [ f (Y )X ] (5)

then

g(Y ) = E [X | Y ] a.s.

Interpretation: E [X | Y ] is a a.s. unique rv of form g(Y ) satisfying (5).

Usage: If a mapping B 3 b 7! g(b) 2 Rd
satisfies (5), i.e.,

X

b2B
f (b)g(b)P(Y = b) =

X

a2A,b2B
f (b)aP(X = a,Y = b) 8f : B ! R,

then g(Y (!)) = E [X |Y ] (!) for P-almost all ! 2 ⌦.
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Next time

Convergence of random variables

Random walks and discrete time Markov Chains
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