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Summary of lecture 3

Probability of G given H for events G ,H ∈ F :

P(G | H) =
P(G ∩ H)

P(H)

where we use the division-by-zero convention c/0 := 0 whenever
P(H) = 0

Probability of X = a given Y for rv X ,Y :

P(X = a | Y )(ω) = P(X = a | {Y = Y (ω)})
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Summary of lecture 3

Expectation of discrete rv X : Ω→ A given H ∈ F :

E [X | H] =
∑
a∈A

aP(X = a | H) =
E [X1H ]

P(H)

Expectation of X given the rv Y :

E [X | Y ] (ω) = E [X | {Y = Y (ω)}]

Optimal approximation property:

E
[
|X − E [X | Y ] |2

]
≤ E

[
|X − f (Y )|2

]
for any mapping f (Y ) ∈ Rd .
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Last slides of lecture 3

For X : Ω→ A ⊂ Rd and Y : Ω→ B, the mapping

g(b) := E [X | Y = b]

satisfies
g(Y (ω)) := E [X | Y = Y (ω)] .

Conclusion: E [X | Y ] is an rv induced from the rv Y through the
mapping g .

Question: Is E [X | Y ] in some sense unique?

Question: Given a candidate mapping g : B → Rd , is there a way to
verify whether g(Y ) = E [X | Y ] ?
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Definition 1 (P-almost surely equal)

Two rv X ,Y are said to be P-almost surely equal provided

P ({ω ∈ Ω | X (ω) = Y (ω)}) = 1.

We write
X = Y P− a.s.

(or just “a.s.” whenever it is clear which probability measure P is
considered).

Motivation:

Example 2

X : Ω→ {0, 1} and Y : Ω→ {0, 1, 2} with

P (X = Y ) = 1 and {Y = 2} 6= ∅.

Then X (ω) 6= Y (ω) for any ω ∈ {Y = 2}, but X = Y a.s.
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Theorem 3

Consider discrete rv X : Ω→ A ⊂ Rd and Y : Ω→ B. If g : Rk → Rd is
a mapping such that for every bounded mapping f : Rk → R,

E [ f (Y )g(Y )] = E [ f (Y )X ] (1)

then
g(Y ) = E [X | Y ] a.s.

Interpretation: E [X | Y ] is an a.s. unique rv of form g(Y )
satisfying (1).

Usage: If a mapping B 3 b 7→ g(b) ∈ Rd satisfies (1), i.e.,∑
b∈B

f (b)g(b)P(Y = b) =
∑

a∈A,b∈B
f (b)aP(X = a,Y = b) ∀f : B → R,

then g(Y (ω)) = E [X |Y ] (ω) for P-almost all ω ∈ Ω.
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Plan for this lecture

Properties of Random walks (steps, symmetry, recurrence)

−2 −1 0 1 2

p

1− p

Convergence of random variables
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Random walks

Are sequences of rv {Xn} taking values on the lattice Zd for some
d ≥ 1.

The subindex n can be associated to discrete time, and Zd to discrete
space (really discrete state-space).

Definition 4 (Random walk (RW))

Xn : Ω→ Zd for n = 0, 1, . . . is an RW if the sequence of steps
∆Xn := Xn+1 − Xn is identically distributed and

X0,∆X1,∆X2, . . . are independent.
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Random walk 2
Since {∆Xn} are iid, an RW is defined by the two distributions:

the initial state PX0(z) = P(X0 = z)

the step P∆X0(z) = P(∆X0 = z)

Example 5 (Simple and symmetric RW on Z1)

Let X0 = 0 and P(∆X0 = ±1) = 1/2, and let us compute P(Xn = k).

−2 −1 0 1 2

1/2

1/2

Solution:
Observe that the sequence Yk := 1{∆Xk=1} ∼ Bernoulli(1/2) is iid and
satisfies

∆Xk = 2Yk − 1
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Consequently,

Xn = X0 +
n−1∑
k=0

∆Xk =
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Symmetric random walks

For rv X and Y , we introduce notation X
D
= Y to say that X and Y are

identically distributed.

Definition 6 (Symmetric RW)

An RW on Zd is called symmetric if the step and the “reverse step” are
identically distributed, meaning

X1 − X0
D
= X0 − X1.

Intuition: Equally likely to step in opposite directions.

−2 −1 0 1 2

p

1− p

The above RW symmetric if and only if p = 1/2.
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Simple RW

Definition 7 (Simple RW)

An RW on Zd is called simple if the values of the step ∆X0 belong to the
set {ek}dk=1 of canonical basis vectors in Rd . In other words,

{Xn} is simple ⇐⇒ P(|∆X0| = 1) = 1.

Furthermore, an RW is called simple symmetric if

P(∆X0 = ek) = P(∆X0 = −ek) =
1

2d
, k = 1, 2, . . . , d .
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Example
Consider RW with steps satisfying

6∑
i=1

pi = 1.

Constraints for the RW being

symmetric?

simple?

simple symmetric?
p1

p2

p3

p4

p5

p6
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Matlab implementation of simple symmetric RW on Z2

Core idea Xn+1 = Xn + ∆Xn where

P(∆Xn = ±e1) = P(∆Xn = ±e2) = 1/4.

Use randi(4) in matlab to draw random integer in [1, 4], all integers with
same probability, and assign walk direction from drawn integer.

% Four s t e p d i r e c t i o n s
Step = [−1 0 ; 1 0 ; 0 1 ; 0 −1];

f o r n =1:200
d i r e c t i o n = r a n d i ( 4 ) ;
dX = Step ( d i r e c t i o n , : ) ;
p l o t ( [ X( 1 ) X(1)+dX ( 1 ) ] , [ X( 2 ) , X(2)+dX ( 2 ) ] )
X = X+dX ;

end

See randWalk2d.m for more details.
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Recurrence and transience

Definition 8

An RW on Zd with is recurrent if it (over its whole path {Xn}n∈N) visits
its initial state infinitely often P−almost surely, and transient otherwise
(i.e., if it visits its initial state only a finite number of times P−almost
surely).

Description of a quasi-stable property: assume you are gambling, you
win with probability P(∆Xn = 1) = p lose with
P(∆Xn = −1) = 1− p. Unless p = 1/2, {Xn} is transient.

Recurrence is a form of quasi-periodic behavior. In some settings (but
not for RW) it connects spatial distribution of limit processes and
time-averages over path realizations

P(X∞ = y) = lim
N→∞

1

N

N∑
n=0

1Xn=y .
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Theorem 9

Consider an RW on Zd with X0 = 0 and let

T := inf{n ≥ 1 | Xn = 0}

with the convention that inf ∅ :=∞ and

N :=
∑
n∈N

1Xn=0 (total visits of origin)

Then {Xn} is recurrent if and only if λ := P(T <∞) = 1 and for
j ∈ N ∪ {∞},

P(N = j) =

{
(1− λ)λj−1 if λ < 1

1j=∞ if λ = 1

Note that N : Ω→ N ∪ {∞}.
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Proof of Theorem 9
Define τ0 = 0, and

τk+1 = inf{n > τk | Xn = 0} for k = 0, 1, . . .

Note that ∆τk = τk+1 − τk is a sequence of independent and
T -distributed rv.
Introducing the rv

k̄ = sup{k ≥ 0 | τk <∞},
we can write

N =
∞∑
n=0

1Xn=0 =
k̄∑

k=0

1Xτk
=0 = k̄ + 1.

Observe that

P(k̄ = j) =

17 / 26



Which RW are recurrent?

(Related to FJK 2.1.13) Symmetric and simple RW on Zd are
recurrent if d ≤ 2 and transient otherwise.

A drunk man will eventually find
his way home, but a drunk bird
may get lost forever

Shizuo Kakutani

(Related to FJK 2.1.14) Non-symmetric RW are always transient.

−2 −1 0 1 2

p

1− p

Always transient when p 6= 1/2.
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Scaling property of RW

Theorem 10 (Random walk case of Donsker’s theorem)

Let {Xn} be a simple symmetric RW on Z with X0 = 0 and consider

W (n)(t) :=
Xbntc√

n
t ∈ [0, 1],

where bxc := max{k ∈ Z | k ≤ x}. Then {W (n)(t)}t∈[0,1] converges in
distribution to a standard Brownian motion {W (t)}t∈[0,1].
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Convergence of random variables

Assume you can draw iid samples Xk ∼ PX and that you approximate
µ = E [X ] by the sample average

X̄M :=
1

M

M∑
k=1

Xk . (2)

Questions:

Will X̄M → µ as M →∞, and, if so, in what sense?

Is there a convergence rate of the form

‖X̄M − µ‖ ≤
C

Mβ

for some norm ‖ · ‖ and some rate β > 0?
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Mean-square convergence

For rv Y ,Z : Ω→ Rd we introduce the scalar product

〈Y ,Z 〉L2(Ω) := E [Y · Z ]

the function space

L2(Ω) := {F −measurable mappings Y : Ω→ Rd | E
[
|Y |2

]
<∞}

with norm

‖Y ‖L2(Ω) :=
√
E [ |Y |2],

is a Hilbert space.

The notation is shorthand for L2(Ω) = L2(Ω,F ,P;Rd).
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Returning to the approximation

X̄M =
1

M

M∑
k=1

Xk

Since E [Xk ] = µ, it holds that

X̄M − µ =
M∑
k=1

Xk − µ
M

Since {Xk − µ} is a mean-zero and independent sequence of rv, it
holds for j 6= k that

〈Xk − µ,Xj − µ〉L2(Ω) = E [ (Xk − µ) · (Xj − µ)]

=
∑

(xk ,xj )∈A×A

(xk − µ) · (xj − µ)P(Xk = xk ,Xj = xj)︸ ︷︷ ︸
=P(Xk=xk )P(Xj=xj )

= E [ (Xk − µ)] · E [ (Xj − µ)] = 0

(Here we assumed discrete rv Xk : Ω→ A, but it also holds for
continuous rv.)
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This yields

‖X̄M − µ‖2
L2(Ω) =

〈
M∑
k=1

Xk − µ
M

,

M∑
k=1

Xk − µ
M

〉
=

Conclusion: For a sequence of d-dimensional discrete independent rv
Xi ∼ PX ,

‖X̄M − µ‖L2(Ω) =
‖X − µ‖L2(Ω)√

M
, (3)

i.e., the mean-square convergence rate is 1/2.
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Weaker form of convergence

Definition 11 (Convergence in probability)

A sequence of rv {Ȳk} converges in probability towards the rv Y if for all
ε > 0,

lim
k→∞

P(|Yk − Y | > ε) = 0.

Theorem 12 (Weak law of large numbers (Durrett 2.2.14))

For a sequence of d-dimensional independent rv Xi ∼ PX with
E [ |Xi |] <∞ it holds that

X̄M → µ in probability.
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Chebychev’s inequality
To prove the theorem, we will apply Chebychev’s inequality: for any rv
Y with µ̄ = E [Y ]

P(|Y − µ̄| > ε) ≤ E
[
|Y − µ̄|2

ε2

]
Verification:

Proof of Theorem 12 (Under simplified assumption E
[
|X |2

]
<∞

P(|X̄M − µ| > ε) ≤
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Next time

Discrete time and space Markov Chains

Caption: Quantum Cloud, designed
by Antony Gormley. Random walk
algorithm starting from points on the
surface of an enlarged figure based on
Gormley’s body.
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