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Summary of lecture 3

m Probability of G given H for events G, H € F:

P(G N H)

PG| H) = —p

where we use the division-by-zero convention ¢/0 := 0 whenever
P(H)=0

m Probability of X = a given Y for rv X, Y:

P(X =a]Y)(w)=P(X=al{Y =Y(w)})



Summary of lecture 3

m Expectation of discrete rv X : Q2 — A given H € F:

E[X1H]

E[X|H] =) aP(X =a| H) = =0

acA

m Expectation of X given the rv Y:

E[X|Y](w) =E[X[{Y =Y(w)}]

m Optimal approximation property:

E[IX -E[X| Y]] <E[IX —f(Y)]]
for any mapping f(Y) € RY.



Last slides of lecture 3
For X :Q—= ACRYand Y :Q — B, the mapping
g(b) =E[X|Y = 5]

satisfies
g(Y(w)) =E[X|Y =Y(w)].

Conclusion: E[X | Y] is an rv induced from the rv Y through the
mapping g.

Question: Is E[X | Y] in some sense unique?

Question: Given a candidate mapping g : B — RY, is there a way to
verify whether g(Y)=E[X | Y] ?



Definition 1 (IP-almost surely equal)
Two rv X, Y are said to be P-almost surely equal provided

P({we Q| X(w) = Y(w)}) = 1.

We write
X=Y P-as.

(or just “a.s.” whenever it is clear which probability measure P is
considered).

Motivation:

Example 2
X:Q—{0,1} and Y : Q — {0,1,2} with

P(X=Y)=1 and {Y =2} #0.

Then X(w) # Y(w) for any w € {Y =2}, but X =Y ass.




Theorem 3

Consider discrete rv X : Q - ACRY andY :Q — B. If g :RF - R9 is
a mapping such that for every bounded mapping f : R — R,

E[f(Y)g(Y)] = E[f(Y)X] (1)

then
g(Y)=E[X|Y] as.

Interpretation: E[X | Y] is an a.s. unique rv of form g(Y)
satisfying (1).

Usage: If a mapping B > b+ g(b) € RY satisfies (1), i.e.,

D f(b)g(b)P(Y =b)= > f(b)aP(X=a, ¥ =b) Vf:B-R,
beB acA,beB

then g(Y(w)) = E[X]|Y](w) for P-almost all w € Q.




Plan for this lecture

m Properties of Random walks (steps, symmetry, recurrence)

m Convergence of random variables



Random walks

m Are sequences of rv {X,} taking values on the lattice Z¢ for some
d>1

m The subindex n can be associated to discrete time, and Z to discrete
space (really discrete state-space).

Definition 4 (Random walk (RW))

X,:Q — 79 for n=0,1,...is an RW if the sequence of steps
AX, := Xpp1 — X, is identically distributed and

Xo, AX1,AX>, . ..are independent.




Random walk 2

Since {AX,} are iid, an RW is defined by the two distributions:
m the initial state Px,(z) = P(Xp = 2)
m the step Pax,(z) = P(AXo = 2)

Example 5 (Simple and symmetric RW on Z1)

Let Xo =0 and P(AXp = £1) = 1/2, and let us compute P(X, = k).
1/2

% w .
1

1/2

Solution:

Observe that the sequence Y := l{ax,—1} ~ Bernoulli(1/2) is iid and
satisfies

AXy =2Y -1



Consequently,

n—1
k=0



Symmetric random walks

For rv X and Y, we introduce notation X 2y to say that X and Y are
identically distributed.

Definition 6 (Symmetric RW)

An RW on Z9 is called symmetric if the step and the “reverse step” are
identically distributed, meaning

X1 — Xo 2 X — X

Intuition: Equally likely to step in opposite directions.

1-p
The above RW symmetric if and only if p =1/2.



Simple RW

Definition 7 (Simple RW)
An RW on Z9 is called simple if the values of the step AXy belong to the
set {ex}¢_, of canonical basis vectors in R?. In other words,

{Xn} is simple <= P(|AXp| =1)=1.

Furthermore, an RW is called simple symmetric if

1
IP’(AXo:ek):IP’(Aon—ek): g, k:1,2,...,d.




Example
Consider RW with steps satisfying

6

Constraints for the RW being

m symmetric?

m simple? /
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Matlab implementation of simple symmetric RW on 7?2
Core idea X411 = X, + AX,, where

P(AX,, = j:el) = P(AX,, = :|:62) = 1/4.

Use randi(4) in matlab to draw random integer in [1,4], all integers with
same probability, and assign walk direction from drawn integer.

% Four step directions
Step = [-1 0;1 0;0 1;0 -1];

for n =1:200
direction = randi(4);
dX = Step(direction ,:);

plot ([X(1) X(1)+dX(1)]. [X(2), X(2)+dX(2)])
X = X+dX;
end

See randWalk2d.m for more details.



Recurrence and transience
Definition 8

An RW on Z9 with is recurrent if it (over its whole path {X,},cn) visits
its initial state infinitely often P—almost surely, and transient otherwise
(i.e., if it visits its initial state only a finite number of times P—almost
surely).

m Description of a quasi-stable property: assume you are gambling, you
win with probability P(AX, = 1) = p lose with
P(AX,=—-1)=1—p. Unless p =1/2, {X,} is transient.

m Recurrence is a form of quasi-periodic behavior. In some settings (but
not for RW) it connects spatial distribution of limit processes and
time-averages over path realizations

N

) 1
B =) = fim &S 1y
n=0



Theorem 9

Consider an RW on Z9 with Xo = 0 and let
T :=inf{n>1] X, =0}
with the convention that inf () :== oo and

N := Z I1x,—0 (total visits of origin)
neN

Then { Xy} is recurrent if and only if A\ := P(T < o0) =1 and for

J € NU {00},
— =1
P(N j) {(1 A) X A<l

Tjmoo ifA=1

Note that N : Q — N U {oo}.



Proof of Theorem 9
Define 5 = 0, and
Tke1 = inf{n> 71 | X, =0} for k=0,1,...

Note that A7y = Tx+1 — Tk is a sequence of independent and
T-distributed rv.

Introducing the rv
k =sup{k > 0| 74 < 0},
we can write

00 k
N=>Y lx-0=) Ix,—0o=k+L1
n=0 k=0

Observe that



Which RW are recurrent?

= (Related to FJK 2.1.13) Symmetric and simple RW on Z are
recurrent if d < 2 and transient otherwise.

7

A drunk man will eventually find
his way home, but a drunk bird
may get lost forever

Shizuo Kakutani

m (Related to FJK 2.1.14) Non-symmetric RW are always transient.
p

/R
t f N t
1

-2 —T 0
1-p

Always transient when p # 1/2.




Scaling property of RW

Theorem 10 (Random walk case of Donsker's theorem)

Let {X,} be a simple symmetric RW on Z with Xy = 0 and consider
X
Ww(e) .= 22 e 0,1
( ) ﬁ [ Y ]7

where | x| := max{k € Z | k < x}. Then {W(")(t)}te[o,l] converges in
distribution to a standard Brownian motion {W(t)}c[o,1]-

Donsker's invariance principle. n = 20 Donsker's invariance principle. n = 10000



Convergence of random variables

Assume you can draw iid samples X; ~ Px and that you approximate
= E[X] by the sample average

Questions:

m Will Xy — pas M — o0, and, if so, in what sense?

m Is there a convergence rate of the form

— C
[ Xm — | < i

for some norm || - || and some rate 8 > 07



Mean-square convergence

m Forrv Y, Z: Q — R? we introduce the scalar product

<Y, Z)Lz(Q) = ]E[Y . Z]

m the function space
[2(Q) := {F — measurable mappings Y : Q = R | E [|Y|2] < oo}

with norm

1Y lli2(9) = VELIYP,

is a Hilbert space.

m The notation is shorthand for L2(Q) = L?(Q, F,P;RY).



Returning to the approximation

_ 1 M
XM:M;X,(

m Since E[Xk]| = p, it holds that

M ox,
_  —
XM_FL:E v

k=1

m Since {Xx — p} is a mean-zero and independent sequence of rv, it
holds for j # k that

Xk = 11, X — ) 2) = E[ (X — 1) - (Xj — )]

= > =) 06— m)P(Xk = Xk, Xj = x)
(Xk,Xj)EAXA

=P(Xi=xx)P(Xj=x;)
=E[(Xk —)]-E[(Xj —p)] =0

(Here we assumed discrete rv Xy : Q — A, but it also holds for
continuous rv.)



This yields

M M
- Xk — 1 X —
W - e = (3 5 22

k=1 k=1

Conclusion: For a sequence of d-dimensional discrete independent rv
Xi ~ Px,

o 1X = pll20
| Xm — M”L2(Q) = T()v (3)

i.e., the mean-square convergence rate is 1/2.



Weaker form of convergence

Definition 11 (Convergence in probability)

A sequence of rv {Y,} converges in probability towards the rv Y if for all

e >0,
lim P(|Yx — Y| >e€)=0.
k—o00

Theorem 12 (Weak law of large numbers (Durrett 2.2.14))

For a sequence of d-dimensional independent rv X; ~ Px with
E[|Xi|]] < oo it holds that

Xy — . in probability.




Chebychev's inequality
To prove the theorem, we will apply Chebychev’s inequality: for any rv
Y with g =E[Y]
Y — 1 2
P(Y —i| >¢) <E [62“']

Verification:

Proof of Theorem 12 (Under simplified assumption E [ |X]?] < oo
P(| Xy — | > €) <



Next time

Discrete time and space Markov Chains

Caption: Quantum Cloud, designed
by Antony Gormley. Random walk
algorithm starting from points on the
surface of an enlarged figure based on
Gormley's body.




