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Summary of lecture 3

Probability of G given H for events G ,H 2 F :

P(G | H) =
P(G \ H)

P(H)

where we use the division-by-zero convention c/0 := 0 whenever
P(H) = 0

Probability of X = a given Y for rv X ,Y :

P(X = a | Y )(!) = P(X = a | {Y = Y (!)})
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Summary of lecture 3

Expectation of discrete rv X : ⌦ ! A given H 2 F :

E [X | H] =
X

a2A
aP(X = a | H) =

E [X H ]

P(H)

Expectation of X given the rv Y :

E [X | Y ] (!) = E [X | {Y = Y (!)}]

Optimal approximation property: Interesting property

E
⇥
|X � E [X | Y ] |2

⇤
= E

⇥
|X � f (Y )|2

⇤

for any mapping f (Y ) 2 Rd .
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Last slides of lecture 3

For X : ⌦ ! A ⇢ Rd and Y : ⌦ ! B , the mapping

g(b) := E [X | Y = b]

satisfies
g(Y (!)) := E [X | Y = Y (!)] .

Conclusion: E [X | Y ] is an rv induced from the rv Y through the
mapping g .

Question: Is E [X | Y ] in some sense unique?

Question: Given a candidate mapping g : B ! Rd , is there a way to
verify whether g(Y ) = E [Y | X ] ?
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Definition 1 (P-almost surely equal)

Two rv X ,Y are said to be P-almost surely equal provided

P ({! 2 ⌦ | X (!) = Y (!)}) = 1.

We write
X = Y P� a.s.

(or just “a.s.” whenever it is clear which probability measure P is
considered).

Motivation:

Example 2

X : ⌦ ! {0, 1} and Y : ⌦ ! {0, 1, 2} with

P (X = Y ) = 1 and {Y = 2} 6= ;.

Then X (!) 6= Y (!) for any ! 2 {Y = 2}, but X = Y a.s.

5 / 26



Theorem 3

Consider discrete rv X : ⌦ ! A ⇢ Rd
and Y : ⌦ ! B . If g : Rk ! Rd

is

a mapping such that for every bounded mapping f : Rk ! R,

E [ f (Y )g(Y )] = E [ f (Y )X ] (1)

then

g(Y ) = E [X | Y ] a.s.

Interpretation: E [X | Y ] is a a.s. unique rv of form g(Y ) satisfying (1).

Usage: If a mapping B 3 b 7! g(b) 2 Rd satisfies (1), i.e.,

X

b2B
f (b)g(b)P(Y = b) =

X

a2A,b2B
f (b)aP(X = a,Y = b) 8f : B ! R,

then g(Y (!)) = E [X |Y ] (!) for P-almost all ! 2 ⌦.
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Plan for this lecture

Properties of Random walks (steps, symmetry, recurrence)

�2 �1 0 1 2

p

1� p

Convergence of random variables
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Random walks

Are sequences of rv {Xn} taking values on the lattice Zd for some
d � 1.

The subindex n can be associated to discrete time, and Zd to discrete
space (really discrete state-space).

Definition 4 (Random walk (RW))

Xn : ⌦ ! Zd for n = 0, 1, . . . is an RW if the sequence of steps
�Xn := Xn+1 � Xn is identically distributed and

X0,�X1,�X2, . . . are independent.
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Random walk 2
Since {�Xn} are iid, an RW is defined by the two distributions:

the initial state PX0(z) = P(X0 = z)

the step P�X0(z) = P(�X0 = z)

Example 5 (Simple and symmetric RW on Z1)

Let X0 = 0 and P(�X0 = ±1) = 1/2, and let us compute P(Xn = k).

�2 �1 0 1 2

1/2

1/2

Solution:
Observe that the sequence Yk := {�Xk=1} ⇠ Bernoulli(1/2) is iid and
satisfies

�Xk = 2Yk � 1
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Consequently,

Xn = X0 +
n�1X

k=0

�Xk =
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What if Io is an rv with

PCIE k ) so for multiple K?

Basically

BCIu=j ) = E BfIn=JlEo=k
)
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Symmetric random walks

For rv X and Y , we introduce notation X
D
= Y to say that X and Y are

identically distributed.

Definition 6 (Symmetric RW)

An RW on Zd is called symmetric if the step and the “reverse step” are
identically distributed, meaning

X1 � X0
D
= X0 � X1.

Intuition: Equally likely to step in opposite directions.

�2 �1 0 1 2

p

1� p

The above RW symmetric if and only if p = 1/2.
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Simple RW

Definition 7 (Simple RW)

An RW on Zd is called simple if the values of the step �X0 belong to the
set {ek}dk=1 of canonical basis vectors in Rd . In other words,

{Xn} is simple () P(|�X0| = 1) = 1.

Furthermore, an RW is called simple symmetric if

P(�X0 = ek) = P(�X0 = �ek) =
1

2d
, k = 1, 2, . . . , d .
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Example
Consider RW with steps satisfying

6X

i=1

pi = 1.

Constraints for the RW being

symmetric?

simple?

simple symmetric?
p1

p2

p3

p4

p5

p6
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Matlab implementation of simple symmetric RW on Z2

Core idea Xn+1 = Xn +�Xn where

P(�Xn = ±e1) = P(�Xn = ±e2) = 1/4.

Use randi(4) in matlab to draw random integer in [1, 4], all integers with
same probability, and assign walk direction from drawn integer.

% Four s t ep d i r e c t i o n s
Step = [�1 0 ;1 0 ; 0 1 ; 0 �1];

f o r n =1:200
d i r e c t i o n = r a nd i ( 4 ) ;
dX = Step ( d i r e c t i o n , : ) ;
p l o t ( [X(1 ) X(1)+dX ( 1 ) ] , [X( 2 ) , X(2)+dX ( 2 ) ] )
X = X+dX ;

end

See randWalk2d.m for more details.
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Recurrence and transience

Definition 8

An RW on Zd with is recurrent if it (over its whole path {Xn}n2N) visits
its initial state infinitely often P�almost surely, and transient otherwise
(i.e., if it visits its initial state only a finite number of times P�almost
surely).

Description of a quasi-stable property: assume you are gambling, you
win with probability P(�Xn = 1) = p lose with
P(�Xn = �1) = 1� p. Unless p = 1/2, {Xn} is transient.

Recurrence is a form of quasi-periodic behavior. In some settings (but
not for RW) it connects spatial distribution of limit processes and
time-averages over path realizations

P(X1 = y) = lim
N!1

1

N

NX

n=0

Xn=y .
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Theorem 9

Consider an RW on Zd
with X0 = 0 and let

T := inf{n � 1 | Xn = 0}

with the convention that inf ; := 1 and

N :=
X

n2N
Xn=0 (total visits of origin)

Then {Xn} is recurrent if and only if � := P(T < 1) = 1 and for

j 2 N [ {1},

P(N = j) =

(
(1� �)�j�1

if � < 1

j=1 if � = 1

Note that N : ⌦ ! N [ {1}.
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Proof of Theorem 9
Define ⌧0 = 0, and

⌧k+1 = inf{n > ⌧k | Xn = 0} for k = 0, 1, . . .

Note that �⌧k = ⌧k+1 � ⌧k is a sequence of independent and
T -distributed rv.
Introducing the rv

k̄ = sup{k � 0 | ⌧k < 1},
we can write

N =
1X

n=0

Xn=0 =
k̄X

k=0

X⌧
k
=0 = k̄ + 1.

Observe that

P(k̄ = j) =
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and for -1=0,
BCE -D) = 10

We own that
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Which RW are recurrent?

(Related to FJK 2.1.13) Symmetric and simple RW on Zd are
recurrent if d  2 and transient otherwise.

A drunk man will eventually find
his way home, but a drunk bird
may get lost forever

Shizuo Kakutani

(Related to FJK 2.1.14) Non-symmetric RW are always transient.

�2 �1 0 1 2

p

1� p

Always transient when p 6= 1/2.
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Scaling property of RW

Theorem 10 (Random walk case of Donsker’s theorem)

Let {Xn} be a simple symmetric RW on Z with X0 = 0 and consider

W
(n)(t) :=

Xbntcp
n

t 2 [0, 1],

where bxc := max{k 2 Z | k  x}. Then {W (n)(t)}t2[0,1] converges in
distribution to a standard Brownian motion {W (t)}t2[0,1].
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Convergence of random variables

Assume you can draw iid samples Xk ⇠ PX and that you approximate
µ = E [X ] by the sample average

X̄M :=
1

M

MX

k=1

Xk . (2)

Questions:

Will X̄M ! µ as M ! 1, and, if so, in what sense?

Is there a convergence rate of the form

kX̄M � µk  C

M�

for some norm k · k and some rate � > 0?
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Mean-square convergence

For rv Y ,Z : ⌦ ! Rd we introduce the scalar product

hY ,Z iL2(⌦) := E [Y · Z ]

the function space

L
2(⌦) := {F �measurable mappings Y : ⌦ ! Rd | E

⇥
|Y |2

⇤
< 1}

with norm

kY kL2(⌦) :=
q
E [ |Y |2],

is a Hilbert space.

The notation is shorthand for L2(⌦) = L
2(⌦,F ,P;Rd).
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Returning to the approximation

X̄M =
1

M

MX

k=1

Xk

Since E [Xk ] = µ, it holds that

X̄M � µ =
MX

k=1

Xk � µ

M

Since {Xk � µ} is a mean-zero and independent sequence of rv, it
holds for j 6= k that

hXk � µ,Xj � µiL2(⌦) = E [ (Xk � µ) · (Xj � µ)]

=
X

(xk ,xj )2A⇥A

(xk � µ) · (xj � µ)P(Xk = xk ,Xj = xj)| {z }
=P(Xk=xk )P(Xj=xj )

= E [ (Xk � µ)] · E [ (Xj � µ)] = 0

(Here we assumed discrete rv Xk : ⌦ ! A, but it also holds for
continuous rv.)
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This yields

kX̄M � µk2
L2(⌦) =

*
MX

k=1

Xk � µ

M
,

MX

k=1

Xk � µ

M

+

=

Conclusion: For a sequence of d-dimensional discrete independent rv
Xi ⇠ PX ,

kX̄M � µkL2(⌦) =
kX � µkL2(⌦)p

M
, (3)

i.e., the mean-square convergence rate is 1/2.
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Weaker form of convergence

Definition 11 (Convergence in probability)

A sequence of rv {Ȳk} converges in probability towards the rv Y if for all
✏ > 0,

lim
k!1

P(|Yk � Y | > ✏) = 0.

Theorem 12 (Weak law of large numbers (Durrett 2.2.14))

For a sequence of d-dimensional independent rv Xi ⇠ PX with

E [ |Xi |] < 1 it holds that

X̄M ! µ in probability.
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Chebychev’s inequality
To prove the theorem, we will apply Chebychev’s inequality: for any rv
Y with µ̄ = E [Y ]

P(|Y � µ̄| > ✏)  E

|Y � µ̄|2

✏2

�

Verification:

Proof of Theorem 12

P(|X̄M � µ| > ✏) 
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Next time
Discrete time and space Markov Chains

Caption: Quantum Cloud, designed
by Antony Gormley. Random walk
algorithm starting from points on the
surface of an enlarged figure based on
Gormley’s body.
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