Mathematics and numerics for data assimilation and state estimation - Lecture 4

Mathematics
for Uncertainty Quantification

Summer semester 2020

Summary of lecture 3

■ Probability of G given H for events $G, H \in \mathcal{F}$:

$$
\mathbb{P}(G \mid H)=\frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}
$$

where we use the division-by-zero convention $c / 0:=0$ whenever $\mathbb{P}(H)=0$

- Probability of $X=$ a given Y for $r v X, Y$:

$$
\begin{aligned}
& \mathbb{P}(X=a \mid Y)(\omega)=\mathbb{P}(X=a \mid\{Y=Y(\omega)\}) \\
&\{\bar{Z}=\bar{Z}(\omega)\}=\{\overline{ } \quad \\
& \in \mathcal{F} \Omega(\bar{Z}(\beta)=\bar{Z}(\omega)\}
\end{aligned}
$$

Summary of lecture 3

■ Expectation of discrete rv $X: \Omega \rightarrow A$ given $H \in \mathcal{F}$:

$$
\mathbb{E}[X \mid H]=\sum_{a \in A} a \mathbb{P}(X=a \mid H)=\frac{\mathbb{E}\left[X \mathbb{1}_{H}\right]}{\mathbb{P}(H)}
$$

■ Expectation of X given the rv Y :

$$
\mathbb{E}[X \mid Y](\omega)=\mathbb{E}[X \mid\{Y=Y(\omega)\}]
$$

- Optimal approximation property: Interesting property

$$
\mathbb{E}\left[|X-\mathbb{E}[X \mid Y]|^{2}\right] \leq \mathbb{E}\left[|X-f(Y)|^{2}\right]
$$

for any mapping $f(Y) \in \mathbb{R}^{d}$.

Last slides of lecture 3

For $X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B$, the mapping

$$
g(b):=\mathbb{E}[X \mid Y=b] \quad \mathscr{B}: \beta \rightarrow \mathbb{R}
$$

satisfies

$$
g(Y(\omega)):=\mathbb{E}[X \mid Y=Y(\omega)]
$$

Conclusion: $\mathbb{E}[X \mid Y]$ is an $r v$ induced from the $r v Y$ through the mapping g.

Question: Is $\mathbb{E}[X \mid Y]$ in some sense unique?
Question: Given a candidate mapping $g: B \rightarrow \mathbb{R}^{d}$, is there a way to verify whether $g(Y)=\mathbb{E}[X \perp X]$?

Definition 1 (\mathbb{P}-almost surely equal)

Two rv X, Y are said to be \mathbb{P}-almost surely equal provided

$$
\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=Y(\omega)\})=1 .
$$

We write

$$
X=Y \quad \mathbb{P}-\text { a.s. }
$$

(or just "a.s." whenever it is clear which probability measure \mathbb{P} is considered).

Motivation:
Example 2
$X: \Omega \rightarrow\{0,1\}$ and $Y: \Omega \rightarrow\{0,1,2\}$ with

$$
\mathbb{P}(X=Y)=1 \quad \text { and } \quad\{Y=2\} \neq \emptyset
$$

Then $X(\omega) \neq Y(\omega)$ for any $\omega \in\{Y=2\}$, but $X=Y$ a.s.

Theorem 3

Consider discrete $r v X: \Omega \rightarrow A \subset \mathbb{R}^{d}$ and $Y: \Omega \rightarrow B$. If $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ is a mapping such that for every bounded mapping $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E}[f(Y) g(Y)]=\mathbb{E}[f(Y) X] \tag{1}
\end{equation*}
$$

then

$$
g(Y)=\mathbb{E}[X \mid Y] \quad \text { a.s. }
$$

Interpretation: $\mathbb{E}[X \mid Y]$ is ana.s. unique $r v$ of form $g(Y)$ satisfying (1). Usage: If a mapping $B \ni b \mapsto g(b) \in \mathbb{R}^{d}$ satisfies (1), i.e.,

$$
\sum_{b \in B} f(b) g(b) P(Y=b)=\sum_{a \in A, b \in B} f(b) a P(X=a, Y=b) \quad \forall f: B \rightarrow \mathbb{R}
$$

then $g(Y(\omega))=\mathbb{E}[X \mid Y](\omega)$ for \mathbb{P}-almost all $\omega \in \Omega$.

Plan for this lecture

■ Properties of Random walks (steps, symmetry, recurrence)

■ Convergence of random variables

Random walks

- Are sequences of $r v\left\{X_{n}\right\}$ taking values on the lattice \mathbb{Z}^{d} for some $d \geq 1$.
- The subindex n can be associated to discrete time, and \mathbb{Z}^{d} to discrete space (really discrete state-space).

Definition 4 (Random walk (RW))

$X_{n}: \Omega \rightarrow \mathbb{Z}^{d}$ for $n=0,1, \ldots$ is an RW if the sequence of steps $\Delta X_{n}:=X_{n+1}-X_{n}$ is identically distributed and
$X_{0}, \Delta X_{1}, \Delta X_{2}, \ldots$ are independent.

Random walk 2

Since $\left\{\Delta X_{n}\right\}$ are iid, an RW is defined by the two distributions:

- the initial state $\mathbb{P}_{X_{0}}(z)=\mathbb{P}\left(X_{0}=z\right)$
- the step $\mathbb{P}_{\Delta x_{0}}(z)=\mathbb{P}\left(\Delta X_{0}=z\right)$

Example 5 (Simple and symmetric RW on \mathbb{Z}^{1})

Let $X_{0}=0$ and $\mathbb{P}\left(\Delta X_{0}= \pm 1\right)=1 / 2$, and let us compute $\mathbb{P}\left(X_{n}=k\right)$.

Solution:

Observe that the sequence $Y_{k}:=\mathbb{1}_{\left\{\Delta x_{k}=1\right\}} \sim \operatorname{Bernoulli}(1 / 2)$ is iid and satisfies

$$
\Delta X_{k}=2 Y_{k}-1= \begin{cases}1 & \text { if } Y_{K}=1 \\ -1 & \text { if } \Psi_{K}=0\end{cases}
$$

Consequently,

$$
\begin{aligned}
& x_{n}=\underbrace{x_{0}}_{=0}+\sum_{k=0}^{n-1} \Delta x_{k}=\sum_{k=0}^{n-1}\left(2 I_{k}-1\right) \\
& =2 \sum_{k=0}^{n-1} Y_{k}-n=: 2 M_{n}-n \\
& M_{n}=\sum_{k=0}^{n-1} \Psi_{m} \sim \operatorname{Binom}\left(n, \frac{1}{2}\right)[\text { lecture } 2] \\
& \mathbb{P}\left(X_{n}=k\right)=\mathbb{P}\left(2 M_{n}-n=k\right)
\end{aligned}
$$

What if E_{0} is an rv with $\mathbb{P}\left(\bar{x}_{0}=k\right)>0$ for multiple k ?
Basically

$$
\mathbb{P}\left(X_{n}=j\right)=\sum_{k<\mathbb{Z}} \mathbb{P}\left(\mathbb{X}_{n}=j\left(\bar{x}_{0}=k\right)\right.
$$

Symmetric random walks

For $\mathrm{rv} X$ and Y, we introduce notation $X \stackrel{D}{=} Y$ to say that X and Y are identically distributed.

Definition 6 (Symmetric RW)

An RW on \mathbb{Z}^{d} is called symmetric if the step and the "reverse step" are identically distributed, meaning

$$
X_{1}-X_{0} \stackrel{D}{=} X_{0}-X_{1}
$$

Intuition: Equally likely to step in opposite directions.

The above RW symmetric if and only if $p=1 / 2$.

Simple RW

$$
\pm\left[\begin{array}{l}
1 \\
0
\end{array}\right] \pm\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Definition 7 (Simple RW)

An RW on \mathbb{Z}^{d} is called simple if the values of the step ΔX_{0} belong to the set $\left\{e_{k}\right\}_{k=1}^{d}$ of canonical basis vectors in \mathbb{R}^{d}. In other words,

$$
\left\{X_{n}\right\} \text { is simple } \Longleftrightarrow \mathbb{P}\left(\left|\Delta X_{0}\right|=1\right)=1
$$

Furthermore, an RW is called simple symmetric if

$$
\mathbb{P}\left(\Delta X_{0}=e_{k}\right)=\mathbb{P}\left(\Delta X_{0}=-e_{k}\right)=\frac{1}{2 d}, \quad k=1,2, \ldots, d
$$

Example
Consider RW with steps satisfying

$$
\sum_{i=1}^{6} p_{i}=1
$$

Constraints for the RW being
■ symmetric?

- simple?
- simple symmetric?

Symmetric:

$$
\begin{aligned}
& P_{1}=P_{3}, P_{2}=P_{4}, P_{5}=P_{6} \\
& \text { Simple: } P_{5}=0, P_{6}=0 \\
& \text { \& } \sum_{i=1} P_{i}=1
\end{aligned} \quad \text { simple symuretric: } P_{5}=P_{6}=0 .
$$

Matlab implementation of simple symmetric RW on \mathbb{Z}^{2}

Core idea $X_{n+1}=X_{n}+\Delta X_{n}$ where

$$
\mathbb{P}\left(\Delta X_{n}= \pm e_{1}\right)=\mathbb{P}\left(\Delta X_{n}= \pm e_{2}\right)=1 / 4
$$

Use randi(4) in matlab to draw random integer in [1, 4], all integers with same probability, and assign walk direction from drawn integer.

$$
\begin{aligned}
& \text { \% Four step directions } \\
& \text { Step }=\left[\begin{array}{ccccc}
-1 & 0 ; 1 & 0 ; 0 & 1 ; 0 & -1
\end{array}\right] \text {; } \\
& \frac{X}{\text { for }}=\left[\begin{array}{l}
0 \\
0 \\
1: 200
\end{array}\right] \\
& \text { direction }=\text { randi(4); } \\
& \mathrm{dX}=\text { Step (direction ,: }) \text {; } \\
& \text { plot }([X(1) X(1)+d X(1)], \quad[X(2), X(2)+d X(2)]) \\
& X=X+d X \text {; } \\
& \text { end }
\end{aligned}
$$

See randWalk2d.m for more details.

Recurrence and transience

Definition 8

An RW on \mathbb{Z}^{d} with is recurrent if it (over its whole path $\left\{X_{n}\right\}_{n \in \mathbb{N}}$) visits its initial state infinitely often \mathbb{P}-almost surely, and transient otherwise (i.e., if it visits its initial state only a finite number of times \mathbb{P}-almost surely).

■ Description of a quasi-stable property: assume you are gambling, you win with probability $\mathbb{P}\left(\Delta X_{n}=1\right)=p$ lose with $\mathbb{P}\left(\Delta X_{n}=-1\right)=1-p$. Unless $p=1 / 2,\left\{X_{n}\right\}$ is transient.

- Recurrence is a form of quasi-periodic behavior. In some settings (but not for RW) it connects spatial distribution of limit processes and time-averages over path realizations

$$
\mathbb{P}\left(X_{\infty}=y\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} \mathbb{1}_{X_{n}=y}
$$

Theorem 9

Consider an $R W$ on \mathbb{Z}^{d} with $X_{0}=0$ and let

$T: \Omega \rightarrow \mathbb{N} \cup\{\propto\}$

$$
T:=\inf \left\{n \geq 1 \mid X_{n}=0\right\}
$$

with the convention that $\inf \emptyset:=\infty$ and

$$
N:=\sum_{n \in \mathbb{N}} \mathbb{1}_{X_{n}=0} \quad \text { (total visits of origin) }
$$

Then $\left\{X_{n}\right\}$ is recurrent if and only if $\lambda:=\mathbb{P}(T<\infty)=1$ and for $j \in \mathbb{N} \cup\{\infty\}$,

$$
\mathbb{P}(N=j)= \begin{cases}(1-\lambda) \lambda^{j-1} & \text { if } \lambda<1 \\ \mathbb{1}_{j=\infty} & \text { if } \lambda=1\end{cases}
$$

Note that $N: \Omega \rightarrow \mathbb{N} \cup\{\infty\}$.

Proof of Theorem 9

Define $\tau_{0}=0$, and

$$
\tau_{k+1}=\inf \left\{n>\tau_{k} \mid X_{n}=0\right\} \quad \text { for } \quad k=0,1, \ldots
$$

Note that $\Delta \tau_{k}=\tau_{k+1}-\tau_{k}$ is a sequence of independent and T-distributed rv.
Introducing the rv

$$
\bar{k}=\sup \left\{k \geq 0 \mid \tau_{k}<\infty\right\}
$$

we can write

$$
N=\sum_{n=0}^{\infty} \mathbb{1}_{X_{n}=0}=\sum_{k=0}^{\bar{k}} \mathbb{1}_{X_{\tau_{k}}=0}=\bar{k}+1
$$

Observe that for $j \in \mathbb{N}$
and for $j=\infty$,
$\mathbb{P}(\mathbb{R}=\infty)=\lambda^{\infty}$
We obtain that

$$
\begin{aligned}
& \mathbb{P}(N=j)=\mathbb{P}(\bar{k}+1=j) \\
& =\mathbb{P}(\bar{k}=j-1) \\
& = \begin{cases}\lambda^{j-1}(1-\lambda) & \text { if } \lambda<1 \\
\mathbb{I I}_{j=\infty} & \text { if } \lambda=1\end{cases}
\end{aligned}
$$

for $j \in \mathbb{N} \cup\{\infty\}$.

Which RW are recurrent?

■ (Related to FJK 2.1.13) Symmetric and simple RW on \mathbb{Z}^{d} are recurrent if $d \leq 2$ and transient otherwise.

A drunk man will eventually find his way home, but a drunk bird may get lost forever

Shizuo Kakutani

■ (Related to FJK 2.1.14) Non-symmetric RW are always transient.

Always transient when $p \neq 1 / 2$.

Scaling property of RW

Theorem 10 (Random walk case of Donsker's theorem)
Let $\left\{X_{n}\right\}$ be a simple symmetric $R W$ on \mathbb{Z} with $X_{0}=0$ and consider

$$
W^{(n)}(t):=\frac{X_{\lfloor n t\rfloor}}{\sqrt{n}} \quad t \in[0,1]
$$

where $\lfloor x\rfloor:=\max \{k \in \mathbb{Z} \mid k \leq x\}$. Then $\left\{W^{(n)}(t)\right\}_{t \in[0,1]}$ converges in distribution to a standard Brownian motion $\{W(t)\}_{t \in[0,1]}$.

Convergence of random variables

Assume you can draw iid samples $X_{k} \sim \mathbb{P}_{X}$ and that you approximate $\mu=\mathbb{E}[X]$ by the sample average

$$
\begin{equation*}
\bar{X}_{M}:=\frac{1}{M} \sum_{k=1}^{M} X_{k} \tag{2}
\end{equation*}
$$

Questions:

$■$ Will $\bar{X}_{M} \rightarrow \mu$ as $M \rightarrow \infty$, and, if so, in what sense?

- Is there a convergence rate of the form

$$
\left\|\bar{X}_{M}-\mu\right\| \leq \frac{C}{M^{\beta}}
$$

for some norm $\|\cdot\|$ and some rate $\beta>0$?

Mean-square convergence

■ For $r v Y, Z: \Omega \rightarrow \mathbb{R}^{d}$ we introduce the scalar product

$$
\langle Y, Z\rangle_{L^{2}(\Omega)}:=\mathbb{E}[Y \cdot Z]
$$

- the function space

$$
L^{2}(\Omega):=\left\{\mathcal{F} \text { - measurable mappings } Y: \Omega \rightarrow \mathbb{R}^{d} \mid \mathbb{E}\left[|Y|^{2}\right]<\infty\right\}
$$

with norm

$$
\|Y\|_{L^{2}(\Omega)}:=\sqrt{\mathbb{E}\left[|Y|^{2}\right]}
$$

is a Hilbert space.

- The notation is shorthand for $L^{2}(\Omega)=L^{2}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{d}\right)$.

Returning to the approximation

$$
\bar{X}_{M}=\frac{1}{M} \sum_{k=1}^{M} X_{k}
$$

■ Since $\mathbb{E}\left[X_{k}\right]=\mu$, it holds that

$$
\bar{X}_{M}-\mu=\sum_{k=1}^{M} \frac{X_{k}-\mu}{M}
$$

■ Since $\left\{X_{k}-\mu\right\}$ is a mean-zero and independent sequence of $r v$, it holds for $j \neq k$ that

$$
\begin{aligned}
\left\langle X_{k}-\mu, X_{j}-\mu\right\rangle_{L^{2}(\Omega)} & =\mathbb{E}\left[\left(X_{k}-\mu\right) \cdot\left(X_{j}-\mu\right)\right] \\
& =\sum_{\left(x_{k}, x_{j}\right) \in A \times A}\left(x_{k}-\mu\right) \cdot\left(x_{j}-\mu\right) \underbrace{\mathbb{P}\left(X_{k}=x_{k}, X_{j}=x_{j}\right)}_{=\mathbb{P}\left(X_{k}=x_{k}\right) \mathbb{P}\left(X_{j}=x_{j}\right)} \\
& =\mathbb{E}\left[\left(X_{k}-\mu\right)\right] \cdot \mathbb{E}\left[\left(X_{j}-\mu\right)\right]=0
\end{aligned}
$$

(Here we assumed discrete rv $X_{k}: \Omega \rightarrow A$, but it also holds for continuous rv.)

This yields

$$
\begin{aligned}
\| \bar{X}_{M} & -\mu \|_{L^{2}(\Omega)}^{2}=\left\langle\sum_{k=1}^{M} \frac{X_{k}-\mu}{M}, \sum_{k=1}^{M} \frac{x_{k}-\mu}{M}\right\rangle \\
& =\sum_{j_{1} k=1}^{M}=\frac{1}{M^{2}}\left\langle\underline{X}_{j}-\mu, \bar{X}_{k}-\mu\right\rangle \\
& =\sum_{k=1}^{M} \frac{\left.<\underline{X}_{k}-\mu, \bar{X}_{k}-\mu\right\rangle}{M^{2}} \\
& =\|\underline{X}-\mu\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Conclusion: For a sequence of d-dimensional discrete independent $r v$ $X_{i} \sim \mathbb{P}_{X}$,

$$
\begin{equation*}
\left\|\bar{X}_{M}-\mu\right\|_{L^{2}(\Omega)}=\frac{\|X-\mu\|_{L^{2}(\Omega)}}{\sqrt{M}} \tag{3}
\end{equation*}
$$

i.e., the mean-square convergence rate is $1 / 2$.

Weaker form of convergence

Definition 11 (Convergence in probability)

A sequence of $r v\left\{\bar{Y}_{k}\right\}$ converges in probability towards the $r v Y$ if for all $\epsilon>0$,

$$
\lim _{k \rightarrow \infty} \mathbb{P}\left(\left|Y_{k}-Y\right|>\epsilon\right)=0
$$

Theorem 12 (Weak law of large numbers (Durrett 2.2.14))
For a sequence of d-dimensional independent $r v X_{i} \sim \mathbb{P}_{X}$ with $\mathbb{E}\left[\left|X_{i}\right|\right]<\infty$ it holds that

$$
\bar{X}_{M} \rightarrow \mu \quad \text { in probability. }
$$

Chebychev's inequality
To prove the theorem, we will apply Chebychev's inequality: for any rv Y with $\bar{\mu}=\mathbb{E}[Y]$

$$
\mathbb{P}(|Y-\bar{\mu}|>\epsilon) \leq \mathbb{E}\left[\frac{|Y-\bar{\mu}|^{2}}{\epsilon^{2}}\right]
$$

$$
\begin{aligned}
& \text { Verification: } \bar{\mu} \mid D \epsilon)=\left[E\left[\frac{\mathbb{1}}{\mathbb{P}(|Y-\bar{\mu}|>\epsilon\}]} \begin{array}{l}
\leq \left\lvert\, E\left[\frac{|\eta-\bar{\mu}|^{2}}{\epsilon^{2}}\right]\right.
\end{array}\right]=\mid E\left[\left|\bar{x}_{i}\right|^{2}\right]\right.
\end{aligned}
$$

Proof of Theorem 12 (Assumivncy $\mid E\left[\left[\left.\bar{X}_{i}\right|^{2}\right]<\infty\right.$.)

$$
\begin{aligned}
& \mathbb{P}\left(\left|\bar{X}_{M}-\mu\right|>\epsilon\right) \leq \left\lvert\, E\left[\frac{\left|\bar{X}_{\mu}-\mu\right|^{2}}{\epsilon^{2}}\right]\right. \\
& \leq \frac{\|\bar{X}-\mu\|_{2^{2}}^{2}}{M \epsilon^{2}} \rightarrow 0 \text { as } M \rightarrow \infty
\end{aligned}
$$

Next time

Discrete time and space Markov Chains

Caption: Quantum Cloud, designed by Antony Gormley. Random walk algorithm starting from points on the surface of an enlarged figure based on Gormley's body.

