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Summary of lecture 4
Random walks on Zd : described by distribution of X0 and its iid steps
{∆Xn}.

−2 −1 0 1 2

p

1− p

For an RW {X0,∆X0,∆X1, . . .}, on Zd , a state s ∈ Zd is recurrent if
by setting X0 = s, we obtain that

P(Xn = s for infinitely many n) = 1.

The last condition is equivalent to (Thm 9, Lecture 4),

P(T <∞) = 1 for T = inf{n ≥ 1 | Xn = X0}.

Convergence of random variables (Chebychev’s inequality, weak law of
large numbers, mean-square convergence).
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Plan for this lecture

The Markov property – memorylessness

Markov chains

Invariant distributions
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Markov chains

We consider the dynamics of a discrete-time stochastic process {Zn} that
takes values on a state-space S that is discrete; meaning it is either finite,
e.g. S = {1, 2, 3}, or countable, e.g. S = Zd .

Definition 1 (Markov chain)

A sequence {Zn}n≥0 of S-valued rv is a discrete-time (and discrete-space)
Markov chain if

1 it is equipped with an initial distribution π0(z) := P (Z0 = z), and

2 satisfies the so-called Markov property (“memorylessness”)

P (Zn+1 = zn+1 | Zn = zn, . . . ,Z0 = z0) = P (Zn+1 = zn+1 | Zn = zn) (1)

holds for any n ≥ 0 and z0, . . . , zn ∈ S for which

P (Zn = zn, . . . ,Z0 = z0) > 0.
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Alternative statement of the Markov property

To avoid the provided P (Zn = zn, . . . ,Z0 = z0) > 0, one may state the
Markov property as follows:

P (Zn+1 = zn+1,Zn = zn, . . . ,Z0 = z0)

= P (Zn+1 = zn+1 | Zn = zn)P (Zn = zn, . . . ,Z0 = z0) . (2)

Note also that
∑

z∈S π
0(z) = 1.
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Example 2

Any random walk {Zn} on S = Zd is a Markov chain. Since
Zn+1 = Zn + ∆Zn with {∆Zn} iid, it follows that

P (Zn+1 = zn+1 | Zn = zn, . . . ,Z0 = z0)

= P (Zn + ∆Zn = zn+1 | Zn = zn, . . . ,Z0 = z0)

=

=

provided P (Zn = zn, . . . ,Z0 = z0) > 0.
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Example 3 (Three-state chain)

Consider a Markov chain {Zn} on S = {1, 2, 3}. For any n ≥ 0, let

pij := P (Zn+1 = i | Zn = j)

with dynamics described by the below transition graph

1 2 3
p11 = 0.5

p12 = 0.5 p23 = 0.7

p21 = 0.3

p31 = 1

p =

0.5 0.5 0
0.3 0 0.7
1 0 0


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Simplifying notation and terminology

For 0 ≤ k ≤ n and points zk , . . . , zn ∈ S let

zk:n := (zk , . . . , zn), (so zn:n = zn).

Similarly, for the Markov chain, let

Zk:n := (Zk , . . . ,Zn).

In the new notation, the Markov property (1) becomes

P (Zn+1 = zn+1 | Z0:n = z0:n) = P (Zn+1 = zn+1 | Zn = zn)

whenever P(Z0:n = z0:n) > 0.
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Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping p : S× S→ [0, 1] satisfying the
constraint ∑

z∈S
p(c , z) = 1 for any c ∈ S. (3)

The n + 1-st transition function of a Markov chain {Zn} is for all
z , c ∈ S defined by

pn+1(c , z) :=

{
P(Zn+1 = z | Zn = c) if P(Zn = c) > 0

1{c}(z) otherwise.

Note: for all c ∈ S s.t. P(Zn = c) > 0, the definition of pn+1(c , ·) is
unique, but for zero-probability outcomes c , whatever definition
satisfying (3) is valid.

Verification of constraint?
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Application of the transition function

By the Markov property, we obtain

P (Z0:n = z0:n) = P(Z0:n−1 = z0:n−1)P (Zn = zn | Zn−1 = zn−1)

= P(Z0:n−1 = z0:n−1)pn(zn−1, zn)

where two cases must be taken into account:

1 if P (Zn−1 = zn−1) > 0 then this follows from definition, and

2 if P (Zn−1 = zn−1) = 0 then the euqality still holds as it becomes
0 = 0.

By recursive application,

P (Z0:n = z0:n) = (4)
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Definition 5 (Time-homogeneity)

A Markov chain is time-homogeneous if there exists a transition function p
that is independent of time n, such that

P(Zn+1 = z | Zn = c) = p(c , z)

whenever P(Zn = c) > 0.

We say that {Zn} is Markov(π0, p).

See for instance, the three-state chain Example , where p(i , j) = pij , and
π0 remains to be specified.
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Transition probabilities for time-homogeneous Markov
chains
For the rest of this lecture, we consider a chain {Zn} that is
Markov(π0, p).

Applying (4) in the time-homogeneous setting yields

P (Z0:n = z0:n) = π0(z0)
n−1∏
i=0

p(zi , zi+1) (5)

As an extension of the initial state distribution, we introduce for n-th
state distribution

πn(zn) := P(Zn = zn)

Observation: By marginalization,

πn(zn) =
∑

z0:n−1∈ Sn
P (Z0:n = z0:n)
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Theorem 6

Let {Zn} be Markov(π0, p) and for any k ≥ 2, define

p∗k(z0, zk) =
∑

z1:k−1∈Sk−1

p(z0, z1)p(z1, z2) . . . p(zk−1, zk).

Then p∗k is a transition function for {Zkn}n and, in particular,

p∗k(z0, zk) = P (Zk = zk | Z0 = z0)

whenever P(Z0 = z0) > 0.

Verification:
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Transition functions and n-th state distributions
Note that

π1(z1) =
∑
z0∈S

π0(z0)p(z0, z1)

and,

πn(zn) =
∑

zn−1∈S
πn−1(zn−1)p(zn−1, zn)

= . . .

=
∑
z0∈S

π0(z0)p∗n(z0, zn).

For finite state-spaces this can be associated to vector-matrix products.
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Corollary 7

Let {Zn} be Markov(π0, p) on a finite state-space S = {1, 2, . . . , d} and
introduce the notation

πni := πn(i), pij := p(i , j) and pkij := p∗k(i , j).

Then
pk = ppk−1 = pk−1p k ≥ 2

and, with πn representing a row-vector in Rd ,

πn = πn−1p = π0pn n ≥ 1.

Theorem 8 (Transition probabilities for time-homogeneous Markov
chains)

Let {Zn} be Markov(π0, p). Then for any m > n ≥ 0 and zn, . . . , zm ∈ S,
it holds that

P (Zn:m = zn:m) = πn(zn)
m−1∏
i=n

p(zi , zi+1)
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Example 9

Let S = {1, 2, 3, 4} and

π0 =
(
1 1 1 1

)
/4

and

p =


1/2 1/2 0 0
1/2 0 1/2 0

0 1/2 0 1/2
0 0 1/2 1/2

 .

1 2 3 4
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Then πn = π0 for all n ≥ 0.
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Invariant distributions

Definition 10

Let π be a probability distribution on S. We call π an
invariant/stationary/equilibrium distribution for the transition function
p if it holds that

π(z) =
∑
c∈S

π(c)p(c , z) ∀z ∈ S,

or, in matrix notation, if
π = πp.

Note that for {Zn} that is Markov(π0, p) where π0 is invariant, it holds
that

Z0
D
= Z1

D
= Z2

D
= . . .
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How many invariant distributions?

For a finite state-space S = {1, 2, . . . , d} there is either 1 or infinitely
many invariant distributions.

Example 11

S = {1, 2} and pij = 1{i}(j).

1 21 1

Invariant distributions

π =
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Theorem 12 (FJK 2.2.33)

Consider S = {1, 2, . . . , d} and a transition function p. If there exists an
m ≥ 1 such that pm is strictly positive, then there exists a unique invariant
distribution π = (π1, . . . , πd) and

lim
n→∞

πnj = πj ∀j ∈ S

and
lim
n→∞

pnij = πj ∀i , j ∈ S.

Meaning any initial distribution π0 converges to the invariant distribution.

Observation: If limn→∞ pnij = πj , then

lim
n→∞

pnij = lim
n→∞

pn+1
ij = . . .
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Matrix-eigenvalue interpretation of invariant distributions

π invariant distribution implies that (π, 1) is an eigenpair of p since

πp = π1

Since every row of p sums to 1, (p − I )[1, 1, . . . , 1]T = 0 meaning 1 is
an eigenvalue of p.

Need to verify that corresponding row-eigenvector π is non-negative
(at least one such is (FJK 2.2.39)).

If (π, λ) is unique eigenpair of p with π ≥ 0 and λ = 1, then the
invariant distribution is unique.

Otherwise, convex combinations invariant distributions will also be
invariant.
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Example 13

Let S = {1, 2} and

p =

(
1/2 1/2
1/4 3/4

)
Eigenvalues

λ1 = 1, λ2 = 1/4,

with `1-normalized right-eigenvectors

π1 = [1, 2]/3, π2 = [1, −1]/2.

And,

lim
n→∞

pn =

(
1/3 2/3
1/3 2/3

)
.
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Relation to irreducibility

What are sufficient conditions to ensure that for some m ≥ 1, pm is
strictly positive?

Definition 14

Consider a transition matrix p associated to Markov chains on
S = {1, 2, . . . , d}. p is said to be

irreducible if for any i , j ∈ S there exists an m ≥ 1 such that
pmij > 0, and

the i-th state is said to be aperiodic if pnii > 0 for any sufficiently
large n.

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then pm is strictly positive for
some m ≥ 1.
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Example 16

p =

0 1 0
1 0 0
0 0 1



1 2 3

1

1

1

Irreducible?

Aperiodic states?
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Example 17

p =

0 1 0
1 0 0
0 0.1 0.9



1 2 3

1

1 0.1

0.9

Irreducible?

Aperiodic states?
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Example 18

Reducible chain S = {1, 2, 3}

p =

 0 1 0
0.5 0 0.5
0 0.1 0.9



1 2 3

1

0.5

0.5

0.1

0.9

Irreducible?

Aperiodic states?
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Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then pm is strictly positive for
some m ≥ 1.

Proof: Assume the index i ∈ S is aperiodic, i.e., pnii > 0 for all n ≥ N.
For indices j , k ∈ S, let us show that there exist an mjk such that

pm̄jk > 0 ∀m̄ ≥ mjk .

Since p is irreducible, there exists nji , nik ≥ 1 such that

p
nji
ji > 0 and pnikik > 0.

Consequently, for any m̄ ≥ nji + nik + N

pm̄jk = p
nji+nik+m̄−(nji+nik )
jk ≥ p

nji
ji p

nik
ik p

m̄−(nji+nik )
ii > 0.
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Next time

Recurrence and simulation of finite Markov chains

Filtering of Markov chains
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