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Summary of lecture 4

m Random walks on Z: described by distribution of Xj and its iid steps
{AX,}.

m For an RW {Xp, AXp, AXi, ...}, on Z9, a state s € Z9 is recurrent if
by setting Xy = s, we obtain that

P(X, =s for infinitely many n) = 1.
The last condition is equivalent to (Thm 9, Lecture 4),

P(T<oo)=1 for T=inf{n>1]|X,=Xo}.

m Convergence of random variables (Chebychev's inequality, weak law of
large numbers, mean-square convergence).
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Plan for this lecture

m The Markov property — memorylessness

m Markov chains

m Invariant distributions
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Markov chains

We consider the dynamics of a discrete-time stochastic process {Z,} that
takes values on a state-space S that is discrete; meaning it is either finite,
e.g. S={1,2,3}, or countable, e.g. S =79,

Definition 1 (Markov chain)

A sequence {Z,}n>0 of S-valued rv is a discrete-time (and discrete-space)
Markov chain if

it is equipped with an initial distribution 7°%(z) := P (Zy = z), and

satisfies the so-called Markov property (“memorylessness”)
IP)(Zn—i-l = Zn+1 | Zn=2n,..., 40 = ZO) = ]P)(Zn—i-l = Zn+1 ‘ Zy = Zn) (1)

holds for any n > 0 and zy, ..., z, € S for which

P(Z, = zp,..., 20 = 2) > O.
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Alternative statement of the Markov property

To avoid the provided P (Z, = z,,...,Zy = zp) > 0, one may state the
Markov property as follows:

]P)(Zn+1 = Zn+1aZn = Zn,--~aZO :ZO)
=P(Zny1=2zn+1 | Zn=2z0)P(Zn=2zp,..., 20 =20). (2)

Note also that 3, ¢ m%(z) = 1.
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Example 2

Any random walk {Z,} on S = Z9 is a Markov chain. Since
Zni1 = Zn + AZ, with {AZ,} iid, it follows that

IP)(Zn—i-l = Zp+1 ’ Zn:an-'yZO:ZO)
:P(Zn—l-AZn:Z,H_l|Zn:Zn,...,Z():ZO)

provided P (Z, = zp, ..., Zp = z9) > 0.
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Example 3 (Three-state chain)

Consider a Markov chain {Z,} on S ={1,2,3}. For any n > 0, let
pij =P (Znp1=1i| 2y =)

with dynamics described by the below transition graph

p12 =05 px3=0.7

p11 = 0.5

p21 =0.3 05 05 0
p=103 0 07
1 0 0

p31 =1
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Simplifying notation and terminology

m For 0 < k < n and points zx,...,z, €S let

Zk:n ‘= (Zk7 cee 7Zn)a (50 Zn:n = Z,,).

m Similarly, for the Markov chain, let
Zin = (Ziy ..., Zn).
In the new notation, the Markov property (1) becomes
P(Znt1 = zni1 | Zoin = 20:0) = P(Zpy1 = zni1 | Zp = 2p)

whenever P(Zy., = zp:n) > 0.
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Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping p : S x S — [0, 1] satisfying the
constraint
Zp(c, z)=1 forany ce€S. (3)

zeS

The n + 1-st transition function of a Markov chain {Z,} is for all
z,c € S defined by

P(Zpp1=2|Zy=c) ifP(Zy=c)>0
1iey(2) otherwise.

pn+1(c,z) := {

Note: for all c € S s.t. P(Z, = c) > 0, the definition of p,11(c, ") is
unique, but for zero-probability outcomes ¢, whatever definition
satisfying (3) is valid.

Verification of constraint?
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Application of the transition function

By the Markov property, we obtain
IP)(ZO:n = ZO:n) = IP)(ZO:nfl = ZO:nfl)IP) (Zn = Zp ’ anl = Znfl)
= IP)(ZO:n—l = ZO:n—l)Pn(Zn—l, Zn)
where two cases must be taken into account:

if P(Zy—1 = zy—1) > 0 then this follows from definition, and

if P(Zy,—1 = zp—1) = 0 then the euqality still holds as it becomes
0=0.

By recursive application,

IP)(ZO:n = ZO:n) = (4)
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Definition 5 (Time-homogeneity)
A Markov chain is time-homogeneous if there exists a transition function p
that is independent of time n, such that

P(Zpt1 =2 | 2Z,=c)=p(c,2z)

whenever P(Z, = c) > 0.

We say that {Z,} is Markov(7°, p).

See for instance, the three-state chain Example , where p(i,j) = pjj, and

70 remains to be specified.
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Transition probabilities for time-homogeneous Markov

chains
For the rest of this lecture, we consider a chain {Z,} that is

Markov (7, p).
m Applying (4) in the time-homogeneous setting yields

n—1

P (Zo:n = 20:n) = 7°(20) H p(zi, zi41) (5)
=0

m As an extension of the initial state distribution, we introduce for n-th
state distribution
m(zp) = P(Z, = zp)

m Observation: By marginalization,

ﬂ'n(Zn) = Z IP)(ZO:n = ZO:n)

Z0:n—1€ sn
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Theorem 6
Let {Z,} be Markov(r®, p) and for any k > 2, define

P (z.2)= >, plzo,21)p(z1,22) - p(2k-1, 2k).

Zy:4—1ESKL

Then p*k is a transition function for { Zx,}n and, in particular,

p*k(ZO,Zk) = ]P)(Zk = Zk | Zo = Zo)

whenever P(Zy = z9) > 0.

Verification:
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Transition functions and n-th state distributions
Note that

w(z1) = Y 7°(20)p(20, 21)

29€S

and,

7(zp) = Z Wn_l(znfl)P(znflazn)

Z,—1E€S

= Z 7r0(zo)p*"(zo7 zp).

zp€S

For finite state-spaces this can be associated to vector-matrix products.
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Corollary 7

Let {Z,} be Markov(n°, p) on a finite state-space S = {1,2,...,d} and
introduce the notation

n

W= 7Tn(i)7 Pij -= p(’?J) and p’lJ( = p*k([7_/)

Then
pk=pp"t=plp k>2

and, with " representing a row-vector in RY,

Theorem 8 (Transition probabilities for time-homogeneous Markov
chains)

Let {Z,} be Markov(n®, p). Then for any m > n >0 and z,,...,zm €S,
it holds that

m—1

IP)(Zn:m = Zn:m) = 7"-n(zn) H p(Zi,Zi+1)

i=n
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Example 9
Let S={1,2,3,4} and
=111 1)/4
and
1/2 1/2 0 0
12 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2

0.5 0.5 0.5 0.5
0808080~
0.5 0.5 0.5

Then 7" = 70 for all n > 0.
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Invariant distributions

Definition 10

Let m be a probability distribution on S. We call 7 an
invariant/stationary/equilibrium distribution for the transition function
p if it holds that

m(z) =Y m(c)p(c,z) VzeS,

ceS

or, in matrix notation, if
T = Tp.

Note that for {Z,} that is Markov (7, p) where 70 is invariant, it holds

that
2272222
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How many invariant distributions?

For a finite state-space S = {1,2,...,d} there is either 1 or infinitely
many invariant distributions.

Example 11
S = {1,2} and Pij = ﬂ{,}(_[)

1@@ @Ql

Invariant distributions

m =

18/27



Theorem 12 (FJK 2.2.33)

Consider S = {1,2,...,d} and a transition function p. If there exists an
m > 1 such that p™ is strictly positive, then there exists a unique invariant
distribution m = (m1,...,7gq) and
lim 77 =m; Vje€S
n—00
and
lim pj=m; Vije€S.

n—o0

0

Meaning any initial distribution 7° converges to the invariant distribution.

Observation: If lim,_, p,-’J’- = mj, then

. n_ n+1 __
nlem p'j o nlLrgo p’j S

19/27



Matrix-eigenvalue interpretation of invariant distributions

m 7 invariant distribution implies that (7, 1) is an eigenpair of p since
mp=ml
m Since every row of psumsto 1, (p—/)[1,1,...,1]7 = 0 meaning 1 is
an eigenvalue of p.

m Need to verify that corresponding row-eigenvector 7 is non-negative
(at least one such is (FJK 2.2.39)).

m If (7, \) is unique eigenpair of p with 7 > 0 and A\ = 1, then the
invariant distribution is unique.

m Otherwise, convex combinations invariant distributions will also be
invariant.

20/27



Example 13
Let S ={1,2} and

- (2 1)

A1=1, A =1/4,

Eigenvalues

with ¢*-normalized right-eigenvectors

m=[1,2]/3, m=][1, —1]/2.

ime = (13 23):

And,
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Relation to irreducibility

What are sufficient conditions to ensure that for some m > 1, p™ is
strictly positive?
Definition 14
Consider a transition matrix p associated to Markov chains on
S={1,2,...,d}. pissaid to be
m irreducible if for any i,j € S there exists an m > 1 such that
p; >0, and

m the j-th state is said to be aperiodic if p] > 0 for any sufficiently
large n.

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p™ is strictly positive for
some m > 1.

v
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Example 16

he

Il
~
o = O
O O =

Irreducible?

Aperiodic states?
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Example 17

0 1 ©0
p=1(1 0 O
0 0.1 09
1
1 0.1

Irreducible?

Aperiodic states?
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Example 18
Reducible chain S = {1,2,3}

0 1 O

p=[(05 0 05

0 01 09
1 0.5
0.5 0.1

Irreducible?

Aperiodic states?
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Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p™ is strictly positive for
some m > 1.

Proof: Assume the index i € S is aperiodic, i.e., p} > 0 for all n > N.
For indices j, k € S, let us show that there exist an mj, such that

Pﬁ? >0 Vm> miy.
Since p is irreducible, there exists nj;, njc > 1 such that
pﬁ-ﬁ >0 and py*>0.
Consequently, for any m > nji + ny + N

M Mitnptm—(n;+ni) —(nji+ni)

nji npy . m
Pjk = Pjk > Pji' PikPji > 0.
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Next time

m Recurrence and simulation of finite Markov chains

m Filtering of Markov chains
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