Mathematics and numerics for data assimilation and state estimation - Lecture 5

Summer semester 2020

Summary of lecture 4

- Random walks on \mathbb{Z}^{d} : described by distribution of X_{0} and its iid steps $\left\{\Delta X_{n}\right\}$.

$■$ For an $\operatorname{RW}\left\{X_{0}, \Delta X_{0}, \Delta X_{1}, \ldots\right\}$, on \mathbb{Z}^{d}, a state $s \in \mathbb{Z}^{d}$ is recurrent if by setting $X_{0}=s$, we obtain that

$$
\mathbb{P}\left(X_{n}=s \quad \text { for infinitely many } n\right)=1
$$

The last condition is equivalent to (Thm 9, Lecture 4),

$$
\mathbb{P}(T<\infty)=1 \quad \text { for } \quad T=\inf \left\{n \geq 1 \mid X_{n}=X_{0}\right\}
$$

■ Convergence of random variables (Chebychev's inequality, weak law of large numbers, mean-square convergence).

Plan for this lecture

- The Markov property - memorylessness

■ Markov chains

■ Invariant distributions

Markov chains

We consider the dynamics of a discrete-time stochastic process $\left\{Z_{n}\right\}$ that takes values on a state-space \mathbb{S} that is discrete; meaning it is either finite, e.g. $\mathbb{S}=\{1,2,3\}$, or countable, e.g. $\mathbb{S}=\mathbb{Z}^{d}$.

Definition 1 (Markov chain)

A sequence $\left\{Z_{n}\right\}_{n \geq 0}$ of \mathbb{S}-valued $r v$ is a discrete-time (and discrete-space) Markov chain if
1 it is equipped with an initial distribution $\pi^{0}(z):=\mathbb{P}\left(Z_{0}=z\right)$, and
2 satisfies the so-called Markov property ("memorylessness")

$$
\begin{equation*}
\mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right)=\mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{n}=z_{n}\right) \tag{1}
\end{equation*}
$$

holds for any $n \geq 0$ and $z_{0}, \ldots, z_{n} \in \mathbb{S}$ for which

$$
\mathbb{P}\left(Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right)>0
$$

Alternative statement of the Markov property

To avoid the provided $\mathbb{P}\left(Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right)>0$, one may state the Markov property as follows:

$$
\begin{align*}
& \mathbb{P}\left(Z_{n+1}=z_{n+1}, Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right) \\
& \quad=\mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{n}=z_{n}\right) \mathbb{P}\left(Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right) \tag{2}
\end{align*}
$$

Note also that $\sum_{z \in \mathbb{S}} \pi^{0}(z)=1$.

Example 2

Any random walk $\left\{Z_{n}\right\}$ on $\mathbb{S}=\mathbb{Z}^{d}$ is a Markov chain. Since $Z_{n+1}=Z_{n}+\Delta Z_{n}$ with $\left\{\Delta Z_{n}\right\}$ iid, it follows that

$$
\begin{aligned}
& \mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right) \\
& =\mathbb{P}\left(Z_{n}+\Delta Z_{n}=z_{n+1} \mid Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right) \\
& = \\
& =
\end{aligned}
$$

provided $\mathbb{P}\left(Z_{n}=z_{n}, \ldots, Z_{0}=z_{0}\right)>0$.

Example 3 (Three-state chain)

Consider a Markov chain $\left\{Z_{n}\right\}$ on $\mathbb{S}=\{1,2,3\}$. For any $n \geq 0$, let

$$
p_{i j}:=\mathbb{P}\left(Z_{n+1}=i \mid Z_{n}=j\right)
$$

with dynamics described by the below transition graph

$$
p=\left(\begin{array}{ccc}
0.5 & 0.5 & 0 \\
0.3 & 0 & 0.7 \\
1 & 0 & 0
\end{array}\right)
$$

Simplifying notation and terminology

■ For $0 \leq k \leq n$ and points $z_{k}, \ldots, z_{n} \in \mathbb{S}$ let

$$
z_{k: n}:=\left(z_{k}, \ldots, z_{n}\right), \quad\left(\text { so } \quad z_{n: n}=z_{n}\right) .
$$

■ Similarly, for the Markov chain, let

$$
Z_{k: n}:=\left(Z_{k}, \ldots, Z_{n}\right)
$$

In the new notation, the Markov property (1) becomes

$$
\mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{0: n}=z_{0: n}\right)=\mathbb{P}\left(Z_{n+1}=z_{n+1} \mid Z_{n}=z_{n}\right)
$$

whenever $\mathbb{P}\left(Z_{0: n}=z_{0: n}\right)>0$.

Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping $p: \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ satisfying the constraint

$$
\begin{equation*}
\sum_{z \in \mathbb{S}} p(c, z)=1 \quad \text { for any } \quad c \in \mathbb{S} \tag{3}
\end{equation*}
$$

The $n+1$-st transition function of a Markov chain $\left\{Z_{n}\right\}$ is for all $z, c \in \mathbb{S}$ defined by

$$
p_{n+1}(c, z):= \begin{cases}\mathbb{P}\left(Z_{n+1}=z \mid Z_{n}=c\right) & \text { if } \mathbb{P}\left(Z_{n}=c\right)>0 \\ \mathbb{1}_{\{c\}}(z) & \text { otherwise }\end{cases}
$$

Note: for all $c \in \mathbb{S}$ s.t. $\mathbb{P}\left(Z_{n}=c\right)>0$, the definition of $p_{n+1}(c, \cdot)$ is unique, but for zero-probability outcomes c, whatever definition satisfying (3) is valid.

Verification of constraint?

Application of the transition function

By the Markov property, we obtain

$$
\begin{aligned}
\mathbb{P}\left(Z_{0: n}=z_{0: n}\right) & =\mathbb{P}\left(Z_{0: n-1}=z_{0: n-1}\right) \mathbb{P}\left(Z_{n}=z_{n} \mid Z_{n-1}=z_{n-1}\right) \\
& =\mathbb{P}\left(Z_{0: n-1}=z_{0: n-1}\right) p_{n}\left(z_{n-1}, z_{n}\right)
\end{aligned}
$$

where two cases must be taken into account:
1 if $\mathbb{P}\left(Z_{n-1}=z_{n-1}\right)>0$ then this follows from definition, and
2 if $\mathbb{P}\left(Z_{n-1}=z_{n-1}\right)=0$ then the euqality still holds as it becomes $0=0$.

By recursive application,

$$
\begin{equation*}
\mathbb{P}\left(Z_{0: n}=z_{0: n}\right)= \tag{4}
\end{equation*}
$$

Definition 5 (Time-homogeneity)

A Markov chain is time-homogeneous if there exists a transition function p that is independent of time n, such that

$$
\mathbb{P}\left(Z_{n+1}=z \mid Z_{n}=c\right)=p(c, z)
$$

whenever $\mathbb{P}\left(Z_{n}=c\right)>0$.
We say that $\left\{Z_{n}\right\}$ is $\operatorname{Markov}\left(\pi^{0}, p\right)$.

See for instance, the three-state chain Example, where $p(i, j)=p_{i j}$, and π^{0} remains to be specified.

Transition probabilities for time-homogeneous Markov

 chainsFor the rest of this lecture, we consider a chain $\left\{Z_{n}\right\}$ that is $\operatorname{Markov}\left(\pi^{0}, p\right)$.

- Applying (4) in the time-homogeneous setting yields

$$
\begin{equation*}
\mathbb{P}\left(Z_{0: n}=z_{0: n}\right)=\pi^{0}\left(z_{0}\right) \prod_{i=0}^{n-1} p\left(z_{i}, z_{i+1}\right) \tag{5}
\end{equation*}
$$

- As an extension of the initial state distribution, we introduce for n-th state distribution

$$
\pi^{n}\left(z_{n}\right):=\mathbb{P}\left(Z_{n}=z_{n}\right)
$$

■ Observation: By marginalization,

$$
\pi^{n}\left(z_{n}\right)=\sum_{z_{0: n-1} \in \mathbb{S}^{n}} \mathbb{P}\left(Z_{0: n}=z_{0: n}\right)
$$

Theorem 6

Let $\left\{Z_{n}\right\}$ be $\operatorname{Markov}\left(\pi^{0}, p\right)$ and for any $k \geq 2$, define

$$
p^{* k}\left(z_{0}, z_{k}\right)=\sum_{z_{1: k-1} \in \mathbb{S}^{k-1}} p\left(z_{0}, z_{1}\right) p\left(z_{1}, z_{2}\right) \ldots p\left(z_{k-1}, z_{k}\right) .
$$

Then $p^{* k}$ is a transition function for $\left\{Z_{k n}\right\}_{n}$ and, in particular,

$$
p^{* k}\left(z_{0}, z_{k}\right)=\mathbb{P}\left(Z_{k}=z_{k} \mid Z_{0}=z_{0}\right)
$$

whenever $\mathbb{P}\left(Z_{0}=z_{0}\right)>0$.

Verification:

Transition functions and n-th state distributions

Note that

$$
\pi^{1}\left(z_{1}\right)=\sum_{z_{0} \in \mathbb{S}} \pi^{0}\left(z_{0}\right) p\left(z_{0}, z_{1}\right)
$$

and,

$$
\begin{aligned}
\pi^{n}\left(z_{n}\right) & =\sum_{z_{n-1} \in \mathbb{S}} \pi^{n-1}\left(z_{n-1}\right) p\left(z_{n-1}, z_{n}\right) \\
& =\ldots \\
& =\sum_{z_{0} \in \mathbb{S}} \pi^{0}\left(z_{0}\right) p^{* n}\left(z_{0}, z_{n}\right)
\end{aligned}
$$

For finite state-spaces this can be associated to vector-matrix products.

Corollary 7

Let $\left\{Z_{n}\right\}$ be $\operatorname{Markov}\left(\pi^{0}, p\right)$ on a finite state-space $\mathbb{S}=\{1,2, \ldots, d\}$ and introduce the notation

$$
\pi_{i}^{n}:=\pi^{n}(i), \quad p_{i j}:=p(i, j) \quad \text { and } \quad p_{i j}^{k}:=p^{* k}(i, j) .
$$

Then

$$
p^{k}=p p^{k-1}=p^{k-1} p \quad k \geq 2
$$

and, with π^{n} representing a row-vector in \mathbb{R}^{d},

$$
\pi^{n}=\pi^{n-1} p=\pi^{0} p^{n} \quad n \geq 1
$$

Theorem 8 (Transition probabilities for time-homogeneous Markov chains)
Let $\left\{Z_{n}\right\}$ be $\operatorname{Markov}\left(\pi^{0}, p\right)$. Then for any $m>n \geq 0$ and $z_{n}, \ldots, z_{m} \in \mathbb{S}$, it holds that

$$
\mathbb{P}\left(Z_{n: m}=z_{n: m}\right)=\pi^{n}\left(z_{n}\right) \prod_{i=n}^{m-1} p\left(z_{i}, z_{i+1}\right)
$$

Example 9

Let $\mathbb{S}=\{1,2,3,4\}$ and

$$
\pi^{0}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) / 4
$$

and

$$
p=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right) .
$$

Then $\pi^{n}=\pi^{0}$ for all $n \geq 0$.

Invariant distributions

Definition 10

Let π be a probability distribution on \mathbb{S}. We call π an invariant/stationary/equilibrium distribution for the transition function p if it holds that

$$
\pi(z)=\sum_{c \in \mathbb{S}} \pi(c) p(c, z) \quad \forall z \in \mathbb{S},
$$

or, in matrix notation, if

$$
\pi=\pi p .
$$

Note that for $\left\{Z_{n}\right\}$ that is $\operatorname{Markov}\left(\pi^{0}, p\right)$ where π^{0} is invariant, it holds that

$$
Z_{0} \stackrel{D}{=} Z_{1} \stackrel{D}{=} Z_{2} \stackrel{D}{=} \ldots
$$

How many invariant distributions?

For a finite state-space $\mathbb{S}=\{1,2, \ldots, d\}$ there is either 1 or infinitely many invariant distributions.

Example 11
$\mathbb{S}=\{1,2\}$ and $p_{i j}=\mathbb{1}_{\{i\}}(j)$.

Invariant distributions

$$
\pi=
$$

Theorem 12 (FJK 2.2.33)

Consider $\mathbb{S}=\{1,2, \ldots, d\}$ and a transition function p. If there exists an $m \geq 1$ such that p^{m} is strictly positive, then there exists a unique invariant distribution $\pi=\left(\pi_{1}, \ldots, \pi_{d}\right)$ and

$$
\lim _{n \rightarrow \infty} \pi_{j}^{n}=\pi_{j} \quad \forall j \in \mathbb{S}
$$

and

$$
\lim _{n \rightarrow \infty} p_{i j}^{n}=\pi_{j} \quad \forall i, j \in \mathbb{S} .
$$

Meaning any initial distribution π^{0} converges to the invariant distribution.

Observation: If $\lim _{n \rightarrow \infty} p_{i j}^{n}=\pi_{j}$, then

$$
\lim _{n \rightarrow \infty} p_{i j}^{n}=\lim _{n \rightarrow \infty} p_{i j}^{n+1}=\ldots
$$

Matrix-eigenvalue interpretation of invariant distributions

- π invariant distribution implies that $(\pi, 1)$ is an eigenpair of p since

$$
\pi p=\pi 1
$$

- Since every row of p sums to $1,(p-l)[1,1, \ldots, 1]^{T}=0$ meaning 1 is an eigenvalue of p.

■ Need to verify that corresponding row-eigenvector π is non-negative (at least one such is (FJK 2.2.39)).

- If (π, λ) is unique eigenpair of p with $\pi \geq 0$ and $\lambda=1$, then the invariant distribution is unique.
- Otherwise, convex combinations invariant distributions will also be invariant.

Example 13

Let $\mathbb{S}=\{1,2\}$ and

$$
p=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 4 & 3 / 4
\end{array}\right)
$$

Eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=1 / 4
$$

with ℓ^{1}-normalized right-eigenvectors

$$
\pi_{1}=[1,2] / 3, \quad \pi_{2}=[1,-1] / 2
$$

And,

$$
\lim _{n \rightarrow \infty} p^{n}=\left(\begin{array}{ll}
1 / 3 & 2 / 3 \\
1 / 3 & 2 / 3
\end{array}\right)
$$

Relation to irreducibility

What are sufficient conditions to ensure that for some $m \geq 1, p^{m}$ is strictly positive?

Definition 14
Consider a transition matrix p associated to Markov chains on $\mathbb{S}=\{1,2, \ldots, d\} . p$ is said to be

■ irreducible if for any $i, j \in \mathbb{S}$ there exists an $m \geq 1$ such that $p_{i j}^{m}>0$, and

- the i-th state is said to be aperiodic if $p_{i i}^{n}>0$ for any sufficiently large n.

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p^{m} is strictly positive for some $m \geq 1$.

Example 16

$$
p=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Irreducible?

Aperiodic states?

Example 17

$$
p=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0.1 & 0.9
\end{array}\right)
$$

Irreducible?

Aperiodic states?

Example 18
Reducible chain $\mathbb{S}=\{1,2,3\}$

$$
p=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0.5 & 0 & 0.5 \\
0 & 0.1 & 0.9
\end{array}\right)
$$

Irreducible?

Aperiodic states?

Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p^{m} is strictly positive for some $m \geq 1$.

Proof: Assume the index $i \in \mathbb{S}$ is aperiodic, i.e., $p_{i i}^{n}>0$ for all $n \geq N$. For indices $j, k \in \mathbb{S}$, let us show that there exist an $m_{j k}$ such that

$$
p_{j k}^{\bar{m}}>0 \quad \forall \bar{m} \geq m_{j k}
$$

Since p is irreducible, there exists $n_{j i}, n_{i k} \geq 1$ such that

$$
p_{j i}^{n_{j i}}>0 \quad \text { and } \quad p_{i k}^{n_{i k}}>0
$$

Consequently, for any $\bar{m} \geq n_{j i}+n_{i k}+N$

$$
p_{j k}^{\bar{m}}=p_{j k}^{n_{j i}+n_{i k}+\bar{m}-\left(n_{j i}+n_{i k}\right)} \geq p_{j i}^{n_{j i}} p_{i k}^{n_{i k}} p_{i i}^{\bar{m}-\left(n_{j i}+n_{i k}\right)}>0
$$

Next time

■ Recurrence and simulation of finite Markov chains

■ Filtering of Markov chains

