Mathematics and numerics for data assimilation and state estimation – Lecture 5

Summer semester 2020

Summary of lecture 4

Random walks on \mathbb{Z}^d : described by distribution of X_0 and its iid steps $\{\Delta X_n\}$.

For an RW {X₀, ∆X₀, ∆X₁,...}, on Z^d, a state s ∈ Z^d is recurrent if by setting X₀ = s, we obtain that

 $\mathbb{P}(X_n = s \text{ for infinitely many } n) = 1.$

The last condition is equivalent to (Thm 9, Lecture 4),

$$\mathbb{P}(T < \infty) = 1 \quad \text{for} \quad T = \inf\{n \ge 1 \mid X_n = X_0\}.$$

 Convergence of random variables (Chebychev's inequality, weak law of large numbers, mean-square convergence).

Plan for this lecture

The Markov property – memorylessness

Markov chains

Invariant distributions

Markov chains

We consider the dynamics of a discrete-time stochastic process $\{Z_n\}$ that takes values on a state-space S that is discrete; meaning it is either finite, e.g. $S = \{1, 2, 3\}$, or countable, e.g. $S = \mathbb{Z}^d$.

Definition 1 (Markov chain)

A sequence $\{Z_n\}_{n\geq 0}$ of S-valued rv is a discrete-time (and discrete-space) Markov chain if

- **1** it is equipped with an initial distribution $\pi^0(z) := \mathbb{P}(Z_0 = z)$, and
- 2 satisfies the so-called Markov property ("memorylessness")

$$\mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n, \dots, Z_0 = z_0) = \mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n) \quad (1)$$

holds for any $n \ge 0$ and $z_0, \ldots, z_n \in \mathbb{S}$ for which

$$\mathbb{P}\left(Z_n=z_n,\ldots,Z_0=z_0\right)>0.$$

Alternative statement of the Markov property

To avoid the provided $\mathbb{P}(Z_n = z_n, ..., Z_0 = z_0) > 0$, one may state the Markov property as follows:

$$\mathbb{P}(Z_{n+1} = z_{n+1}, Z_n = z_n, \dots, Z_0 = z_0) = \mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n) \mathbb{P}(Z_n = z_n, \dots, Z_0 = z_0).$$
(2)

Note also that $\sum_{z \in \mathbb{S}} \pi^0(z) = 1$.

Any random walk $\{Z_n\}$ on $\mathbb{S} = \mathbb{Z}^d$ is a Markov chain. Since $Z_{n+1} = Z_n + \Delta Z_n$ with $\{\Delta Z_n\}$ iid, it follows that

$$\mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n, \dots, Z_0 = z_0) = \mathbb{P}(Z_n + \Delta Z_n = z_{n+1} \mid Z_n = z_n, \dots, Z_0 = z_0)$$

provided $\mathbb{P}(Z_n = z_n, ..., Z_0 = z_0) > 0.$

Example 3 (Three-state chain)

Consider a Markov chain $\{Z_n\}$ on $\mathbb{S} = \{1, 2, 3\}$. For any $n \ge 0$, let

$$p_{ij} := \mathbb{P}\left(Z_{n+1} = i \mid Z_n = j\right)$$

with dynamics described by the below transition graph

Simplifying notation and terminology

For $0 \le k \le n$ and points $z_k, \ldots, z_n \in \mathbb{S}$ let

$$z_{k:n} := (z_k, \ldots, z_n), (so z_{n:n} = z_n).$$

Similarly, for the Markov chain, let

$$Z_{k:n} := (Z_k, \ldots, Z_n).$$

In the new notation, the Markov property (1) becomes

$$\mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_{0:n} = z_{0:n}) = \mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n)$$

whenever $\mathbb{P}(Z_{0:n} = z_{0:n}) > 0.$

Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping $p:\mathbb{S}\times\mathbb{S}\to[0,1]$ satisfying the constraint

$$\sum_{z\in\mathbb{S}}p(c,z)=1\quad\text{for any}\quad c\in\mathbb{S}.\tag{3}$$

The n + 1-st **transition function** of a Markov chain $\{Z_n\}$ is for all $z, c \in \mathbb{S}$ defined by

$$p_{n+1}(c,z) := egin{cases} \mathbb{P}(Z_{n+1}=z\mid Z_n=c) & ext{if } \mathbb{P}(Z_n=c) > 0 \ \mathbb{1}_{\{c\}}(z) & ext{otherwise.} \end{cases}$$

Note: for all $c \in S$ s.t. $\mathbb{P}(Z_n = c) > 0$, the definition of $p_{n+1}(c, \cdot)$ is unique, but for zero-probability outcomes c, whatever definition satisfying (3) is valid.

Verification of constraint?

Application of the transition function

By the Markov property, we obtain

$$\mathbb{P}(Z_{0:n} = z_{0:n}) = \mathbb{P}(Z_{0:n-1} = z_{0:n-1})\mathbb{P}(Z_n = z_n \mid Z_{n-1} = z_{n-1})$$
$$= \mathbb{P}(Z_{0:n-1} = z_{0:n-1})p_n(z_{n-1}, z_n)$$

where two cases must be taken into account:

if P(Z_{n-1} = z_{n-1}) > 0 then this follows from definition, and
 if P(Z_{n-1} = z_{n-1}) = 0 then the euqality still holds as it becomes 0 = 0.

By recursive application,

$$\mathbb{P}\left(Z_{0:n}=z_{0:n}\right)=\tag{4}$$

Definition 5 (Time-homogeneity)

A Markov chain is time-homogeneous if there exists a transition function p that is independent of time n, such that

$$\mathbb{P}(Z_{n+1}=z\mid Z_n=c)=p(c,z)$$

whenever $\mathbb{P}(Z_n = c) > 0$.

We say that $\{Z_n\}$ is $Markov(\pi^0, p)$.

See for instance, the three-state chain Example , where $p(i,j) = p_{ij}$, and π^0 remains to be specified.

Transition probabilities for time-homogeneous Markov chains

For the rest of this lecture, we consider a chain $\{Z_n\}$ that is $Markov(\pi^0, p)$.

Applying (4) in the time-homogeneous setting yields

$$\mathbb{P}(Z_{0:n} = z_{0:n}) = \pi^{0}(z_{0}) \prod_{i=0}^{n-1} p(z_{i}, z_{i+1})$$
(5)

As an extension of the initial state distribution, we introduce for *n*-th state distribution

$$\pi^n(z_n) := \mathbb{P}(Z_n = z_n)$$

Observation: By marginalization,

$$\pi^{n}(z_{n}) = \sum_{z_{0:n-1} \in \mathbb{S}^{n}} \mathbb{P}(Z_{0:n} = z_{0:n})$$

Theorem 6

Let $\{Z_n\}$ be Markov (π^0, p) and for any $k \ge 2$, define

$$p^{*k}(z_0, z_k) = \sum_{z_{1:k-1} \in \mathbb{S}^{k-1}} p(z_0, z_1) p(z_1, z_2) \dots p(z_{k-1}, z_k).$$

Then p^{*k} is a transition function for $\{Z_{kn}\}_n$ and, in particular,

$$p^{*k}(z_0, z_k) = \mathbb{P}(Z_k = z_k \mid Z_0 = z_0)$$

whenever $\mathbb{P}(Z_0 = z_0) > 0$.

Verification:

Transition functions and *n*-th state distributions Note that

= ...

$$\pi^1(z_1) = \sum_{z_0 \in \mathbb{S}} \pi^0(z_0) p(z_0, z_1)$$

and,

$$\pi^{n}(z_{n}) = \sum_{z_{n-1} \in \mathbb{S}} \pi^{n-1}(z_{n-1})p(z_{n-1}, z_{n})$$

$$=\sum_{z_0\in\mathbb{S}}\pi^0(z_0)\rho^{*n}(z_0,z_n).$$

For finite state-spaces this can be associated to vector-matrix products.

Corollary 7

Let $\{Z_n\}$ be Markov (π^0, p) on a finite state-space $\mathbb{S} = \{1, 2, ..., d\}$ and introduce the notation

$$\pi^n_i:=\pi^n(i),\quad p_{ij}:=p(i,j) \quad ext{and} \quad p^k_{ij}:=p^{*k}(i,j).$$

Then

$$p^k = pp^{k-1} = p^{k-1}p \quad k \ge 2$$

and, with π^n representing a row-vector in \mathbb{R}^d ,

$$\pi^n = \pi^{n-1} p = \pi^0 p^n \quad n \ge 1.$$

Theorem 8 (Transition probabilities for time-homogeneous Markov chains)

Let $\{Z_n\}$ be Markov (π^0, p) . Then for any $m > n \ge 0$ and $z_n, \ldots, z_m \in S$, it holds that

$$\mathbb{P}\left(Z_{n:m}=z_{n:m}\right)=\pi^n(z_n)\prod_{i=n}^{m-1}p(z_i,z_{i+1})$$

15/27

Let $\mathbb{S}=\{1,2,3,4\}$ and

$$\pi^0 = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} / 4$$

and

$$p = egin{pmatrix} 1/2 & 1/2 & 0 & 0 \ 1/2 & 0 & 1/2 & 0 \ 0 & 1/2 & 0 & 1/2 \ 0 & 0 & 1/2 & 1/2 \end{pmatrix}$$

Then
$$\pi^n = \pi^0$$
 for all $n \ge 0$.

Invariant distributions

Definition 10

Let π be a probability distribution on S. We call π an **invariant/stationary/equilibrium** distribution for the transition function p if it holds that

$$\pi(z) = \sum_{c \in \mathbb{S}} \pi(c) p(c, z) \quad \forall z \in \mathbb{S},$$

or, in matrix notation, if

$$\pi = \pi p.$$

Note that for $\{Z_n\}$ that is $Markov(\pi^0, p)$ where π^0 is invariant, it holds that

$$Z_0 \stackrel{D}{=} Z_1 \stackrel{D}{=} Z_2 \stackrel{D}{=} \dots$$

How many invariant distributions?

For a finite state-space $\mathbb{S} = \{1, 2, ..., d\}$ there is either 1 or infinitely many invariant distributions.

Theorem 12 (FJK 2.2.33)

Consider $S = \{1, 2, ..., d\}$ and a transition function p. If there exists an $m \ge 1$ such that p^m is strictly positive, then there exists a unique invariant distribution $\pi = (\pi_1, ..., \pi_d)$ and

$$\lim_{n \to \infty} \pi_j^n = \pi_j \quad \forall j \in \mathbb{S}$$

and

$$\lim_{n\to\infty}p_{ij}^n=\pi_j\quad\forall i,j\in\mathbb{S}.$$

Meaning any initial distribution π^0 converges to the invariant distribution.

Observation: If $\lim_{n\to\infty} p_{ij}^n = \pi_j$, then

$$\lim_{n\to\infty}p_{ij}^n=\lim_{n\to\infty}p_{ij}^{n+1}=\ldots$$

Matrix-eigenvalue interpretation of invariant distributions

• π invariant distribution implies that $(\pi, 1)$ is an eigenpair of p since

$$\pi p = \pi 1$$

- Since every row of p sums to 1, (p − I)[1, 1, ..., 1]^T = 0 meaning 1 is an eigenvalue of p.
- Need to verify that corresponding row-eigenvector π is non-negative (at least one such is (FJK 2.2.39)).
- If (π, λ) is unique eigenpair of p with $\pi \ge 0$ and $\lambda = 1$, then the invariant distribution is unique.
- Otherwise, convex combinations invariant distributions will also be invariant.

Let $\mathbb{S}=\{1,2\}$ and

$$p=egin{pmatrix} 1/2 & 1/2 \ 1/4 & 3/4 \end{pmatrix}$$

Eigenvalues

$$\lambda_1 = 1, \quad \lambda_2 = 1/4,$$

with ℓ^1 -normalized right-eigenvectors

$$\pi_1 = [1, 2]/3, \quad \pi_2 = [1, -1]/2.$$

And,

$$\lim_{n\to\infty}p^n=\begin{pmatrix}1/3&2/3\\1/3&2/3\end{pmatrix}.$$

Relation to irreducibility

What are sufficient conditions to ensure that for some $m \ge 1$, p^m is strictly positive?

Definition 14

Consider a transition matrix p associated to Markov chains on $\mathbb{S} = \{1, 2, \dots, d\}$. p is said to be

- **irreducible** if for any $i, j \in \mathbb{S}$ there exists an $m \ge 1$ such that $p_{ij}^m > 0$, and
- the *i*-th state is said to be **aperiodic** if $p_{ii}^n > 0$ for any sufficiently large *n*.

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p^m is strictly positive for some $m \ge 1$.

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Irreducible?

Aperiodic states?

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0.1 & 0.9 \end{pmatrix}$$

Irreducible?

Aperiodic states?

Reducible chain $\mathbb{S} = \{1,2,3\}$

Irreducible?

Aperiodic states?

Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p^m is strictly positive for some $m \ge 1$.

Proof: Assume the index $i \in S$ is aperiodic, i.e., $p_{ii}^n > 0$ for all $n \ge N$. For indices $j, k \in S$, let us show that there exist an m_{jk} such that

$$p_{jk}^{ar{m}} > 0 \quad orall ar{m} \geq m_{jk}.$$

Since p is irreducible, there exists n_{ji} , $n_{ik} \ge 1$ such that

$$p_{ji}^{n_{ji}} > 0$$
 and $p_{ik}^{n_{ik}} > 0$.

Consequently, for any $\bar{m} \geq n_{ji} + n_{ik} + N$

$$p_{jk}^{\bar{m}} = p_{jk}^{n_{ji}+n_{ik}+\bar{m}-(n_{ji}+n_{ik})} \ge p_{ji}^{n_{ji}}p_{ik}^{n_{ik}}p_{ii}^{\bar{m}-(n_{ji}+n_{ik})} > 0.$$

Next time

Recurrence and simulation of finite Markov chains

Filtering of Markov chains