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Summary of lecture 4

Random walks on Zd
: described by distribution of X0 and its iid steps

{�Xn}.

�2 �1 0 1 2

p

1� p

For an RW {X0,�X0,�X1, . . .}, on Zd
, a state s 2 Zd

is recurrent if

by setting X0 = s, we obtain that

P(Xn = s for infinitely many n) = 1.

The last condition is equivalent to (Thm 9, Lecture 4),

P(T < 1) = 1 for T = inf{n � 1 | Xn = X0}.

Convergence of random variables (Chebychev’s inequality, weak law of

large numbers, mean-square convergence).
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Plan for this lecture

The Markov property – memorylessness

Markov chains

Invariant distributions
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Markov chains

We consider the dynamics of a discrete-time stochastic process {Zn} that

takes values on a state-space S that is discrete; meaning it is either finite,

e.g. S = {1, 2, 3}, or countable, e.g. S = Zd
.

Definition 1 (Markov chain)

A sequence {Zn}n�0 of S-valued rv is a discrete-time (and discrete-space)

Markov chain if

1 it is equipped with an initial distribution ⇡0
(z) := P (Z0 = z), and

2 satisfies the so-called Markov property (“memorylessness”)

P (Zn+1 = zn+1 | Zn = zn, . . . ,Z0 = z0) = P (Zn+1 = zn+1 | Zn = zn) (1)

holds for any n � 0 and z0, . . . , zn 2 S for which

P (Zn = zn, . . . ,Z0 = z0) > 0.
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Alternative statement of the Markov property

To avoid the provided P (Zn = zn, . . . ,Z0 = z0) > 0, one may state the

Markov property as follows:

P (Zn+1 = zn+1,Zn = zn, . . . ,Z0 = z0)

= P (Zn+1 = zn+1 | Zn = zn)P (Zn = zn, . . . ,Z0 = z0) . (2)

Note also that
P

z2S ⇡
0
(z) = 1.
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Example 2

Any random walk {Zn} on S = Zd
is a Markov chain. Since

Zn+1 = Zn +�Zn with {�Zn} iid, it follows that

P (Zn+1 = zn+1 | Zn = zn, . . . ,Z0 = z0)

= P (Zn +�Zn = zn+1 | Zn = zn, . . . ,Z0 = z0)

=

=

provided P (Zn = zn, . . . ,Z0 = z0) > 0.
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Example 3 (Three-state chain)

Consider a Markov chain {Zn} on S = {1, 2, 3}. For any n � 0, let

pij := P (Zn+1 = i | Zn = j)

with dynamics described by the below transition graph

1 2 3

p11 = 0.5
p12 = 0.5 p23 = 0.7

p21 = 0.3

p31 = 1

p =

0

@
0.5 0.5 0

0.3 0 0.7
1 0 0

1

A
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Simplifying notation and terminology

For 0  k  n and points zk , . . . , zn 2 S let

zk:n := (zk , . . . , zn), (so zn:n = zn).

Similarly, for the Markov chain, let

Zk:n := (Zk , . . . ,Zn).

In the new notation, the Markov property (1) becomes

P (Zn+1 = zn+1 | Z0:n = z0:n) = P (Zn+1 = zn+1 | Zn = zn)

whenever P(Z0:n = z0:n) > 0.
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Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping p : S⇥ S ! [0, 1] satisfying the

constraint X

z2S
p(c , z) = 1 for any c 2 S. (3)

The n + 1-st transition function of a Markov chain {Zn} is for all

z , c 2 S defined by

pn+1(c , z) :=

(
P(Zn+1 = z | Zn = c) if P(Zn = c) > 0

{c}(z) otherwise.

Note: for all c 2 S s.t. P(Zn = c) > 0, the definition of pn+1(c , ·) is
unique, but for zero-probability outcomes c , whatever definition
satisfying (3) is valid.

Verification of constraint?
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Application of the transition function

By the Markov property, we obtain

P (Z0:n = z0:n) = P(Z0:n�1 = z0:n�1)P (Zn = zn | Zn�1 = zn�1)

= P(Z0:n�1 = z0:n�1)pn(zn�1, zn)

where two cases must be taken into account:

1 if P (Zn�1 = zn�1) > 0 then this follows from definition, and

2 if P (Zn�1 = zn�1) = 0 then the euqality still holds as it becomes

0 = 0.

By recursive application,

P (Z0:n = z0:n) = (4)
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Definition 5 (Time-homogeneity)

A Markov chain is time-homogeneous if there exists a transition function p
that is independent of time n, such that

P(Zn+1 = z | Zn = c) = p(c , z)

whenever P(Zn = c) > 0.

We say that {Zn} is Markov(⇡0, p).

See for instance, the three-state chain Example , where p(i , j) = pij , and
⇡0

remains to be specified.
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Transition probabilities for time-homogeneous Markov

chains

For the rest of this lecture, we consider a chain {Zn} that is

Markov(⇡0, p).

Applying (4) in the time-homogeneous setting yields

P (Z0:n = z0:n) = ⇡0
(z0)

n�1Y

i=0

p(zi , zi+1) (5)

As an extension of the initial state distribution, we introduce for n-th
state distribution

⇡n
(zn) := P(Zn = zn)

Observation: By marginalization,

⇡n
(zn) =

X

z0:n�12 Sn
P (Z0:n = z0:n)
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Theorem 6

Let {Zn} be Markov(⇡0, p) and for any k � 2, define

p⇤k(z0, zk) =
X

z1:k�12Sk
p(z0, z1)p(z1, z2) . . . p(zk�1, zk).

Then p⇤k is a transition function for {Zkn}n and, in particular,

p⇤k(z0, zk) = P (Zk = zk | Z0 = z0)

whenever P(Z0 = z0) > 0.

Verification:
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Transition functions and n-th state distributions

Note that

⇡1
(z1) =

X

z02S
⇡0

(z0)p(z0, z1)

and,

⇡n
(zn) =

X

zn�12S
⇡n�1

(zn�1)p(zn�1, zn)

= . . .

=

X

z02S
⇡0

(z0)p
⇤n
(z0, zn).

For finite state-spaces this can be associated to vector-matrix products.
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Corollary 7

Let {Zn} be Markov(⇡0, p) on a finite state-space S = {1, 2, . . . , d} and
introduce the notation

⇡n
i := ⇡n

(i), pij := p(i , j) and pkij := p⇤k(i , j).

Then
pk = ppk�1

= pk�1p k � 2

and, with ⇡n representing a row-vector in Rd ,

⇡n
= ⇡n�1p = ⇡0pn n � 1.

Theorem 8 (Transition probabilities for time-homogeneous Markov

chains)

Let {Zn} be Markov(⇡0, p). Then for any m > n � 0 and zn, . . . , zm 2 S,
it holds that

P (Zn:m = zn:m) = ⇡n
(zn)

m�1Y

i=n

p(zi , zi+1)
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Example 9

Let S = {1, 2, 3, 4} and

⇡0
=

�
1 1 1 1

�
/4

and

p =

0

BB@

1/2 1/2 0 0

1/2 0 1/2 0

0 1/2 0 1/2
0 0 1/2 1/2

1

CCA .

1 2 3 4

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

Then ⇡n
= ⇡0

for all n � 0.
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Invariant distributions

Definition 10

Let ⇡ be a probability distribution on S. We call ⇡ an

invariant/stationary/equilibrium distribution for the transition function

p if it holds that

⇡(z) =
X

c2S
⇡(c)p(c , z) 8z 2 S,

or, in matrix notation, if

⇡ = ⇡p.

Note that for {Zn} that is Markov(⇡0, p) where ⇡0
is invariant, it holds

that

Z0
D
= Z1

D
= Z2

D
= . . .
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How many invariant distributions?

For a finite state-space S = {1, 2, . . . , d} there is either 1 or infinitely

many invariant distributions.

Example 11

S = {1, 2} and pij = {i}(j).

1 21 1

Invariant distributions

⇡ =
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Theorem 12 (FJK 2.2.33)

Consider S = {1, 2, . . . , d} and a transition function p. If there exists an
m � 1 such that pm is strictly positive, then there exists a unique invariant
distribution ⇡ = (⇡1, . . . ,⇡d) and

lim
n!1

⇡n
j = ⇡j 8j 2 S

and
lim
n!1

pnij = ⇡j 8i , j 2 S.

Meaning any initial distribution ⇡0 converges to the invariant distribution.

Observation: If limn!1 pnij = ⇡j , then

lim
n!1

pnij = lim
n!1

pn+1
ij = . . .
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Matrix-eigenvalue interpretation of invariant distributions

⇡ invariant distribution implies that (⇡, 1) is an eigenpair of p since

⇡p = ⇡1

Since every row of p sums to 1, (p � I )[1, 1, . . . , 1]T = 0 meaning 1 is

an eigenvalue of p.

Need to verify that corresponding row-eigenvector ⇡ is non-negative

(at least one such is (FJK 2.2.39)).

If (⇡,�) is unique eigenpair of p with ⇡ � 0 and � = 1, then the

invariant distribution is unique.

Otherwise, convex combinations invariant distributions will also be

invariant.
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Example 13

Let S = {1, 2} and

p =

✓
1/2 1/2
1/4 3/4

◆

Eigenvalues

�1 = 1, �2 = 1/4,

with `1-normalized right-eigenvectors

⇡1 = [1, 2]/3, ⇡2 = [1, �1]/2.

And,

lim
n!1

pn =

✓
1/3 2/3
1/3 2/3

◆
.
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Relation to irreducibility

What are su�cient conditions to ensure that for some m � 1, pm is

strictly positive?

Definition 14

Consider a transition matrix p associated to Markov chains on

S = {1, 2, . . . , d}. p is said to be

irreducible if for any i , j 2 S there exists an m � 1 such that

pmij > 0, and

the i-th state is said to be aperiodic if pnii > 0 for any su�ciently

large n.

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then pm is strictly positive for
some m � 1.
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Pig > o for some m means that

i→ j : there is an m- path from
i to j , for some in

Pj?> o for some in means that

i ← is : there is an in - path from
J fo i , for some
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Example 16

p =

0

@
0 1 0

1 0 0

0 0 1

1

A

1 2 3

1

1

1

Irreducible?

Aperiodic states?
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Example 17

p =

0

@
0 1 0

1 0 0

0 0.1 0.9

1

A

1 2 3

1

1 0.1

0.9

Irreducible?

Aperiodic states?
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Example 18

Reducible chain S = {1, 2, 3}

p =

0

@
0 1 0

0.5 0 0.5
0 0.1 0.9

1

A

1 2 3

1

0.5

0.5

0.1

0.9

Irreducible?

Aperiodic states?
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Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then pm is strictly positive for
some m � 1.

Proof: Assume the index i 2 S is aperiodic, i.e., pnii > 0 for all n � N.

For indices j , k 2 S, let us show that there exist an mjk such that

pm̄jk > 0 8m̄ � mjk .

Since p is irreducible, there exists nji , nik � 1 such that

p
nji
ji > 0 and pnikik > 0.

Consequently, for any m̄ � nji + nik + N

pm̄jk = p
nji+nik+m̄�(nji+nik )
jk � p

nji
ji p

nik
ik p

m̄�(nji+nik )
ii > 0.
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Recurrence and construction of invariant distributions

Definition 20

Consider an irreducible transition function p associated to a state-space

S. Then we say that p is recurrent if it for any state i 2 S and Markov

chain {Z i
n} ⇠ Markov( {i}, p) holds that

P(Z i
n = i for infinitely many n) = 1, (6)

which for the hitting time Ti := inf{n � 1 | Z i
n = i} is equivalent to

P(Ti < 1) = 1.

Lemma 21

If p is irreducible and the state-space is finite, then p is recurrent.
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Proof: Let us write S = {1, 2, . . . , d}. Since S is finite, there must be at

least one pair of states i , j 2 S satisfying

P(Z i
n = j for infinitely many n) > 0 (7)

since otherwise we reach the contradiction

0 = bP(Z i
n 62 S for infinitely many n)

� 1�
X

j2S
bP(Z i

n = j for infinitely many n) = 1.

And

P(Z j
n = j for infinitely many n)

= P(Z i
n = j for infinitely many n \ {Z i

n = j for some n})
= P(Z i

n = j for infinitely many n) > 0.

(8)
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Theorem 9, Lecture 4 extends to the current setting, so by defining

N j
:=

X

n2N
Zj
n=j (total visits at state j),

we obtain for �j := P(T j < 1) that

P(N j
= k) =

(
(1� �j)�

k�1
j if �j < 1

k=1 if �j = 1

Consequently,

0 < P(Z j
n = j for infinitely many n) = P(N j

= 1) =

(
0 if �j < 1

1 if �j = 1.

Conclusion: �j must equal 1 and j is a recurrent state.
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It remains to verify that Nk
= 1 a.s. for all k 2 S \ {j}. Observe first that

P(Nk
= 1) = 1 () P(Nk

= 1) > 0

() E
h
Nk

i
= 1 ()

X

n2N
pnkk = 1

where the last () follows from

E
h
Nk

i
=

X

n2N
E
h

Zk
n =k

i
=

X

n2N
P( Zk

n =k) =
X

n2N
pnkk .

Since P(N j
= 1) = 1, we know that

P
n2N pnjj = 1. And by the

irreducibility of p, there exist m1,m2 � 1 such that pm1
kj p

m2
jk > 0. So for

any n � m1 +m2,

pnkk � pm1
kj p

n�(m1+m2)
jj pm2

jk

and X

n2N
pnkk � pm1

kj p
m2
jk

X

n2N
pnjj = 1.

Q.E.D.
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Construction of invariant measures

For an irreducible transition function p associated to S = {1, 2, . . . , d}, we
fix a state k 2 S, the chain {Z k

n } ⇠ Markov( {k}, p) and introduce

�kj := E

2

4
Tk�1X

n=0
Zk
n =j

3

5 for j 2 S.

(the expected number of visits spent at state j in between vists to k).

Theorem 22 (Theorem 1.7.5, Norris, Markov Chains)

For every k 2 S,
�k = �kp,

which makes

⇡ :=
�kP
j2S �

k
j

is an invariant distribution.
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Example 23

p =

0

@
0 1 0

0 0 1

1 0 0

1

A

1 2 3

1 1

1

Irreducible but periodic chain. pnii > 0 only for n = 3, 6, 9, . . .. So Lemma

19 does not apply.

But �1 = �2 = �3 = [1, 1, 1], giving rise to ⇡ = �1/3.
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Example 24

p =

0

@
0 1/2 1/2
0 0 1

1 0 0

1

A

1 2 3

0.5

0.5

1

1

Irreducible chain with aperiodic state 3. So Lemma 19 does apply.

But theorem 22 also:

�1 = [1, 0.5, 1], �2 = [2, 1, 2], �3 = [1, 0.5, 1]
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Simulation of a time-homogeneous Markov chain

For {Zn} ⇠ Markov(⇡0, p) on S = {1, 2, . . . , d} the main challenges for

simulation are to draw the inital state and the transitions:

1 Draw Z0 ⇠ ⇡0

2 . . .

3 given Zn = i , draw Zn+1 ⇠ [pi1, pi ,2, . . . , pid ]

Same challenge for every step: draw a sample/new state from a

distribution f = [f1, . . . , fd ].
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Sampling method:

1 construct a vector

f̄ =

0

BBBBB@

f1
f1 + f2

.

.

.Pd�1
j=1 fj
1

1

CCCCCA

2 Draw a uniformly distributed rv U ⇠ U[0, 1] and determine new state

by:

j(U) := min{k 2 {1, 2, . . . , d} | f̄k > U}.

Exercise: verify that P(j(U) = `) = f`.
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Next time

Filtering of discrete time and space Markov Chains
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