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Summary of lecture 4

m Random walks on Z: described by distribution of Xy and its iid steps
{AX,}.
p
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m For an RW {Xp, AXp, AXi, ...}, on Z9, a state s € Z9 is recurrent if
by setting Xy = s, we obtain that

P(X, =s for infinitely many n) = 1.
The last condition is equivalent to (Thm 9, Lecture 4),

P(T <oo)=1 for T=inf{n>1|X,=Xo}.

m Convergence of random variables (Chebychev's inequality, weak law of
large numbers, mean-square convergence).



Plan for this lecture

m The Markov property — memorylessness

m Markov chains

m Invariant distributions



Markov chains

We consider the dynamics of a discrete-time stochastic process {Z,} that
takes values on a state-space S that is discrete; meaning it is either finite,
e.g. S={1,2,3}, or countable, e.g. S =79,

Definition 1 (Markov chain)

A sequence {Z,}n>0 of S-valued rv is a discrete-time (and discrete-space)
Markov chain if

it is equipped with an initial distribution 7°%(z) := P (Zy = z), and

satisfies the so-called Markov property (“memorylessness”)
P(Zn-i-l = Zp+1 | Zn =Zpy..., Z() = Zo) = ]P)(Zn—i-l = Zp+1 ‘ Zn = Zn) (1)
holds for any n > 0 and zy, ..., z, € S for which

P(Z, = zp,..., 2o = 29) > O.




Alternative statement of the Markov property

To avoid the provided P (Z, = z,,...,Zy = zp) > 0, one may state the
Markov property as follows:

]P)(Zn+1 = Zn+1aZn = Zn,--~aZO :ZO)
=P(Zny1=zn+1 | Zn=2z0)P(Zn=2zp,...,. 20 =20). (2)

Note also that 3, ¢ m%(z) = 1.



Example 2

Any random walk {Z,} on S = Z9 is a Markov chain. Since
Zni1 = Zn + AZ, with {AZ,} iid, it follows that

IP)(Zn—i-l = Zp+1 ’ Zn:an-'yZO:ZO)
:P(Zn—l-AZn:Z,H_l|Zn:Zn,...,Z():ZO)

= ﬂ)(%,{e AZ“ =Zun4 l Zvl'; 2u, - ) Zo: &c,)
AZ"J:_.{ZKjlc:o (?(im-"AZh = P z 2‘4:2.\1)

provided P (Z, = zp, ..., Zp = z9) > 0.




Example 3 (Three-state chain)

Consider a Markov chain {Z,} on S ={1,2,3}. For any n > 0, let
pij = P(Zos1 = i | Zy =)

with dynamics described by the below transition graph

pi2 =05 px3=0.7

p11 = 0.5
05 05 O
p=103 0 0.7
1 0 0

p31 =1




Simplifying notation and terminology

m For 0 < k < n and points zx,...,z, €S let

Zk:n = (Zk, cee 7Zn)a (SO Zn:n = Zn)-

m Similarly, for the Markov chain, let
Zien = (Zky -y Zn)-
In the new notation, the Markov property (1) becomes
P(Zpt1 = znt1 | Zon = 20:n) = P (Zns1 = zns1 | Zn = zn)

whenever P(Zy., = zp.n) > 0.



Product decomposition of joint Markov-chain distributions

Definition 4

A transition function is a mapping p : S x S — [0, 1] satisfying the
constraint
Zp(c,z) =1 forany ceS. (3)

zeS

The n+ 1-st transition function of a Markov chain {Z,} is for all
z,c € S defined by

P(Zpi1=2|Zy=c) ifP(Zy=c)>0
1iey(2) otherwise.

pn+1(c, z) := {

Note: for all c € Ss.t. P(Z, = ¢) > 0, the definition of p,11(c, ") is
unique, but for zero-probability outcomes ¢, whatever definition
satisfying (3) is valid.

Verification of constraint?



Application of the transition function

By the Markov property, we obtain
IP)(ZO:n = ZO:n) = IP)(ZO:nfl = ZO:nfl)IP) (Zn = Zp ’ anl = Znfl)
= IP)(ZO:n—l = ZO:n—l)Pn(Zn—l, Zn)
where two cases must be taken into account:

if P(Zy—1 = zp—1) > 0 then this follows from definition, and

if P(Zy,—1 = zp—1) = 0 then the euqality still holds as it becomes
0=0.

By recursive application,

P(Zo:n = 20.n) = TTD(ZB) i;, (io/ i/) F? (2// 'ZZ) S (4)
(2o, 20)



Definition 5 (Time-homogeneity)
A Markov chain is time-homogeneous if there exists a transition function p
that is independent of time n, such that

P(Zyt1 =2 | 2Z,=c)=p(c,2z)
whenever P(Z, = c) > 0.

We say that {Z,} is Markov(7°, p).

See for instance, the three-state chain Example , where p(i, ) = pjj, and

70 remains to be specified.



Transition probabilities for time-homogeneous Markov

chains

For the rest of this lecture, we consider a chain {Z,} that is
Markov(7°, p).

m Applying (4) in the time-homogeneous setting yields

n—1

P(Zo:n = z0:n) = 7r0(zo) H p(zi, zit1) (5)
i=0

m As an extension of the initial state distribution, we introduce for n-th
state distribution
7"(zp) :=P(Z, = z)

m Observation: By marginalization,

ﬂ—n(zn) = Z P(ZO:n = ZO:n)

20:p—1€S"



Theorem 6
Let {Z,} be Markov(r®, p) and for any k > 2, define

p(z0.2) = > pl20,21)p(21,22) - P(2k-1, Zk)-

Zy.4—1 €Sk~
Then p*k is a transition function for { Zx,}n and, in particular,

PH(20,2) =P(Z =2 | Zo=2) ( %)

whenever P(Zy = z9) > 0.

Verification:

lVU—wh(Zfzo): Z W(ZIC Zue, Zl:k—l; Zgens /Z":"Z”>

24:!'\
- T P(2ur2s, ZitBien, 272)
CS) 2]:‘14" '-17_’0(:29)
= GisUS S wl(€ (5



Transition functions and n-th state distributions
Note that

w(z1) = Y 7°(20)p(20, 21)

29€S
and,
7(zp) = Z Wn_l(znfl)P(znflazn)
zp—1€S
T -z
= [TI‘"M P,(%n-z('zqﬂ)
’ Zn—z'gs . 'F(%M—(, '21/)7
—_ T 5 ¥Z
=2 o T )P G, 2)
~... = m(20)p""(20, 2n)

For finite state-spaces this can be associated to vector-matrix products.



Corollary 7

Let {Z,} be Markov(n°, p) on a finite state-space S = {1,2,...,d} and
introduce the notation

n

T = 7Tn(i)7 Pij ‘= p(’?J) and p’lJ( = p*k([7_/)

Then
pk=ppt=plp k>2

and, with " representing a row-vector in RY,

Theorem 8 (Transition probabilities for time-homogeneous Markov
chains)

Let {Z,} be Markov(n®, p). Then for any m > n >0 and z,,...,zm €S,
it holds that

m—1

IP)(Zn:m = Zn:m) = 7"-n(zn) H p(Zi,Zi+1)

i=n




Example 9
Let S={1,2,3,4} and

®=(1 11 1)/4

and

1/2 1/2 0 0
{12 0 172 0
0 1/2 0 1/2
0 0 1/2 1/2

0.5 0.5 0.5 0.5

(s
0.5 0.5 0.5

/‘9

l —9 —
Then 7" = 0 for all n > 0. Fﬂ—’” FA l/




Invariant distributions

Definition 10

Let m be a probability distribution on S. We call 7 an
invariant/stationary/equilibrium distribution for the transition function
p if it holds that

m(z) =Y m(c)p(c,z) VzeS,

ceS

or, in matrix notation, if
T = T7p.

Note that for {Z,} that is Markov (7, p) where 70 is invariant, it holds

that
222222



How many invariant distributions?

For a finite state-space S = {1,2,...,d} there is either 1 or infinitely
many invariant distributions.

Example 11

S ={1,2} and p; = 143 (j)- l o
S
1C@ @Ql

Invariant distributions

bat ‘0(70,-
U= ¢, + (197
. featy celo]

(x 1D alse Mrvewaret

= 0 o, |

(52)




Theorem 12 (FJK 2.2.33)

Consider S = {1,2,...,d} and a transition function p. If there exists an
m > 1 such that p™ is strictly positive, then there exists a unique invariant
distribution T = (my,...,7gq) and
lim 77 =m; Vje€S
n—00
and
lim pj=m; Vije€S.

n—o0

0

Meaning any initial distribution 7° converges to the invariant distribution.

T . .
[ =€
Observation: If lim,_o pjj = 7;, then l J L )) V)

lim p? = lim pitt = d/— " G : N
n—oo' ¥ nooo’ Y Z— Jac FL‘<’ k)

=2 T, i =(T¥);




Matrix-eigenvalue interpretation of invariant distributions

m 7 invariant distribution implies that (, 1) is an eigenpair of p since
mp=ml
m Since every row of p sums to 1, (p — /)[1,1,...,1]7 = 0 meaning 1 is
an eigenvalue of p.

m Need to verify that corresponding row-eigenvector 7 is non-negative
(at least one such is (FJK 2.2.39)).

m If (7, \) is unique eigenpair of p with 7 > 0 and A\ = 1, then the
invariant distribution is unique.

m Otherwise, convex combinations invariant distributions will also be
invariant.



Example 13

Let S = {1,2} and z W
_(1/2 1)2
2= (1/4 3/4 C@Q
l/q

Eigenvalues
A1=1, A =1/4,

with ¢*-normalized right-eigenvectors

m =1, 2]/3, m=][1, —1]/2.

im = (13 573)

And,




Relation to irreducibility

What are sufficient conditions to ensure that for some m > 1, p™ is
strictly positive?
Definition 14
Consider a transition matrix p associated to Markov chains on
S={1,2,...,d}. pissaid to be
m irreducible if for any i,j € S there exists an m > 1 such that
p;' >0, and
m the j-th state is said to be aperiodic if p] > 0 for any sufficiently
arge n. Meanivg (o oy u 2\ (o7 sonce
J 4 :
.,

Lemma 15 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p™ is strictly positive for
some m > 1.

v







Example 16

1
L =
1 v
Irreducible? Mo/ 3 m 2 | 5,4. P3K>O
‘%5/2%3 for k=(2

Aperiodic states?

74
7/83/ |>33>o ¥n=4

K ok_ ¢ O kods
@zz/?u’“%i K cveslt=2




Example 17

Irreducible? ND

(86> , 2643
Aperiodic states? s
7/67/ q/é/ 94—«.445“0‘/*‘9— “F"%;&éhﬂ




Example 18
Reducible chain S = {1,2,3}

0 1 0
p=105 0 05
0 01 0.9

1 0.5
0.5 0.1

Irreducible?

Yes . QJ “/E(J€§

Aperiodic states?

Ves, el sates.




Recall the result:

Lemma 19 (1.8.2, Norris, Markov Chains)

If p is irreducible and has an aperiodic state, then p™ is strictly positive for
some m > 1.

Proof: Assume the index i € S is aperiodic, i.e., p} > 0 for all n > N.
For indices j, k € S, let us show that there exist an mj, such that

Pﬁ? >0 Vm> miy.
Since p is irreducible, there exists nj;, njyc > 1 such that
nijj i
p; >0 and pik > 0.
Consequently, for any m > nji + nyc + N

m _ Mitnptm—(nj+ni) —(nji+nix)

nji ny . m
Pjk = Pjk > Pji' PikPji > 0.



Recurrence and construction of invariant distributions

Definition 20

Consider an irreducible transition function p associated to a state-space
S. Then we say that p is recurrent if it for any state /i € S and Markov
chain {Z}} ~ Markov(1y;, p) holds that

P(Z. =i for infinitely many n) =1, (6)
which for the hitting time T; := inf{n > 1| Z! = i} is equivalent to

P(T; < o0) = 1.

Lemma 21

If p is irreducible and the state-space is finite, then p is recurrent.




Proof: Let us write S ={1,2,...,d}. Since S is finite, there must be at

least one pair of states /,j € S satisfying
P(Z. =) for infinitely many n) > 0

since otherwise we reach the contradiction
0=bP(Z) ¢S for infinitely many n)
>1- Z bP(Zi =j for infinitely many n) = 1.
Jjes

And

P(Z, =j for infinitely many n)

=P(Z. = for infinitely many nN{Z' = for some n})

=P(Z. = for infinitely many n) > 0.

(7)

(8)



Theorem 9, Lecture 4 extends to the current setting, so by defining

N = Z Ty, (total visits at state j),
neN

we obtain for \; := P(T/ < o) that

(L= if A <1
Th—oo if \j=1

MM:@:{

Consequently,

i ; 0 ifx <1
0<P(Z, =, forinfinitely many n) = P(W = ) = I J <
1 if)\=1

Conclusion: \; must equal 1 and j is a recurrent state.



It remains to verify that N¥ = oo a.s. for all k € S\ {j}. Observe first that

P(N* = 00) =1 <= P(NK =00) >0
= E{Nk}:oo — ZPZk:oo
neN

where the last <= follows from

E [Nk} = ZE {ILZ,’;:k} = Zp(ﬂzﬁzk) = ZPZk'

neN neN neN

Since P(W = 00) = 1, we know that Y pjj = co. And by the

my m3

irreducibility of p, there exist m;, my > 1 such that Py P’ > 0. So for

any n > my + mo,
"*(m1+m2) my

Pk = PZ'I P p;

n my _my n__
> Pl = PgteR D pj = oo
neN neN

and

Q.E.D.



Construction of invariant measures

For an irreducible transition function p associated to S = {1,2,...,d}, we
fix a state k € S, the chain {Z¥} ~ Markov(1 .y, p) and introduce

Tk-1
/}/jk =K Z :[]‘Z,‘;:j for _]G S.
n=0

(the expected number of visits spent at state j in between vists to k).

Theorem 22 (Theorem 1.7.5, Norris, Markov Chains)
For every k € S,
k _ _k
fY - fy p7

which makes

"}/k

===
2 jes

\is\an invariant distribution.




Example 23

1

Irreducible but periodic chain. p7i > 0 only for n =3,6,9,.... So Lemma
19 does not apply.
But v =42 =43 =1, 1, 1], giving rise to T = 71/3.




Example 24

Irreducible chain with aperiodic state 3. So Lemma 19 does apply.
But theorem 22 also:

At =[1,05,1, 4*=1[2,1,2], ~*=[1,05,1]




Simulation of a time-homogeneous Markov chain

For {Z,} ~ Markov(7®, p) on S = {1,2,...,d} the main challenges for
simulation are to draw the inital state and the transitions:

Draw Zy ~ 7°
given Z, =i, draw Zp1 ~ [pi1, Pi2, - - -, Pid)

Same challenge for every step: draw a sample/new state from a
distribution f = [f1, ..., f4].



Sampling method:

construct a vector
fi
i+ hH

oy
Il

d-1
Zj:l f.-/
1

Draw a uniformly distributed rv U ~ U[0, 1] and determine new state
by:
j(U) :==min{k € {1,2,...,d} | fi > U}.

Exercise: verify that P(j(U) = ¢) = f,.



Next time

Filtering of discrete time and space Markov Chains



