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Summary of lecture 5

Markov property:

P (Zn+1 = zn+1,Zn = zn, . . . ,Z0 = z0)

= P (Zn+1 = zn+1 | Zn = zn)P (Zn = zn, . . . ,Z0 = z0) . (1)

time-homogeneous chains Markov(π, p) with transition function

P(Zn+1 = j | Zn = i) = p(i , j) whenever P(Zn = i) > 0.

evolution of distributions
πn = π0pn

and invariant distributions
π = πp

aperiodicity of states and irreduciblity and recurrence of p.
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Recurrence and construction of invariant distributions

Definition 1

Consider an irreducible transition function p associated to a state-space
S. Then we say that p is recurrent if it for any state i ∈ S and Markov
chain {Z i

n} ∼ Markov(1{i}, p) holds that

P(Z i
n = i for infinitely many n) = 1, (2)

which for the hitting time Ti := inf{n ≥ 1 | Z i
n = i} is equivalent to

P(Ti <∞) = 1.

Lemma 2

If p is irreducible and the state-space is finite, then p is recurrent.
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Proof: Let us write S = {1, 2, . . . , d}. Since S is finite, there must be at
least one pair of states i , j ∈ S satisfying

P(Z i
n = j for infinitely many n) > 0 (3)

since otherwise we reach the contradiction

0 = bP(Z i
n 6∈ S for infinitely many n)

≥ 1−
∑
j∈S

bP(Z i
n = j for infinitely many n) = 1.

And

P(Z j
n = j for infinitely many n)

= P(Z i
n = j for infinitely many n ∩ {Z i

n = j for some n})
= P(Z i

n = j for infinitely many n) > 0.

(4)
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Theorem 9, Lecture 4 extends to the current setting, so by defining

N j :=
∑
n∈N

1
Z j
n=j

(total visits at state j),

we obtain for λj := P(T j <∞) that

P(N j = k) =

{
(1− λj)λk−1

j if λj < 1

1k=∞ if λj = 1

Consequently,

0 < P(Z j
n = j for infinitely many n) = P(N j =∞) =

{
0 if λj < 1

1 if λj = 1.

Conclusion: λj must equal 1 and j is a recurrent state.
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It remains to verify that Nk =∞ a.s. for all k ∈ S \ {j}. Observe first that

P(Nk =∞) = 1 ⇐⇒ P(Nk =∞) > 0

⇐⇒ E
[
Nk
]

=∞ ⇐⇒
∑
n∈N

pnkk =∞

where the last ⇐⇒ follows from

E
[
Nk
]

=
∑
n∈N

E
[
1Z k

n =k

]
=
∑
n∈N

P(1Z k
n =k) =

∑
n∈N

pnkk .

Since P(N j =∞) = 1, we know that
∑

n∈N pnjj =∞. And by the
irreducibility of p, there exist m1,m2 ≥ 1 such that pm1

kj p
m2
jk > 0. So for

any n ≥ m1 + m2,

pnkk ≥ pm1
kj p

n−(m1+m2)
jj pm2

jk

and ∑
n∈N

pnkk ≥ pm1
kj p

m2
jk

∑
n∈N

pnjj =∞.

Q.E.D.
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Construction of invariant measures
For an irreducible transition function p associated to S = {1, 2, . . . , d}, we
fix a state k ∈ S, the chain {Z k

n } ∼ Markov(1{k}, p) and introduce

γkj := E

 T k−1∑
n=0

1Z k
n =j

 for j ∈ S.

(the expected number of visits spent at state j in between vists to k).

Theorem 3 (Theorem 1.7.5, Norris, Markov Chains)

For every k ∈ S,
γk = γkp,

which makes

π :=
γk∑
j∈S γ

k
j

is an invariant distribution.
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Example 4

p =

0 1 0
0 0 1
1 0 0



1 2 3

1 1

1

Irreducible but periodic chain. pnii > 0 only for n = 3, 6, 9, . . .. So Lemma
19 does not apply.
But γ1 = γ2 = γ3 = [1, 1, 1], giving rise to π = γ1/3.
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Example 5

p =

0 1/2 1/2
0 0 1
1 0 0



1 2 3

0.5

0.5

1

1

Irreducible chain with aperiodic state 3. So Lemma 19 does apply.
But theorem 22 also:

γ1 = [1, 0.5, 1], γ2 = [2, 1, 2], γ3 = [1, 0.5, 1]

11 / 38



Simulation of a time-homogeneous Markov chain

For {Zn} ∼ Markov(π0, p) on S = {1, 2, . . . , d} the main challenges for
simulation are to draw the inital state and the transitions:

1 Draw Z0 ∼ π0

2 . . .

3 given Zn = i , draw Zn+1 ∼ [pi1, pi ,2, . . . , pid ]

Same challenge for every step: draw a sample/new state from a
distribution f = [f1, . . . , fd ].
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Sampling method:

1 construct a vector

f̄ =


f1

f1 + f2
...∑d−1

j=1 fj
1


2 Draw a uniformly distributed rv U ∼ U[0, 1] and determine new state

by:
j(U) := min{k ∈ {1, 2, . . . , d} | f̄k > U}.

Exercise: verify that P(j(U) = `) = f`.
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Data assimilation of Markov Chains

Let {Zn} with Zn = (Xn,Yn) denote a time-homogeneous Markov chain.

For observations Y0:n related to a signal of interest X0:n we consider the
following conditional estimation problems:

Prediction: Xk |Y0:j for j < k,

Filtering: Xk |Y0:k ,

Smoothing Xk |Y0:T for T > k .

Figure: From “Bayesian Filtering
and Smoohting” by S. Särrkä.
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Filtering setting

Time homogeneous Markov chain {Zn} = {(Xn,Yn)} with

countable state-space C , since

(Xn,Yn) : Ω→ A× B =: C ,

and transition function p : C × C → C satisfying

P(Zn+1 = cn+1 | Zn = cn) = p(cn, cn+1) whenever P(Zn = cn) > 0.

For every n ≥ 0, recall that Y0:n = (Y0,Y1, . . . ,Yn) is the history of
observations

and we seek the state of the signal of interest Xn given Y0:n.
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Examples

Random walk Zn = (Xn,Yn) on Z2.

Discrete Markov chain Xn on S = Zd with Yn = HXn + Wn for some
matrix H ∈ Zk×d and with Wn a random walk on Zk .

Discrete Markov chain Xn on S with Yn = Xbn/5c (new observation
every fifth time unit).

Hidden Markov models: Xn a discrete Markov chain and

Yn = γ(Xn,Wn)

where {Wn} are iid and {Xn} and {Wn} are independent.
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Note Zn being a Markov chain does not imply that either of Xn or Yn is:

Example 6

Consider chain Zn on {1, 2} × {1, 2} and Xn

and Yn discrete processes on
A = B = {1, 2}, say with uniformly random
initial condition, to make the chain
stochastic.
It is then clear that for n > 1,

P(Xn = 1 | Xn−1 = 2) = 1/2,

while

P(Xn = 1 | Xn−1 = 2,Xn−2 = 2) = 1.

1,1

2,1 2,2

1,2

1

1

1

1
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How detailed state-information do we seek?
Best approximation in mean-square sense:

X̃n := E [Xn | Y0:n] =
∑
a∈A

aP(Xn = a | Y0:n).

or perhaps the (more informative) conditional distribution

P(Xn = a | Y0:n) for relevant a ∈ A.

Example 7 (Comparison of conditional expectation and distribution)

Let the sequence Zn = (Xn,Yn) be a simple symmetric random walk on Z2

with Z0 = (0, 0). Then for any n ≥ 0 and observation sequence b0:n,

E [Xn | Y0:n = b0:n] = 0

since

P(Xn = a | Y0:n = b0:n) = P(Xn = −a | Y0:n = b0:n) ∀a ∈ A.

Conclusion: P(Xn = a | Y0:n = b0:n) is not always needed to compute

the associated conditional expectation.
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Filtering setting 2

We will consider observations of the kind Y0:n = b0:n, accumulating
as n 7→ n + 1.

We assume that P(Y0:n = b0:n) > 0 for n = 0, 1, . . . (since these
observations have occurred).

Iteratively in time n = 0, 1, . . ., we seek the conditional distribution

P(Xn = an | Y0:n = b0:n) for relevant an ∈ A (5)

For efficiency, we seek a recursive algorithm, using the new
measurement bn to update the previous calculations of

{P(Xn−1 = an−1 | Y0:n−1 = b0:n−1)}an−1∈A

when computing (5).
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Recursive algorithm
By definition,

P(Xn = a | Y0:n = b0:n) =
P(Xn = a,Y0:n = b0:n)

P(Y0:n = b0:n)
, (6)

Idea: Apply law of total probability

P(Xn = an,Y0:n = b0:n) =
∑

a0:n−1∈An

P
(
Xn = an,X0:n−1 = a0:n−1,Y0:n = b0:n

)

and use the Markov property to render every summand computable

P
(
X0:n = a0:n,Y0:n = b0:n

)
= P

(
Xn = an,Yn = bn | Xn−1 = an−1,Yn−1 = bn−1

)
× P

(
X0:n−1 = a0:n−1,Y0:n−1 = b0:n−1

)
= . . .
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Simplification of idea

By the law of total probability and Markovianity [FJK Corrollary 2.2.7]
yields

P(Xn = a,Y0:n = b0:n)

=
∑
r∈A

P
(
Xn = a,Xn−1 = r ,Y0:n = b0:n

)
=
∑
r∈A

P
(

(Xn,Yn) = (a, bn), (Xn−1,Yn−1) = (r , bn−1),Y0:n−2 = b0:n−2

)
=
∑
r∈A

P
(

(Xn,Yn) = (a, bn) | (Xn−1,Yn−1) = (r , bn−1)
)

×P
(

(Xn−1,Yn−1) = (r , bn−1),Y0:n−2 = b0:n−2

)
Motivation last equality?
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Recursive algorithm

Recalling that on positive probability conditioned events,

P
(

(Xn,Yn) = (a, bn) | (Xn−1,Yn−1) = (r , bn−1)
)

= p((r , bn−1), (a, bn))

=: qra(bn−1, bn),

we have that

P(Xn = a,Y0:n = b0:n) =
∑
r∈A

qra(bn−1, bn)P
(
Xn−1 = r ,Y0:n−1 = b0:n−1

)
(7)

Algorithm 1: Recursive relationship joint density

Let ϕa
n(b0:n) := P(Xn = a,Y0:n = b0:n). Then (7) yields

ϕa
n(b0:n) =

∑
r∈A

qra(bn−1, bn)ϕr
n−1(b0:n−1)
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Algorithm 1 continued

Moreover,
P(Y0:n = b0:n) =

∑
r∈A

ϕr
n(b0:n)

and thus

P(Xn = a | Y0:n = b0:n) =
ϕa
n(b0:n)∑

r∈A ϕ
r
n(b0:n)

Verification:
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Iterations

Compute ϕa
0(b0) := P(X0 = a,Y0 = b0) for relevant non-zero

probability outcomes a ∈ A.

When observation b1 is obtained, compute ϕa
1(b0:1) for all relevant

outcomes a ∈ A using Algorithm 1 and the pre-computed values
{ϕa

0(b0)}a.

Similar iteration “{ϕr
n(b1:n)}r 7→ {ϕr

n+1(b1:n+1)}r” for each
n 7→ n + 1.

The iterations based on Alg 1 are called online learning, here meaning
that you recursively update your estimate for every new observation.

An alternative would be offline/batch learning, here meaning to
learn/precompute ϕa

n(b̃0:n) for all relevant n ≥ 0, a ∈ A and b̃0:n ∈ Bn+1

before filtering.
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Remarks

If instead of conditioning on the observation b0:n, we condition on
Y0:n, then we get the following rv associated to filtering:

P(Xn = a | Y0:n)(ω) =
ϕa
n(Y0:n(ω))∑

r∈A ϕ
r
n(Y0:n(ω))

Extension of Alg 1 to when {Zn} is not a time-homogeneous Markov
chain is straightforward. Replace time-independent transition
functions by the time-dependent ones

qra(n, bn, bn+1) := p(n, (r , bn), (a, bn+1))

Given a finite state-space A, we may view {qra(bn, bn+1)}(r ,a)∈A2 as a
matrix qn and {ϕa

n(b0:n)}a = ϕn as a column vector. The iterations in
Alg 1 then becomes

ϕn+1 = qTn ϕn.
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Example 8 ( Hidden Markov model)

Let Xn be a simple symmetric RW on Z and Yn = Xn + Wn, where {Wn}
is iid and independent of {Xn} with P(Wn = k) = 1/5 for all |k | ≤ 2.
Assume X0 = 0. Compute P(X2 = 0 | Y0:2 = (0, 2, 1)).

Some steps in the solution:
1. Identify transition function

qra(c , d) = P
(

(Xn,Yn) = (a, d) | (Xn−1,Yn−1) = (r , c)
)

=

= P(Xn = a | Xn−1 = r)P(Wn = d − a)

(above eq holds P((Xn−1,Yn−1) = (r , c)) > 0).
2. Observe that {ϕa

n(b0:n)}a is only possibly non-zero for
a ∈ {−n,−n + 1, . . . , n}
3. Use Alg 1.
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Prediction problem

The prediction problem is to estimate

P(Xn = a | Y0:m = b0:m)

for some n > m ≥ 0.

Derivation of recursive algorithm:

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)

=

∑
b̄∈B P(Xn = a,Yn = b̄,Y0:m = b0:m)

P(Y0:m = b0:m)

Idea for obtaining computable terms:
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For n ≥ m, introduce

ϕa,b̄
n (b0:m) := P(Xn = a,Yn = b̄,Y0:m = b0:m).

Then, for n = m,
ϕa,b̄
n (b0:m) = ϕa

n(b0:m)1bm(b̄)

Verification

And, for n > m,

ϕa,b̄
n (b0:m) =

∑
r∈A,s∈B

P(Xn = a,Yn = b̄,Xn−1 = r ,Yn−1 = s,Y0:m = b0:m)

=

=
∑

r∈A,s∈B
P(Xn = a,Yn = b̄ | Xn−1 = r ,Yn−1 = s)ϕr ,s

n−1(b0:m)

=
∑

r∈A,s∈B
qra(s, b̄)ϕr ,s

n−1(b0:m)
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Summary

We seek a recursive algorithm for

P(Xn = a | Y0:m = b0:m) =

∑
b̄∈B P(Xn = a,Yn = b̄,Y0:m = b0:m)

P(Y0:m = b0:m)

=

∑
b̄∈B ϕ

a,b̄
n (b0:m)∑

r∈A ϕ
r
m(b0:m)

Every summand in the numerator satisfies recursive equation

ϕa,b̄
n (b0:m) =

∑
r∈A,s∈B

qra(s, b̄)ϕr ,s
n−1(b0:m) n > m (8)

with “initial condition”

ϕr ,s
m (b0:m) = ϕr

m(b0:m)1bm(s).
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Algorithm 2 – Prediction

1 Compute {ϕr
m(b0:m)}r∈A by Algorithm 1.

2 “Initialize” ϕr ,s
m (b0:m) = ϕr

m(b0:m)1bm(s) for relevant (r , s) ∈ A× B.

3 Compute {ϕr ,s
k (b0:m)}r∈A,s∈B for k = m + 1,m + 2, . . . , n − 1 by the

recursive formula (8).

4 Compute {ϕa,b̄
n (b0:n)}b̄∈B by (8) (i.e., for the fixed state a ∈ A only).

5 Output:

P(Xn = a | Y0:m = b0:m) =

∑
b̄∈B ϕ

a,b̄
n (b0:m)∑

r∈A ϕ
r
m(b0:m)

.

Remark: Algorithm 2 simplifies in many settings, e.g., hidden Markov
models [FJK 3.4.3].

Exercise Simplify the “recursive” equation predictions when n = m + 1.
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Smoothing problem

The smoothing/interpolation problem is to estimate

P(Xn = a | Y0:m = b0:m)

for some m > n ≥ 0.

Property: More information leads to improved approximations: for
m > n > k ≥ 0

E
[
|X − E [Xn|Y0:m] |2

]︸ ︷︷ ︸
smoothing

≤ E
[
|X − E [Xn|Y0:n] |2

]︸ ︷︷ ︸
filtering

≤ E
[
|X − E [Xn|Y0:k ] |2

]︸ ︷︷ ︸
prediction

34 / 38



Derivation of a recursive algorithm:

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)
=

ϕa
n(b0:m)∑

r∈A ϕ
r
m(b0:m)

Using the Markov property [FJK 2.2.7]

ϕa
n(b0:m) = P (Xn = a,Y0:n = b0:n,Yn+1:m = bn+1:m)

= P (Yn+1:m = bn+1:m | Xn = a,Y0:n = b0:n)P (Xn = a,Y0:n = b0:n)

= P (Yn+1:m = bn+1:m | Xn = a,Yn = bn)ϕa
n(b0:n)

(9)

Next seek to obtain recursive formula for first factor when
P(Xn = a,Yn = bn) > 0.

Otherwise, also ϕa
n(b0:n) = 0, and the value of the first-factor value is not

needed.
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By the law of total probability,

P (Yn+1:m = bn+1:m | Xn = a,Yn = bn)

=
∑

ān+1:m∈Am−n

P (Xn+1:m = ān+1:m,Yn+1:m = bn+1:m | Xn = a,Yn = bn)

=
∑

ān+1:m∈Am−n

p ((a, bn), (ān+1, bn+1)) p ((ān+1, bn+1), (ān+2, bn+2)) . . .

. . . p ((ām−1, bm−1), (ām, bm))

Algorithm for κ [FJK problem 3.3.4]

Whenever P(Xn = a,Yn = bn) > 0

κan,m(bn:m) :=

{
P (Yn+1:m = bn+1:m | Xn = a,Yn = bn) if n < m

1 if n = m

solves the following backward recurrence equation

κan−1,m(bn−1:m) =
∑
r∈A

p((a, bn−1), (r , bn))︸ ︷︷ ︸
qar (bn−1,bn)

κrn,m(bn:m), n = 1, 2, . . . ,m.
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Summary

We seek

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)
=

ϕa
n(b0:m)∑

r∈A ϕ
r
m(b0:m)

(10)

and by (9) and Algorithm for κ,

ϕa
n(b0:m) = κan,m(bn:m)ϕa

n(b0:n) (11)

Algorithm 3 - smoothing/interpolation

1 Compute {ϕr
n(b0:n)}r by Algorithm 1,

2 Compute κan,m(bn:m) by Algorithm for κ, φan(b0:m) by (11) and the
output (10).
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Next time

Continuous random variables, probability density functions, conditional
densities . . .
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