Mathematics and numerics for data assimilation and state estimation – Lecture 6

Summer semester 2020

Summary of lecture 5

Markov property:

$$\mathbb{P}(Z_{n+1} = z_{n+1}, Z_n = z_n, \dots, Z_0 = z_0) \\= \mathbb{P}(Z_{n+1} = z_{n+1} \mid Z_n = z_n) \mathbb{P}(Z_n = z_n, \dots, Z_0 = z_0).$$
(1)

• time-homogeneous chains $Markov(\pi, p)$ with transition function

$$\mathbb{P}(Z_{n+1}=j\mid Z_n=i)=p(i,j) \quad \text{whenever } \mathbb{P}(Z_n=i)>0.$$

evolution of distributions

$$\pi^n = \pi^0 p^n$$

and invariant distributions

$$\pi = \pi p$$

aperiodicity of states and irreduciblity and recurrence of p.

Recurrence and construction of invariant distributions for time-homogeneous finite Markov chains

2 Filtering

3 Prediction

4 Smoothing

Recurrence and construction of invariant distributions for time-homogeneous finite Markov chains

2 Filtering

3 Prediction

4 Smoothing

Recurrence and construction of invariant distributions

Definition 1

Consider an **irreducible** transition function p associated to a state-space \mathbb{S} . Then we say that p is recurrent if it for any state $i \in \mathbb{S}$ and Markov chain $\{Z_n^i\} \sim Markov(\mathbb{1}_{\{i\}}, p)$ holds that

$$\mathbb{P}(Z_n^i = i \quad \text{for infinitely many } n) = 1, \tag{2}$$

which for the hitting time $T_i := \inf\{n \ge 1 \mid Z_n^i = i\}$ is equivalent to

$$\mathbb{P}(T_i < \infty) = 1.$$

Lemma 2

If p is irreducible and the state-space is finite, then p is recurrent.

Proof: Let us write $\mathbb{S} = \{1, 2, \dots, d\}$. Since \mathbb{S} is finite, there must be at least one pair of states $i, j \in \mathbb{S}$ satisfying

$$\mathbb{P}(Z_n^i = j \quad \text{for infinitely many } n) > 0 \tag{3}$$

since otherwise we reach the contradiction

$$egin{aligned} 0 &= bP(Z_n^i
ot\in \mathbb{S} \quad ext{for infinitely many } n) \ &\geq 1 - \sum_{j\in \mathbb{S}} bP(Z_n^i = j \quad ext{for infinitely many } n) = 1. \end{aligned}$$

And

$$\mathbb{P}(Z_n^j = j \text{ for infinitely many } n)$$

$$= \mathbb{P}(Z_n^i = j \text{ for infinitely many } n \cap \{Z_n^i = j \text{ for some } n\}) \quad (4)$$

$$= \mathbb{P}(Z_n^i = j \text{ for infinitely many } n) > 0.$$

Theorem 9, Lecture 4 extends to the current setting, so by defining

$$N^j := \sum_{n \in \mathbb{N}} \mathbb{1}_{Z_n^j = j}$$
 (total visits at state j),

we obtain for $\lambda_j := \mathbb{P}(T^j < \infty)$ that

$$\mathbb{P}(N^j=k)=egin{cases} (1-\lambda_j)\lambda_j^{k-1} & ext{if }\lambda_j<1\ \mathbb{1}_{k=\infty} & ext{if }\lambda_j=1 \end{cases}$$

Consequently,

$$0 < \mathbb{P}(Z_n^j = j \text{ for infinitely many } n) = \mathbb{P}(N^j = \infty) = \begin{cases} 0 & \text{if } \lambda_j < 1 \\ 1 & \text{if } \lambda_j = 1. \end{cases}$$

Conclusion: λ_j must equal 1 and j is a recurrent state.

It remains to verify that $N^k = \infty$ a.s. for all $k \in \mathbb{S} \setminus \{j\}$. Observe first that

$$\mathbb{P}(N^{k} = \infty) = 1 \iff \mathbb{P}(N^{k} = \infty) > 0$$
$$\iff \mathbb{E}\left[N^{k}\right] = \infty \iff \sum_{n \in \mathbb{N}} p_{kk}^{n} = \infty$$

where the last \iff follows from

$$\mathbb{E}\left[N^{k}\right] = \sum_{n \in \mathbb{N}} \mathbb{E}\left[\mathbbm{1}_{Z_{n}^{k}=k}\right] = \sum_{n \in \mathbb{N}} \mathbb{P}(\mathbbm{1}_{Z_{n}^{k}=k}) = \sum_{n \in \mathbb{N}} p_{kk}^{n}.$$

Since $\mathbb{P}(N^j = \infty) = 1$, we know that $\sum_{n \in \mathbb{N}} p_{jj}^n = \infty$. And by the irreducibility of p, there exist $m_1, m_2 \ge 1$ such that $p_{kj}^{m_1} p_{jk}^{m_2} > 0$. So for any $n \ge m_1 + m_2$,

$$p_{kk}^n \ge p_{kj}^{m_1} p_{jj}^{n-(m_1+m_2)} p_{jk}^{m_2}$$

and

$$\sum_{n\in\mathbb{N}}p_{kk}^n\geq p_{kj}^{m_1}p_{jk}^{m_2}\sum_{n\in\mathbb{N}}p_{jj}^n=\infty.$$

Q.E.D.

Construction of invariant measures

For an irreducible transition function p associated to $\mathbb{S} = \{1, 2, ..., d\}$, we fix a state $k \in \mathbb{S}$, the chain $\{Z_n^k\} \sim Markov(\mathbb{1}_{\{k\}}, p)$ and introduce

$$\gamma_j^k := \mathbb{E}\left[egin{array}{c} T^{k-1} \ \sum_{n=0} \mathbb{1}_{Z_n^k = j} \end{array}
ight] \quad ext{for} \quad j \in \mathbb{S}.$$

(the expected number of visits spent at state j in between vists to k).

Theorem 3 (Theorem 1.7.5, Norris, Markov Chains)
For every
$$k \in S$$
,
 $\gamma^k = \gamma^k p$,

which makes

$$\pi := \frac{\gamma^k}{\sum_{j \in \mathbb{S}} \gamma_j^k}$$

is an invariant distribution.

Example 4

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Irreducible but periodic chain. $p_{ii}^n > 0$ only for $n = 3, 6, 9, \ldots$ So Lemma 19 does not apply. But $\gamma^1 = \gamma^2 = \gamma^3 = [1, 1, 1]$, giving rise to $\pi = \gamma^1/3$.

Example 5

$$p = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Irreducible chain with aperiodic state 3. So Lemma 19 does apply. But theorem 22 also:

$$\gamma^1 = [1, 0.5, 1], \quad \gamma^2 = [2, 1, 2], \quad \gamma^3 = [1, 0.5, 1]$$

Simulation of a time-homogeneous Markov chain

For $\{Z_n\} \sim Markov(\pi^0, p)$ on $\mathbb{S} = \{1, 2, ..., d\}$ the main challenges for simulation are to draw the initial state and the transitions:

1 Draw
$$Z_0 \sim \pi^0$$

2 ...
3 given $Z_n = i$, draw $Z_{n+1} \sim [p_{i1}, p_{i,2}, \dots, p_{id}]$

Same challenge for every step: draw a sample/new state from a distribution $f = [f_1, \ldots, f_d]$.

Sampling method:

1 construct a vector

$$\bar{f} = \begin{pmatrix} f_1 \\ f_1 + f_2 \\ \vdots \\ \sum_{j=1}^{d-1} f_j \\ 1 \end{pmatrix}$$

2 Draw a uniformly distributed rv $U \sim U[0,1]$ and determine new state by:

$$j(U) := \min\{k \in \{1, 2, \dots, d\} \mid \overline{f}_k > U\}.$$

Exercise: verify that $\mathbb{P}(j(U) = \ell) = f_{\ell}$.

Data assimilation of Markov Chains

Let $\{Z_n\}$ with $Z_n = (X_n, Y_n)$ denote a time-homogeneous Markov chain.

For observations $Y_{0:n}$ related to a signal of interest $X_{0:n}$ we consider the following conditional estimation problems:

• Prediction:
$$X_k | Y_{0:j}$$
 for $j < k$,

• Filtering: $X_k | Y_{0:k}$,

Smoothing
$$X_k | Y_{0:T}$$
 for $T > k$.

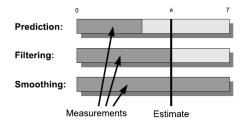


Figure: From "Bayesian Filtering and Smoohting" by S. Särrkä.

Recurrence and construction of invariant distributions for time-homogeneous finite Markov chains

2 Filtering

3 Prediction

4 Smoothing

Filtering setting

Time homogeneous Markov chain $\{Z_n\} = \{(X_n, Y_n)\}$ with

■ countable state-space *C*, since

$$(X_n, Y_n): \Omega \to A \times B =: C,$$

• and transition function $p: C \times C \rightarrow C$ satisfying

$$\mathbb{P}(Z_{n+1}=c_{n+1}\mid Z_n=c_n)=p(c_n,c_{n+1}) \quad \text{ whenever } \mathbb{P}(Z_n=c_n)>0.$$

- For every n ≥ 0, recall that Y_{0:n} = (Y₀, Y₁,..., Y_n) is the history of observations
- and we seek the state of the signal of interest X_n given $Y_{0:n}$.

Examples

• Random walk $Z_n = (X_n, Y_n)$ on \mathbb{Z}^2 .

- Discrete Markov chain X_n on S = Z^d with Y_n = HX_n + W_n for some matrix H ∈ Z^{k×d} and with W_n a random walk on Z^k.
- Discrete Markov chain X_n on S with $Y_n = X_{\lfloor n/5 \rfloor}$ (new observation every fifth time unit).
- Hidden Markov models: X_n a discrete Markov chain and

$$Y_n = \gamma(X_n, W_n)$$

where $\{W_n\}$ are iid and $\{X_n\}$ and $\{W_n\}$ are independent.

Note Z_n being a Markov chain does not imply that either of X_n or Y_n is:

Example 6

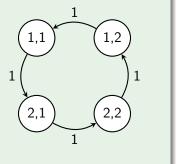
Consider chain Z_n on $\{1,2\} \times \{1,2\}$ and X_n and Y_n discrete processes on $A = B = \{1,2\}$, say with uniformly random initial condition, to make the chain stochastic.

It is then clear that for n > 1,

$$\mathbb{P}(X_n = 1 \mid X_{n-1} = 2) = 1/2,$$

while

$$\mathbb{P}(X_n = 1 \mid X_{n-1} = 2, X_{n-2} = 2) = 1.$$



How detailed state-information do we seek?

Best approximation in mean-square sense:

$$\tilde{X}_n := \mathbb{E}\left[X_n \mid Y_{0:n}\right] = \sum_{a \in \mathcal{A}} a \mathbb{P}(X_n = a \mid Y_{0:n}).$$

or perhaps the (more informative) conditional distribution

$$\mathbb{P}(X_n = a \mid Y_{0:n})$$
 for relevant $a \in A$.

Example 7 (Comparison of conditional expectation and distribution)

Let the sequence $Z_n = (X_n, Y_n)$ be a simple symmetric random walk on \mathbb{Z}^2 with $Z_0 = (0, 0)$. Then for any $n \ge 0$ and observation sequence $b_{0:n}$,

$$\mathbb{E}\left[X_n\mid Y_{0:n}=b_{0:n}\right]=0$$

since

$$\mathbb{P}(X_n = a \mid Y_{0:n} = b_{0:n}) = \mathbb{P}(X_n = -a \mid Y_{0:n} = b_{0:n}) \quad \forall a \in A.$$

Conclusion: $\mathbb{P}(X_n = a \mid Y_{0:n} = b_{0:n})$ is not always needed to compute the associated conditional expectation.

9/38

Filtering setting 2

- We will consider observations of the kind $Y_{0:n} = b_{0:n}$, accumulating as $n \mapsto n + 1$.
- We assume that P(Y_{0:n} = b_{0:n}) > 0 for n = 0, 1, ... (since these observations have occurred).
- Iteratively in time n = 0, 1, ..., we seek the conditional distribution

$$\mathbb{P}(X_n = a_n \mid Y_{0:n} = b_{0:n}) \quad \text{for relevant} \quad a_n \in A \tag{5}$$

■ For efficiency, we seek a recursive algorithm, using the new measurement *b_n* to update the previous calculations of

$$\{\mathbb{P}(X_{n-1} = a_{n-1} \mid Y_{0:n-1} = b_{0:n-1})\}_{a_{n-1} \in A}$$

when computing (5).

Recursive algorithm

By definition,

$$\mathbb{P}(X_n = a \mid Y_{0:n} = b_{0:n}) = \frac{\mathbb{P}(X_n = a, Y_{0:n} = b_{0:n})}{\mathbb{P}(Y_{0:n} = b_{0:n})},$$
(6)

Idea: Apply law of total probability

$$\mathbb{P}(X_n = a_n, Y_{0:n} = b_{0:n}) = \sum_{a_{0:n-1} \in \mathcal{A}^n} \mathbb{P}\Big(X_n = a_n, X_{0:n-1} = a_{0:n-1}, Y_{0:n} = b_{0:n}\Big)$$

and use the Markov property to render every summand computable

$$\mathbb{P}\Big(X_{0:n} = a_{0:n}, Y_{0:n} = b_{0:n}\Big)$$

= $\mathbb{P}\Big(X_n = a_n, Y_n = b_n \mid X_{n-1} = a_{n-1}, Y_{n-1} = b_{n-1}\Big)$
 $\times \mathbb{P}\Big(X_{0:n-1} = a_{0:n-1}, Y_{0:n-1} = b_{0:n-1}\Big) = \dots$

Simplification of idea

By the law of total probability and Markovianity [FJK Corrollary 2.2.7] yields

$$\mathbb{P}(X_n = a, Y_{0:n} = b_{0:n})$$

$$= \sum_{r \in A} \mathbb{P}\left(X_n = a, X_{n-1} = r, Y_{0:n} = b_{0:n}\right)$$

$$= \sum_{r \in A} \mathbb{P}\left((X_n, Y_n) = (a, b_n), (X_{n-1}, Y_{n-1}) = (r, b_{n-1}), Y_{0:n-2} = b_{0:n-2}\right)$$

$$= \sum_{r \in A} \mathbb{P}\left((X_n, Y_n) = (a, b_n) \mid (X_{n-1}, Y_{n-1}) = (r, b_{n-1})\right)$$

$$\times \mathbb{P}\left((X_{n-1}, Y_{n-1}) = (r, b_{n-1}), Y_{0:n-2} = b_{0:n-2}\right)$$
Motivation last equality?

Recursive algorithm

Recalling that on positive probability conditioned events,

$$\mathbb{P}\Big((X_n, Y_n) = (a, b_n) \mid (X_{n-1}, Y_{n-1}) = (r, b_{n-1})\Big) = p((r, b_{n-1}), (a, b_n))$$

=: $q^{ra}(b_{n-1}, b_n),$

we have that

$$\mathbb{P}(X_n = a, Y_{0:n} = b_{0:n}) = \sum_{r \in A} q^{ra}(b_{n-1}, b_n) \mathbb{P}\Big(X_{n-1} = r, Y_{0:n-1} = b_{0:n-1}\Big)$$
(7)

Algorithm 1: Recursive relationship joint density Let $\varphi_n^a(b_{0:n}) := \mathbb{P}(X_n = a, Y_{0:n} = b_{0:n})$. Then (7) yields

$$\varphi_n^a(b_{0:n}) = \sum_{r \in A} q^{ra}(b_{n-1}, b_n) \varphi_{n-1}^r(b_{0:n-1})$$

Algorithm 1 continued

Moreover,

$$\mathbb{P}(Y_{0:n} = b_{0:n}) = \sum_{r \in A} \varphi_n^r(b_{0:n})$$

and thus

$$\mathbb{P}(X_n = a \mid Y_{0:n} = b_{0:n}) = \frac{\varphi_n^a(b_{0:n})}{\sum_{r \in A} \varphi_n^r(b_{0:n})}$$

Verification:

Iterations

- Compute φ^a₀(b₀) := ℙ(X₀ = a, Y₀ = b₀) for relevant non-zero probability outcomes a ∈ A.
- When observation b₁ is obtained, compute φ₁^a(b_{0:1}) for all relevant outcomes a ∈ A using Algorithm 1 and the pre-computed values {φ₀^a(b₀)}_a.
- Similar iteration " $\{\varphi_n^r(b_{1:n})\}_r \mapsto \{\varphi_{n+1}^r(b_{1:n+1})\}_r$ " for each $n \mapsto n+1$.

The iterations based on Alg 1 are called **online learning**, here meaning that you recursively update your estimate for every new observation.

An alternative would be **offline/batch learning**, here meaning to learn/precompute $\varphi_n^a(\tilde{b}_{0:n})$ for all relevant $n \ge 0$, $a \in A$ and $\tilde{b}_{0:n} \in B^{n+1}$ before filtering.

Remarks

If instead of conditioning on the observation $b_{0:n}$, we condition on $Y_{0:n}$, then we get the following rv associated to filtering:

$$\mathbb{P}(X_n = a \mid Y_{0:n})(\omega) = \frac{\varphi_n^a(Y_{0:n}(\omega))}{\sum_{r \in A} \varphi_n^r(Y_{0:n}(\omega))}$$

 Extension of Alg 1 to when {Z_n} is not a time-homogeneous Markov chain is straightforward. Replace time-independent transition functions by the time-dependent ones

$$q^{ra}(n, b_n, b_{n+1}) := p(n, (r, b_n), (a, b_{n+1}))$$

Given a finite state-space A, we may view {q^{ra}(b_n, b_{n+1})}_{(r,a)∈A²} as a matrix q_n and {φ^a_n(b_{0:n})}_a = φ_n as a column vector. The iterations in Alg 1 then becomes

$$\varphi_{n+1} = q_n^T \varphi_n.$$

Example 8 (Hidden Markov model)

Let X_n be a simple symmetric RW on \mathbb{Z} and $Y_n = X_n + W_n$, where $\{W_n\}$ is iid and independent of $\{X_n\}$ with $\mathbb{P}(W_n = k) = 1/5$ for all $|k| \le 2$. Assume $X_0 = 0$. **Compute** $\mathbb{P}(X_2 = 0 | Y_{0:2} = (0, 2, 1))$.

Some steps in the solution:

1. Identify transition function

$$q^{ra}(c,d) = \mathbb{P}\Big((X_n,Y_n) = (a,d) \mid (X_{n-1},Y_{n-1}) = (r,c)\Big)$$

$$=\mathbb{P}(X_n=a\mid X_{n-1}=r)\mathbb{P}(W_n=d-a)$$

(above eq holds $\mathbb{P}((X_{n-1}, Y_{n-1}) = (r, c)) > 0)$. 2. Observe that $\{\varphi_n^a(b_{0:n})\}_a$ is only possibly non-zero for $a \in \{-n, -n+1, \dots, n\}$ 3. Use Alg 1.

Recurrence and construction of invariant distributions for time-homogeneous finite Markov chains

2 Filtering

3 Prediction

4 Smoothing

Prediction problem

The prediction problem is to estimate

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m})$$

for some $n > m \ge 0$.

Derivation of recursive algorithm:

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m}) = \frac{\mathbb{P}(X_n = a, Y_{0:m} = b_{0:m})}{\mathbb{P}(Y_{0:m} = b_{0:m})}$$
$$= \frac{\sum_{\bar{b} \in B} \mathbb{P}(X_n = a, Y_n = \bar{b}, Y_{0:m} = b_{0:m})}{\mathbb{P}(Y_{0:m} = b_{0:m})}$$

Idea for obtaining computable terms:

For $n \ge m$, introduce

$$\varphi_n^{\boldsymbol{a},\bar{\boldsymbol{b}}}(\boldsymbol{b}_{0:m}) := \mathbb{P}(\boldsymbol{X}_n = \boldsymbol{a}, \boldsymbol{Y}_n = \bar{\boldsymbol{b}}, \boldsymbol{Y}_{0:m} = \boldsymbol{b}_{0:m}).$$

Then, for n = m,

$$\varphi_n^{a,\bar{b}}(b_{0:m}) = \varphi_n^a(b_{0:m})\mathbb{1}_{b_m}(\bar{b})$$

Verification

And, for
$$n > m$$
,
 $\varphi_n^{a,\bar{b}}(b_{0:m}) = \sum_{r \in A, s \in B} \mathbb{P}(X_n = a, Y_n = \bar{b}, X_{n-1} = r, Y_{n-1} = s, Y_{0:m} = b_{0:m})$

$$=$$

$$= \sum_{r \in A, s \in B} \mathbb{P}(X_n = a, Y_n = \bar{b} \mid X_{n-1} = r, Y_{n-1} = s)\varphi_{n-1}^{r,s}(b_{0:m})$$

$$= \sum_{r \in A, s \in B} q^{ra}(s, \bar{b})\varphi_{n-1}^{r,s}(b_{0:m})$$
_{30/38}

Summary

We seek a recursive algorithm for

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m}) = \frac{\sum_{\bar{b} \in B} \mathbb{P}(X_n = a, Y_n = \bar{b}, Y_{0:m} = b_{0:m})}{\mathbb{P}(Y_{0:m} = b_{0:m})}$$
$$= \frac{\sum_{\bar{b} \in B} \varphi_n^{\bar{a}, \bar{b}}(b_{0:m})}{\sum_{r \in A} \varphi_m^r(b_{0:m})}$$

Every summand in the numerator satisfies recursive equation

$$\varphi_n^{a,\bar{b}}(b_{0:m}) = \sum_{r \in A, s \in B} q^{ra}(s,\bar{b})\varphi_{n-1}^{r,s}(b_{0:m}) \quad n > m$$
 (8)

with "initial condition"

$$\varphi_m^{r,s}(b_{0:m}) = \varphi_m^r(b_{0:m})\mathbb{1}_{b_m}(s).$$

Algorithm 2 – Prediction

- **1** Compute $\{\varphi_m^r(b_{0:m})\}_{r \in A}$ by Algorithm 1.
- 2 "Initialize" $\varphi_m^{r,s}(b_{0:m}) = \varphi_m^r(b_{0:m}) \mathbb{1}_{b_m}(s)$ for relevant $(r,s) \in A \times B$.
- 3 Compute $\{\varphi_k^{r,s}(b_{0:m})\}_{r \in A, s \in B}$ for k = m + 1, m + 2, ..., n 1 by the recursive formula (8).
- 4 Compute {φ_n^{a,b}(b_{0:n})}_{b∈B} by (8) (i.e., for the fixed state a ∈ A only).
 5 Output:

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m}) = \frac{\sum_{\bar{b} \in B} \varphi_n^{a,\bar{b}}(b_{0:m})}{\sum_{r \in A} \varphi_m^r(b_{0:m})}.$$

Remark: Algorithm 2 simplifies in many settings, e.g., hidden Markov models [FJK 3.4.3].

Exercise Simplify the "recursive" equation predictions when n = m + 1.

Recurrence and construction of invariant distributions for time-homogeneous finite Markov chains

2 Filtering

3 Prediction

4 Smoothing

Smoothing problem

The smoothing/interpolation problem is to estimate

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m})$$

for some $m > n \ge 0$.

Property: More information leads to improved approximations: for $m > n > k \ge 0$

$$\underbrace{\mathbb{E}\left[\left|X - \mathbb{E}\left[X_{n}|Y_{0:m}\right]\right|^{2}\right]}_{\text{smoothing}} \leq \underbrace{\mathbb{E}\left[\left|X - \mathbb{E}\left[X_{n}|Y_{0:n}\right]\right|^{2}\right]}_{\text{filtering}} \leq \underbrace{\mathbb{E}\left[\left|X - \mathbb{E}\left[X_{n}|Y_{0:k}\right]\right|^{2}\right]}_{\text{prediction}}$$

Derivation of a recursive algorithm:

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m}) = \frac{\mathbb{P}(X_n = a, Y_{0:m} = b_{0:m})}{\mathbb{P}(Y_{0:m} = b_{0:m})} = \frac{\varphi_n^a(b_{0:m})}{\sum_{r \in \mathcal{A}} \varphi_m^r(b_{0:m})}$$

Using the Markov property [FJK 2.2.7]

$$\varphi_{n}^{a}(b_{0:m}) = \mathbb{P}\left(X_{n} = a, Y_{0:n} = b_{0:n}, Y_{n+1:m} = b_{n+1:m}\right)$$

= $\mathbb{P}\left(Y_{n+1:m} = b_{n+1:m} \mid X_{n} = a, Y_{0:n} = b_{0:n}\right) \mathbb{P}\left(X_{n} = a, Y_{0:n} = b_{0:n}\right)$
= $\mathbb{P}\left(Y_{n+1:m} = b_{n+1:m} \mid X_{n} = a, Y_{n} = b_{n}\right) \varphi_{n}^{a}(b_{0:n})$
(9)

Next seek to obtain recursive formula for first factor when $\mathbb{P}(X_n = a, Y_n = b_n) > 0.$

Otherwise, also $\varphi_n^a(b_{0:n}) = 0$, and the value of the first-factor value is not needed.

By the law of total probability,

$$\mathbb{P}(Y_{n+1:m} = b_{n+1:m} \mid X_n = a, Y_n = b_n)$$

$$= \sum_{\bar{a}_{n+1:m} \in A^{m-n}} \mathbb{P}(X_{n+1:m} = \bar{a}_{n+1:m}, Y_{n+1:m} = b_{n+1:m} \mid X_n = a, Y_n = b_n)$$

$$= \sum_{\bar{a}_{n+1:m} \in A^{m-n}} p((a, b_n), (\bar{a}_{n+1}, b_{n+1})) p((\bar{a}_{n+1}, b_{n+1}), (\bar{a}_{n+2}, b_{n+2})) \dots$$

 $\ldots p\left((\bar{a}_{m-1}, b_{m-1}), (\bar{a}_m, b_m)\right)$

Algorithm for κ [FJK problem 3.3.4]

Whenever
$$\mathbb{P}(X_n = a, Y_n = b_n) > 0$$

$$\kappa_{n,m}^{a}(b_{n:m}) := \begin{cases} \mathbb{P}(Y_{n+1:m} = b_{n+1:m} \mid X_n = a, Y_n = b_n) & \text{if } n < m \\ 1 & \text{if } n = m \end{cases}$$

solves the following backward recurrence equation

$$\kappa_{n-1,m}^{a}(b_{n-1:m}) = \sum_{r \in A} \underbrace{p((a, b_{n-1}), (r, b_n))}_{q^{ar}(b_{n-1}, b_n)} \kappa_{n,m}^{r}(b_{n:m}), \qquad n = 1, 2, \dots, m.$$

Summary

We seek

$$\mathbb{P}(X_n = a \mid Y_{0:m} = b_{0:m}) = \frac{\mathbb{P}(X_n = a, Y_{0:m} = b_{0:m})}{\mathbb{P}(Y_{0:m} = b_{0:m})} = \frac{\varphi_n^a(b_{0:m})}{\sum_{r \in A} \varphi_m^r(b_{0:m})}$$
(10)

and by (9) and Algorithm for κ ,

$$\varphi_n^a(b_{0:m}) = \kappa_{n,m}^a(b_{n:m})\varphi_n^a(b_{0:n}) \tag{11}$$

Algorithm 3 - smoothing/interpolation

- **1** Compute $\{\varphi_n^r(b_{0:n})\}_r$ by Algorithm 1,
- **2** Compute $\kappa_{n,m}^a(b_{n:m})$ by Algorithm for κ , $\phi_n^a(b_{0:m})$ by (11) and the output (10).

Next time

Continuous random variables, probability density functions, conditional densities \ldots