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Summary of lecture 5

m Markov property:

P(Zn—i-l =2Zn41,Zn = 2Zn, ..., L0 = ZO)
= ]P)(Zn—f—l = Zp+1 ‘ Zn = Zn)]P)(Zn = Zn,.. .,Z() = Z()) . (1)
m time-homogeneous chains Markov (7, p) with transition function
P(Zny1=Jj| Zn=1i)=p(i,j) whenever P(Z, =1i) > 0.

m evolution of distributions ) ﬂ”({ );— {?(Zu: ¢ )

and invariant distributions
T=T7p

m aperiodicity of states and irreduciblity and recurrence of p.
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Recurrence and construction of invariant distributions

Definition 1

Consider an irreducible transition function p associated to a state-space
S. Then we say that p is recurrent if it for any state /i € S and Markov
chain {Z}} ~ Markov(1y;, p) holds that

P(Z. =i for infinitely many n) = 1, (2)
which for the hitting time T; := inf{n > 1| Z! = i} is equivalent to

P(T; < o0) = 1.

Lemma 2

If p is irreducible and the state-space is finite, then p is recurrent.




Proof: Let us write S ={1,2,...,d}. Since S is finite, there must be at

least one pair of states /,j € S satisfying
P(Z. =) for infinitely many n) > 0

since otherwise we reach the contradiction
0=bP(Z) ¢S for infinitely many n)
>1- Z bP(Zi =j for infinitely many n) = 1.
Jjes

And

P(Z, =j for infinitely many n)

=P(Z. = for infinitely many nN{Z' = for some n})

=P(Z. = for infinitely many n) > 0.

(3)

(4)



Theorem 9, Lecture 4 extends to the current setting, so by defining

N = Z Ty, (total visits at state j),
neN

we obtain for \; := P(T/ < o) that

(L= if A <1
Th—oo if \j=1

MM:@:{

Consequently,

i ; 0 ifx <1
0<P(Z, =, forinfinitely many n) = P(W = ) = I J <
1 if)\=1

Conclusion: \; must equal 1 and j is a recurrent state.



It remains to verify that N¥ = oo a.s. for all k € S\ {j}. Observe first that

P(N* = 00) =1 <= P(NK =00) >0
= E{Nk}:oo — ZPZk:oo
neN

where the last <= follows from

E [Nk} = ZE {ILZ,’;:k} = Zp(ﬂzﬁzk) = ZPZk'

neN neN neN

Since P(W = 00) = 1, we know that Y pjj = co. And by the

my m3

irreducibility of p, there exist m;, my > 1 such that Py P’ > 0. So for

any n > my + mo,
"*(m1+m2) my

Pk = PZ'I P p;

n my _my n__
> Pl = PgteR D pj = oo
neN neN

and

Q.E.D.



Construction of invariant measures

For an irreducible transition function p associated to S = {1,2,...,d}, we
fix a state k € S, the chain {Z¥} ~ Markov(1 .y, p) and introduce

Tk-1
/}/jk =K Z :[]‘Z,‘;:j for _]G S.
n=0

(the expected number of visits spent at state j in between vists to k).

Theorem 3 (Theorem 1.7.5, Norris, Markov Chains)
For every k € S,
k _ _k
fY - fy p7

which makes P
Y

===
2 jes

is an invariant distribution.




Example 4

1

Irreducible but periodic chain. p7i > 0 only for n =3,6,9,.... So Lemma
19 does not apply.
But v =42 =43 =1, 1, 1], giving rise to T = 71/3.




Example 5

Irreducible chain with aperiodic state 3. So Lemma 19 does apply.
But theorem 22 also:

At =[1,05,1, 4*=1[2,1,2], ~*=[1,05,1]




Simulation of a time-homogeneous Markov chain

For {Z,} ~ Markov(7®, p) on S = {1,2,...,d} the main challenges for
simulation are to draw the inital state and the transitions:

0 2 7
Draw Zo ~m°=(w, .. ., lz‘L)
given Z, =i, draw Zp1 ~ [pi1, Pi2, - - -, Pid)

Same challenge for every step: draw a sample/new state from a
distribution f = [f1, ..., f4].



Sampling method: 7{ :CQMDMW C’]L')
construct a vector
fi

i+t

oy
Il

S
1 U = randC )3

Draw a uniformly distributed rv U ~ U[0, 1] and determine new state
by:
j(U) :=min{k € {1,2,...,d} | fi > U}.

Exercise: verify that P(j(U) = ¢) = f,.



Data assimilation of Markov Chains

Let {Z,} with Z, = (X,, Y») denote a time-homogeneous Markov chain.
Vo = (%/ "'/yn)

For observations Yj., related to a signal of interest Xp., we consider the
following conditional estimation problems:

0 P r
icti H Prediction:
m Prediction: Xi|Yp,j for j < k, rediction
Filtering:
m Filtering: Xi| Yok,
¢ k’ ok Smoothing:
= Smoothing Xk‘ Yo.1 for T > k. Measurements Estimate

Figure: From “Bayesian Filtering
and Smoohting” by S. Sarrka.



Overview

Filtering



Filtering setting
Time homogeneous Markov chain {Z,} = {(Xp, Y»)} with

m countable state-space C, since

(Xn, Yn): Q= Ax B=:C,

m and transition function p : C x C — C satisfying

P(Zy+1 = cnt1 | Zn = cn) = p(cn, €ny1)  whenever P(Z, = ¢,) > 0.

m For every n > 0, recall that Yp., = (Yo, Y1,..., Yn) is the history of
observations

m and we seek the state of the signal of interest X, given Yp.,.



Examples

= Random walk Z, = (X,, Y;) on Z2.

m Discrete Markov chain X, on S = Z9 with Y, = HX,, + W, for some
matrix H € ZK*9 and with W, a random walk on Z.

m Discrete Markov chain X, on S with Y, = XLn/5J (new observation
every fifth time unit).

m Hidden Markov models: X,, a discrete Markov chain and
Y, = 'Y(Xnv Wn)

where {W,} are iid and {X,} and {W,} are independent.



Note Z, being a Markov chain does not imply that either of X, or Y, is:

Example 6 1,2 (/ 2
Consider chain Z, on {0,1} x {0,1} and X,

and Y, discre;Ee processes on

A=B= {'6f\l.]< say with uniformly random 1

initial condition, to make the chain Q

stochastic.

It is then clear that for n > 1, 1 1
e () (G

while 1

P(Xp=1|Xp_1 =2,Xp2=2)=1.




How detailed state-information do we seek?

m Best approximation in mean-square sense:

Xo =E[Xn| Youl =) aP(Xn = a| Yon).
acA

m or perhaps the (more informative) conditional distribution

P(X, = a| Yo.n) for relevant a € A.

Example 7 (Comparison of conditional expectation and distribution)
Let the sequence Z, = (X,, Y,) be a simple symmetric random walk on Z?
with Zy = (0,0). Then for any n > 0 and observation sequence by,
IE[)<n ’ YO:n — bO:n] =0
since

IPJ()<n =a ‘ YO:n = bO:n) = ]P(Xn = —a ‘ YO:n = bO:n) Ya e A.

Conclusion: P(X, = a| Yo.n = bo:n) is not always needed to compute

the associated conditional expectation.




Filtering setting 2
m We will consider observations of the kind Yj., = bg.n, accumulating
asn— n+1.

m We assume that P(Yp., = bp.n) > 0 for n =0,1,... (since these
observations have occurred).

m lteratively in time n=0,1,..., we seek the conditional distribution

P(X, = an | Yon = bo.n) for relevant a, € A (5)

m For efficiency, we seek a recursive algorithm, using the new
measurement b, to update the previous calculations of

{P(Xn—l = danp-—1 ‘ YO:n—l = bO:n—l)}a,,,leA

when computing (5).



Recursive algorithm

By definition,

Xn=a, Yon = bO:n) (6)
]P)( YO:n — bO:n) ’

P
P(Xn = a| Yon = bo:n) = (

Idea: Apply law of total probability

IP)()<n = ap, Yon = bO:n) = Z IP)<Xn = ap, Xo:n—1 = ao0:n—1, Yo:n = bO:n)

ag:n—1€A"

and use the Markov property to render every summand computable
P<X0:n = 40:n, YO:n = bO:n)
= HJ>()<n = an, Yn = by | Xn-1 = an—1, Yn-1= bn71>

X P<X02n_1 = a0:n—1, YUZn—l = bO:n—1> = ...



Simplification of idea

By the law of total probability and Markovianity [FJK Corrollary 2.2.7]
yields

IP>()<n = a, YO:n = bO:n)

= Z]P’(X,, =a,Xp_1=1r,Yon= bO:n)
reA

= > P((Xn Ya) = (3 ba), (Xo-1, Ya1) = (7, bo-1), Youn—2 = boun—2)
reA

- ZIP’((X,,, Y,) = (3, bn) | (Xo_1, Yo1) = (r, bn,l))

reA

XP((anla Ynfl) = (I’, b,,,l), yO:n72 = bO:nf2)
Motivation last equality?



Recursive algorithm

Recalling that on positive probability conditioned events,

P((Xo: Ya) = (.50) | (Xa-1, Yar1) = (r.bo-2) ) = p((r, ba1), (3. b0)
=: q"(bn-1, bn),

we have that
IP)()<n = 4, YO:n - bO n Z qra n— 17 (X -1=1r, YO:n—l - bO:n—l)
reA
(7)

Algorithm 1: Recursive relationship joint density
Let ©3(bo:n) := P(Xp = a, Yo:n = bo:n). Then (7) yields

(Pz(bO:n) = Z qra(bn—ly bn) @2_1(b0:n—1)
reA




Algorithm 1 continued

Moreover,
]P( YO:n = bO:n) = Z@Z(bo:n)
€A
and thus 2 (Bou)
@ D0:n
P(Xn, = a| Yo.n = bon) =
(o =2l Yon =bon) = 5= or (o)

Verification: —_—
0 (o) = T =) Loon™ o)

glf{:(bm) - (2,4 E(Zﬂ: i Yoow :!%:V'>
- (e A Yo, =l )



Iterations ﬁ’(‘Zp =7 l Sf;: b’) IR/Z = ’0)

m Compute ¢§(bg) :=P(Xo = a, Yo = bg) for relevant non-zero
probability outcomes a € A.

m When observation b; is obtained, compute 3 (bo.1) for all relevant
outcomes a € A using Algorithm 1 and the pre-computed values

{#5(bo)}a-

m Similar iteration “{¢7(b1:n)}r = {©)11(b1:ny1)}," for each
n— n+1.

The iterations based on Alg 1 are called online learning, here meaning
that you recursively update your estimate for every new observation.

An alternative would be offline/batch learning, here meaning to
learn /precompute 2 (bg.,) for all relevant n >0, a € A and by., € B"*1
before filtering.



Remarks

m If instead of conditioning on the observation bg.,, we condition on
Yo:n, then we get the following rv associated to filtering:

ea(Yo:n(w))
ZrEA ©n(Yo:n(w))

P(X, = a| Yon)(w) =

m Extension of Alg 1 to when {Z,} is not a time-homogeneous Markov
chain is straightforward. Replace time-independent transition
functions by the time-dependent ones

ql’a(n7 bn? bn-‘rl) = p(”a (r7 bn)7 (37 bn+1))

m Given a finite state-space A, we may view {q"(bn, bn11)} (s 2)ca as 2
matrix gn, and {p2(bo.n)}a2 = n as a column vector. The iterations in
Alg 1 then becomes

Pl = Gy Pn-



Example 8 ( Hidden Markov model)

Let X, be a simple symmetric RW on Z and Y, = X, + W, where {W, }
is iid and independent of {X,} with P(W, = k) = 1/5 for all |k| < 2.
Assume Xy = 0. Compute P(X> =0 Yp.2 = (0,2,1)).

Some stfeps in the s]?lution: $X. =48 (IEE_FWPL:CQ
1. ldentify transition function , _
=§Kn=a3 (1 Wn=d—a3
q(c,d) = B((Xn, Ya) = (2.d) | (Xo-1, Yo-1) = (1))

_IPCZl &, Wy = Cb-‘ian 1=y Wy = C- |‘>

Ww—(iwafyw’“ga(ﬁ wmééd‘r Wi
=P(Xo =a| Xp1 = r)P(W, =d - a)

(above eq holds P((X,_1, Yo—1) = (r,c)) > 0).

2. Observe that {(pn(bo n)}a is only possibly non-zero for )
ae{-n—n+1,...,n} %Lb’)"l?(z_ Q/prba> l((
3. Use Alg 1. S(Wo=hr)



Overview

Prediction



Prediction problem

The prediction problem is to estimate
IP>()<n =a ’ YO:m = bO:m)

for some n > m > 0.

Derivation of recursive algorithm:

IED()<n = a, YO:m = bO:m)

IP>()<n =a ’ YO:m = bO:m) =

P( YO:m = bO:m)
— ZEEB ]P(Xn = a, Yn = b? YO:m - bO:m)
IED( YO:m = bO:m)

Idea for obtaining com utable terms:

g2 WZ on= HD(X"‘:Q”V\)Z:V\: 19"7'1 )

qu-( A bw”lu\sgn\m



For n > m, introduce
(bOm) —]P)( n = a, Y —b YOm—bOm)

Then, for n = m,

02 (bo:m) = ©3(bo:m)Lb,, (D)
Verification

%b(b':m) = [?(XM:Q/Y:E/ Z = Po 1 )
[()(Xm-q /Y b Y. XM’ _\ ’é&:-ﬂ

Lo-m-

And, for n > m,
Sora{b(b()im) = Z ]P(Xn =a, Yy = Eaxn—l =rYsr1=5Yom= bO:m)

reA,;seB
S a5 B0 %o o) 0T )
re Foim =be: )
= > PXp=a,Ya=b|Xo1=r,Yo1=5)p;> (bo:m)
reA,;seB

Z qra(s’ E)@;’jl(bo:m)

reA;seB



Summary

We seek a recursive algorithm for

= P Xn = a, Yn = B, YO:m - bO:m
B(Xy = 2 | You = bom) — 225580 )

N IP)( YO:m — bO:m)
_ ZEGB 9027b(b0:m)
ZreA SOfn(bO:m)

Every summand in the numerator satisfies recursive equation

@2"(bo:m) = Z q"(s,b)p;* 1 (bom) n>m
reA,seB

with “initial condition”

@ (bo:m) = ©m(bo:m)Lp,,(s)-



Algorithm 2 — Prediction
Compute {! (bo:m)}rea by Algorithm 1.
“Initialize” @’ (bo:m) = @ (bo:m)1p, (s) for relevant (r,s) € A x B.
Compute {¢;°(bo:m)}reases for k=m+1,m+2,...,n—1 by the
recursive formula (8).
Compute {gaf,’E(bo:,,)}EeB by (8) (i.e., for the fixed state a € A only).
Output:

a,b
ZEEB ©n” (bo:m)

P60 =l Yom =bon) =00 ot (bom)
re m m

Remark: Algorithm 2 simplifies in many settlngs eg., hldden Markov
models [FJK 3.43]. (gt viaive: (A" (B |\
recazive : m(4) +@- M%‘Q] lB,P

Exercise Simplify the “recursive” equation predlctlons when n = m+




Overview

Smoothing



Smoothing problem

The smoothing/interpolation problem is to estimate

IP>()<n =a ’ YO:m = bO:m)

for some m > n > 0.

Property: More information leads to improved approximations: for
m>n>k>0

E[|X —E[Xa|Yom] [?] SE[|X —E[Xa|Yo:n] [?] E[|X —E[Xa|You] °]

Ve . Vv
smoothing filtering

S[EL (2-3<Ten) ]
%ﬂ'a4791@m>

prediction



Derivation of a recursive algorithm:

IP)()<n = a, YO:m = bO:m) _ (P‘;(bo:m)
P(Yo:m = bo:m) ZrGA ©(bo:m)

]P(Xn =a | YO:m = bO:m) =

Using the Markov property [FJK 2.2.7] {y"ﬂ wz" we mj sy

- E(XV’.J-I éA x'fﬁl
(‘Dz(bO:m) = IP>(Xn =a, YO n— bO n, n+1 m = bn+l m)MA—M( M) e

= P(YnJrl:m = bn+1:m | Xn = a, YO:n - bO:n)]P)( n = a, YO:n - bO:n)
= P(YnJrl:m = bn+1:m | Xn = a, Yn = bn) SOf,(bo:n)
(9)

Next seek to obtain recursive formula for first factor when
P(X,=a, Y,=bp) >0.

Otherwise, also ¢3(bo:n) = 0, and the value of the first-factor value is not
needed.



By the law of total probability,

IP)(YnJrl:m = bn+1:m | Xn = a, Yn = bn)

5n+1:m€Am7n

>

1% ((aa bn)a (én—&-la bn—i—l)) 1% ((én—i-l) bn+1); (§n+27 bn+2)) cee
5n+1:m€Am_n

]P)(Xn—l—l:m - §n+1:m7 Yn+1:m - bn+1:m ’ Xn = a, Yn - bn)

- p ((5m717 bm,]_), (éma bm))
Algorithm for x [FJK problem 3.3.4]

Whenever P(X, = a, Y, = b,) >0

{P(Yn+1:m = bny1:m ‘ Xn=a,Yp,= bn) if n<m
1

if n=m
solves the following backward recurrence equation

Kf,fl’m(bn—l:m) - Z p((aa bn—l)a (r7 bn)) K'I,;’m(bn:m)7 n= 17 27 ce.,Mm.
= qar(bn—lybn)




Summary

We seek
IP(X =3 | YO' — bO' ) —_ P(Xn = a, YO:m — bO:m) _ @f,(b();m)
gn i " [\ P(YO:m = bO:m) ZreA Qorm(bO:m)

(10)
and by (9) and Algorithm for &,

2 (bom) = 52 m(brm)2(bom) () ()

Algorithm 3 - smoothing/interpolation

Compute {@;\(bo:m)}r by Algorithm 1, /( \1))

Compute K7 ,(bn:m) by Algorithm foryand the output (10).




Next time

Continuous random variables, probability density functions, conditional
densities . . .



