
Mathematics and numerics for data assimilation and
state estimation – Lecture 6

Summer semester 2020
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Summary of lecture 5

Markov property:

P (Zn+1 = zn+1,Zn = zn, . . . ,Z0 = z0)

= P (Zn+1 = zn+1 | Zn = zn)P (Zn = zn, . . . ,Z0 = z0) . (1)

time-homogeneous chains Markov(⇡, p) with transition function

P(Zn+1 = j | Zn = i) = p(i , j) whenever P(Zn = i) > 0.

evolution of distributions
⇡n = ⇡0

p
n

and invariant distributions
⇡ = ⇡p

aperiodicity of states and irreduciblity and recurrence of p.
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Recurrence and construction of invariant distributions

Definition 1
Consider an irreducible transition function p associated to a state-space
S. Then we say that p is recurrent if it for any state i 2 S and Markov
chain {Z i

n} ⇠ Markov( {i}, p) holds that

P(Z i
n = i for infinitely many n) = 1, (2)

which for the hitting time Ti := inf{n � 1 | Z i
n = i} is equivalent to

P(Ti < 1) = 1.

Lemma 2
If p is irreducible and the state-space is finite, then p is recurrent.
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Proof: Let us write S = {1, 2, . . . , d}. Since S is finite, there must be at
least one pair of states i , j 2 S satisfying

P(Z i
n = j for infinitely many n) > 0 (3)

since otherwise we reach the contradiction

0 = bP(Z i
n 62 S for infinitely many n)

� 1�
X

j2S
bP(Z i

n = j for infinitely many n) = 1.

And

P(Z j
n = j for infinitely many n)

= P(Z i
n = j for infinitely many n \ {Z i

n = j for some n})
= P(Z i

n = j for infinitely many n) > 0.

(4)
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Theorem 9, Lecture 4 extends to the current setting, so by defining

N
j :=

X

n2N
Zj
n=j (total visits at state j),

we obtain for �j := P(T j < 1) that

P(N j = k) =

(
(1� �j)�

k�1
j if �j < 1

k=1 if �j = 1

Consequently,

0 < P(Z j
n = j for infinitely many n) = P(N j = 1) =

(
0 if �j < 1

1 if �j = 1.

Conclusion: �j must equal 1 and j is a recurrent state.
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It remains to verify that Nk = 1 a.s. for all k 2 S \ {j}. Observe first that

P(Nk = 1) = 1 () P(Nk = 1) > 0

() E
h
N

k
i
= 1 ()

X

n2N
p
n
kk = 1

where the last () follows from

E
h
N

k
i
=

X

n2N
E
h

Zk
n =k

i
=

X

n2N
P( Zk

n =k) =
X

n2N
p
n
kk .

Since P(N j = 1) = 1, we know that
P

n2N p
n
jj = 1. And by the

irreducibility of p, there exist m1,m2 � 1 such that pm1
kj p

m2
jk > 0. So for

any n � m1 +m2,

p
n
kk � p

m1
kj p

n�(m1+m2)
jj p

m2
jk

and X

n2N
p
n
kk � p

m1
kj p

m2
jk

X

n2N
p
n
jj = 1.

Q.E.D.
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Construction of invariant measures
For an irreducible transition function p associated to S = {1, 2, . . . , d}, we
fix a state k 2 S, the chain {Z k

n } ⇠ Markov( {k}, p) and introduce

�kj := E

2

4
Tk�1X

n=0
Zk
n =j

3

5 for j 2 S.

(the expected number of visits spent at state j in between vists to k).

Theorem 3 (Theorem 1.7.5, Norris, Markov Chains)

For every k 2 S,
�k = �kp,

which makes

⇡ :=
�kP
j2S �

k
j

is an invariant distribution.
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Example 4

p =

0

@
0 1 0
0 0 1
1 0 0

1

A

1 2 3

1 1

1

Irreducible but periodic chain. pnii > 0 only for n = 3, 6, 9, . . .. So Lemma
19 does not apply.
But �1 = �2 = �3 = [1, 1, 1], giving rise to ⇡ = �1/3.
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Example 5

p =

0

@
0 1/2 1/2
0 0 1
1 0 0

1

A

1 2 3

0.5

0.5

1

1

Irreducible chain with aperiodic state 3. So Lemma 19 does apply.
But theorem 22 also:

�1 = [1, 0.5, 1], �2 = [2, 1, 2], �3 = [1, 0.5, 1]
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Simulation of a time-homogeneous Markov chain

For {Zn} ⇠ Markov(⇡0, p) on S = {1, 2, . . . , d} the main challenges for
simulation are to draw the inital state and the transitions:

1 Draw Z0 ⇠ ⇡0

2 . . .

3 given Zn = i , draw Zn+1 ⇠ [pi1, pi ,2, . . . , pid ]

Same challenge for every step: draw a sample/new state from a
distribution f = [f1, . . . , fd ].
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Sampling method:

1 construct a vector

f̄ =

0

BBBBB@

f1

f1 + f2
...Pd�1

j=1 fj

1

1

CCCCCA

2 Draw a uniformly distributed rv U ⇠ U[0, 1] and determine new state
by:

j(U) := min{k 2 {1, 2, . . . , d} | f̄k > U}.

Exercise: verify that P(j(U) = `) = f`.
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Data assimilation of Markov Chains

Let {Zn} with Zn = (Xn,Yn) denote a time-homogeneous Markov chain.

For observations Y0:n related to a signal of interest X0:n we consider the
following conditional estimation problems:

Prediction: Xk |Y0:j for j < k ,

Filtering: Xk |Y0:k ,

Smoothing Xk |Y0:T for T > k .

Figure: From “Bayesian Filtering
and Smoohting” by S. Särrkä.
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Filtering setting

Time homogeneous Markov chain {Zn} = {(Xn,Yn)} with

countable state-space C , since

(Xn,Yn) : ⌦ ! A⇥ B =: C ,

and transition function p : C ⇥ C ! C satisfying

P(Zn+1 = cn+1 | Zn = cn) = p(cn, cn+1) whenever P(Zn = cn) > 0.

For every n � 0, recall that Y0:n = (Y0,Y1, . . . ,Yn) is the history of
observations

and we seek the state of the signal of interest Xn given Y0:n.
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Examples

Random walk Zn = (Xn,Yn) on Z2.

Discrete Markov chain Xn on S = Zd with Yn = HXn +Wn for some
matrix H 2 Zk⇥d and with Wn a random walk on Zk .

Discrete Markov chain Xn on S with Yn = Xbn/5c (new observation
every fifth time unit).

Hidden Markov models: Xn a discrete Markov chain and

Yn = �(Xn,Wn)

where {Wn} are iid and {Xn} and {Wn} are independent.

17 / 38



Note Zn being a Markov chain does not imply that either of Xn or Yn is:

Example 6

Consider chain Zn on {0, 1}⇥ {0, 1} and Xn

and Yn discrete processes on
A = B = {0, 1}, say with uniformly random
initial condition, to make the chain
stochastic.
It is then clear that for n > 1,

P(Xm = 1 | Xn�1 = 2) = 1/2,

while

P(Xm = 1 | Xn�1 = 2,Xn�2 = 2) = 1.

1,1

2,1 2,2

1,2

1

1

1

1
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How detailed state-information do we seek?
Best approximation in mean-square sense:

X̃n := E [Xn | Y0:n] =
X

a2A
aP(Xn = a | Y0:n).

or perhaps the (more informative) conditional distribution

P(Xn = a | Y0:n) for relevant a 2 A.

Example 7 (Comparison of conditional expectation and distribution)

Let the sequence Zn = (Xn,Yn) be a simple symmetric random walk on Z2

with Z0 = (0, 0). Then for any n � 0 and observation sequence b0:n,

E [Xn | Y0:n = b0:n] = 0

since

P(Xn = a | Y0:n = b0:n) = P(Xn = �a | Y0:n = b0:n) 8a 2 A.

Conclusion: P(Xn = a | Y0:n = b0:n) is not always needed to compute

the associated conditional expectation.
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Filtering setting 2

We will consider observations of the kind Y0:n = b0:n, accumulating
as n 7! n + 1.

We assume that P(Y0:n = b0:n) > 0 for n = 0, 1, . . . (since these
observations have occurred).

Iteratively in time n = 0, 1, . . ., we seek the conditional distribution

P(Xn = an | Y0:n = b0:n) for relevant an 2 A (5)

For e�ciency, we seek a recursive algorithm, using the new
measurement bn to update the previous calculations of

{P(Xn�1 = an�1 | Y0:n�1 = b0:n�1)}an�12A

when computing (5).
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Recursive algorithm
By definition,

P(Xn = a | Y0:n = b0:n) =
P(Xn = a,Y0:n = b0:n)

P(Y0:n = b0:n)
, (6)

Idea: Apply law of total probability

P(Xn = an,Y0:n = b0:n) =
X

a0:n�12An

P
⇣
Xn = an,X0:n�1 = a0:n�1,Y0:n = b0:n

⌘

and use the Markov property to render every summand computable

P
⇣
X0:n = a0:n,Y0:n = b0:n

⌘

= P
⇣
Xn = an,Yn = bn | Xn�1 = an�1,Yn�1 = bn�1

⌘

⇥ P
⇣
X0:n�1 = a0:n�1,Y0:n�1 = b0:n�1

⌘
= . . .
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Simplification of idea
By the law of total probability and Markovianity [FJK Corrollary 2.2.7]
yields

P(Xn = a,Y0:n = b0:n)

=
X

r2A
P
⇣
Xn = a,Xn�1 = r ,Y0:n = b0:n

⌘

=
X

r2A
P
⇣
(Xn,Yn) = (a, bn), (Xn�1,Yn�1) = (r , bn�1),Y0:n�2 = b0:n�2

⌘

=
X

r2A
P
⇣
(Xn,Yn) = (a, bn) | (Xn�1,Yn�1) = (r , bn�1)

⌘

⇥P
⇣
(Xn�1,Yn�1) = (r , bn�1),Y0:n�2 = b0:n�2

⌘

Motivation last equality?
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Recursive algorithm

Recalling that on positive probability conditioned events,

P
⇣
(Xn,Yn) = (a, bn) | (Xn�1,Yn�1) = (r , bn�1)

⌘
= p((r , bn�1), (a, bn))

=: qra(bn�1, bn),

we have that

P(Xn = a,Y0:n = b0:n) =
X

r2A
q
ra(bn�1, bn)P

⇣
Xn�1 = r ,Y0:n�1 = b0:n�1

⌘

(7)

Algorithm 1: Recursive relationship joint density

Let 'a
n(b0:n) := P(Xn = a,Y0:n = b0:n). Then (7) yields

'a
n(b0:n) =

X

r2A
q
ra(bn�1, bn)'

r
n�1(b0:n�1)
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Algorithm 1 continued

Moreover,
P(Y0:n = b0:n) =

X

r2A
'r
n(b0:n)

and thus

P(Xn = a | Y0:n = b0:n) =
'a
n(b0:n)P

r2A 'r
n(b0:n)

Verification:
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Iterations

Compute 'a
0(b0) := P(X0 = a,Y0 = b0) for relevant non-zero

probability outcomes a 2 A.

When observation b1 is obtained, compute 'a
1(b0:1) for all relevant

outcomes a 2 A using Algorithm 1 and the pre-computed values
{'a

0(b0)}a.

Similar iteration “{'r
n(b1:n)}r 7! {'r

n+1(b1:n+1)}r” for each
n 7! n + 1.

The iterations based on Alg 1 are called online learning, here meaning
that you recursively update your estimate for every new observation.

An alternative would be o✏ine/batch learning, here meaning to
learn/precompute 'a

n(b̃0:n) for all relevant n � 0, a 2 A and b̃0:n 2 B
n+1

before filtering.
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Remarks

If instead of conditioning on the observation b0:n, we condition on
Y0:n, then we get the following rv associated to filtering:

P(Xn = a | Y0:n)(!) =
'a
n(Y0:n(!))P

r2A 'r
n(Y0:n(!))

Extension of Alg 1 to when {Zn} is not a time-homogeneous Markov
chain is straightforward. Replace time-independent transition
functions by the time-dependent ones

q
ra(n, bn, bn+1) := p(n, (r , bn), (a, bn+1))

Given a finite state-space A, we may view {qra(bn, bn+1)}(r ,a)2A2 as a
matrix qn and {'a

n(b0:n)}a = 'n as a column vector. The iterations in
Alg 1 then becomes

'n+1 = q
T
n 'n.
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Example 8 ( Hidden Markov model)

Let Xn be a simple symmetric RW on Z and Yn = Xn +Wn, where {Wn}
is iid and independent of {Xn} with P(Wn = k) = 1/5 for all |k |  2.
Assume X0 = 0. Compute P(X2 = 0 | Y0:2 = (0, 2, 1)).

Some steps in the solution:
1. Identify transition function

q
ra(c , d) = P

⇣
(Xn,Yn) = (a, d) | (Xn�1,Yn�1) = (r , c)

⌘

=

= P(Xn = a | Xn�1 = r)P(Wn = d � a)

(above eq holds P((Xn�1,Yn�1) = (r , c)) > 0).
2. Observe that {'a

n(b0:n)}a is only possibly non-zero for
a 2 {�n,�n + 1, . . . , n}
3. Use Alg 1.
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Prediction problem

The prediction problem is to estimate

P(Xn = a | Y0:m = b0:m)

for some n > m � 0.

Derivation of recursive algorithm:

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)

=

P
b̄2B P(Xn = a,Yn = b̄,Y0:m = b0:m)

P(Y0:m = b0:m)

Idea for obtaining computable terms:
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For n � m, introduce

'a,b̄
n (b0:m) := P(Xn = a,Yn = b̄,Y0:m = b0:m).

Then, for n = m,
'a,b̄
n (b0:m) = 'a

n(b0:m) bm(b̄)

Verification

And, for n > m,

'a,b̄
n (b0:m) =

X

r2A,s2B
P(Xn = a,Yn = b̄,Xn�1 = r ,Yn�1 = s,Y0:m = b0:m)

=

=
X

r2A,s2B
P(Xn = a,Yn = b̄ | Xn�1 = r ,Yn�1 = s)'r ,s

n�1(b0:m)

=
X

r2A,s2B
q
ra(s, b̄)'r ,s

n�1(b0:m)
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Summary

We seek a recursive algorithm for

P(Xn = a | Y0:m = b0:m) =

P
b̄2B P(Xn = a,Yn = b̄,Y0:m = b0:m)

P(Y0:m = b0:m)

=

P
b̄2B 'a,b̄

n (b0:m)P
r2A 'r

m(b0:m)

Every summand in the numerator satisfies recursive equation

'a,b̄
n (b0:m) =

X

r2A,s2B
q
ra(s, b̄)'r ,s

n�1(b0:m) n > m (8)

with “initial condition”

'r ,s
m (b0:m) = 'r

m(b0:m) bm(s).
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Algorithm 2 – Prediction

1 Compute {'r
m(b0:m)}r2A by Algorithm 1.

2 “Initialize” 'r ,s
m (b0:m) = 'r

m(b0:m) bm(s) for relevant (r , s) 2 A⇥ B .

3 Compute {'r ,s
k (b0:m)}r2A,s2B for k = m + 1,m + 2, . . . , n � 1 by the

recursive formula (8).

4 Compute {'a,b̄
n (b0:n)}b̄2B by (8) (i.e., for the fixed state a 2 A only).

5 Output:

P(Xn = a | Y0:m = b0:m) =

P
b̄2B 'a,b̄

n (b0:m)P
r2A 'r

m(b0:m)
.

Remark: Algorithm 2 simplifies in many settings, e.g., hidden Markov
models [FJK 3.4.3].

Exercise Simplify the “recursive” equation predictions when n = m + 1.
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Smoothing problem

The smoothing/interpolation problem is to estimate

P(Xn = a | Y0:m = b0:m)

for some m > n � 0.

Property: More information leads to improved approximations: for
m > n > k � 0

E
⇥
|X � E [Xn|Y0:m] |2

⇤
| {z }

smoothing

 E
⇥
|X � E [Xn|Y0:n] |2

⇤
| {z }

filtering

 E
⇥
|X � E [Xn|Y0:k ] |2

⇤
| {z }

prediction
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Derivation of a recursive algorithm:

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)
=

'a
n(b0:m)P

r2A 'r
m(b0:m)

Using the Markov property [FJK 2.2.7]

'a
n(b0:m) = P (Xn = a,Y0:n = b0:n,Yn+1:m = bn+1:m)

= P (Yn+1:m = bn+1:m | Xn = a,Y0:n = b0:n)P (Xn = a,Y0:n = b0:n)

= P (Yn+1:m = bn+1:m | Xn = a,Yn = bn)'
a
n(b0:n)

(9)

Next seek to obtain recursive formula for first factor when
P(Xn = a,Yn = bn) > 0.

Otherwise, also 'a
n(b0:n) = 0, and the value of the first-factor value is not

needed.
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By the law of total probability,

P (Yn+1:m = bn+1:m | Xn = a,Yn = bn)

=
X

ān+1:m2Am�n

P (Xn+1:m = ān+1:m,Yn+1:m = bn+1:m | Xn = a,Yn = bn)

=
X

ān+1:m2Am�n

p ((a, bn), (ān+1, bn+1)) p ((ān+1, bn+1), (ān+2, bn+2)) . . .

. . . p ((ām�1, bm�1), (ām, bm))

Algorithm for  [FJK problem 3.3.4]

Whenever P(Xn = a,Yn = bn) > 0

an,m(bn:m) :=

(
P (Yn+1:m = bn+1:m | Xn = a,Yn = bn) if n < m

1 if n = m

solves the following backward recurrence equation

an�1,m(bn�1:m) =
X

r2A
p((a, bn�1), (r , bn))| {z }

qar (bn�1,bn)

rn,m(bn:m), n = 1, 2, . . . ,m.
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Summary

We seek

P(Xn = a | Y0:m = b0:m) =
P(Xn = a,Y0:m = b0:m)

P(Y0:m = b0:m)
=

'a
n(b0:m)P

r2A 'r
m(b0:m)

(10)

and by (9) and Algorithm for ,

'a
n(b0:m) = an,m(bn:m)'

a
n(b0:n)

Algorithm 3 - smoothing/interpolation

1 Compute {'r
m(b0:m)}r by Algorithm 1,

2 Compute an,m(bn:m) by Algorithm for  and the output (10).
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Next time

Continuous random variables, probability density functions, conditional
densities . . .
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