Mathematics and numerics for data assimilation and state estimation - Lecture 7

Summer semester 2020

Summary of lecture 6

■ Recurrence and construction of invariant distributions for finite discrete-time Markov chains.

■ Prediction, filtering and smoothing of Markov Chains

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions

3 Mixed rv

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions

3 Mixed rv

Extending definitions from discrete to continuous

state-space rv

- Given $(\Omega, \mathcal{F}, \mathbb{P})$, recall that a discrete $\mathrm{rv} X: \Omega \rightarrow A$ was defined by measurability constraint

$$
X^{-1}(a) \in \mathcal{F} \quad \forall a \in A
$$

■ And $\mathbb{P}_{X}(a):=\mathbb{P}(X=a)$ is a probability measure on the measurable space (A, \mathcal{A}) where
$\mathcal{A}=\sigma\left(\left\{a_{k}\right\}\right):=$ smallest σ-algebra containing the sets $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots$

- Example elements of $C \in \mathcal{A}:\left\{a_{1}, a_{2}\right\}, \ldots$
- An equivalent definition of discrete rv that extends to the continuous state-space setting: X is a measurable mapping between measurable spaces $X:(\Omega, \mathcal{F}) \rightarrow(A, \mathcal{A})$, meaning that

$$
X^{-1}(C) \in \mathcal{F} \quad \forall C \in \mathcal{A}
$$

Random values/vectors (rv) on \mathbb{R}^{d}

■ For a mapping $X: \Omega \rightarrow \mathbb{R}^{d}$ what sets $C \subset \mathbb{R}^{d}$ are relevant, in the sense that we seek the probability of events

$$
\{X \in C\}=\{\omega \in \Omega \mid X(\omega) \in C\} ?
$$

- If all open sets in \mathbb{R}^{d} are relevant, then we should be able to evaluate

$$
\mathbb{P}_{X}(C)=\mathbb{P}(X \in C) \quad \text { for all open } C \subset \mathbb{R}^{d}
$$

■ and \mathbb{P}_{X} should be a probability measure on $\left(\mathbb{R}^{d}, \sigma\left(\right.\right.$ all open sets in $\left.\left.\mathbb{R}^{d}\right)\right)$.

- the above is called the Borel σ-algebra:

$$
\mathcal{B}^{d}:=\text { smallest } \sigma \text {-algebra containing all open sets in } \mathbb{R}^{d} \text {. }
$$

Random variables/vectors on \mathbb{R}^{d}

Definition 1

An rv on \mathbb{R}^{d} is a measurable mapping $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ satisfying,

$$
\{X \in C\}=X^{-1}(C) \in \mathcal{F} \quad \forall C \in \mathcal{B}^{d} .
$$

Comments:

- The definition extends to measurable mappings $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{S}, \mathcal{S})$ for any measurable space $(\mathbb{S}, \mathcal{S})$.
- We will only consider rv on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$, and often just write

$$
X: \Omega \rightarrow \mathbb{R}^{d}
$$

Example 2 (Uniform distribution)

- Let $X \sim U[0,1]^{d}$ denote the rv on \mathbb{R}^{d} with

$$
\begin{equation*}
\mathbb{P}(X \in C)=\operatorname{Leb}\left(C \cap[0,1]^{d}\right)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) \operatorname{Leb}(d x) \tag{1}
\end{equation*}
$$

for any $C \in \mathcal{B}^{d}$ and with Leb(•) being the Lebesgue measure on \mathbb{R}^{d}.

- This measure associates to volumes of sets: for instance, for any $C=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{d}, b_{d}\right)$,

$$
\operatorname{Leb}(C)=\prod_{k=1}^{d}\left(b_{k}-a_{k}\right)
$$

- From now on $d x:=\operatorname{Leb}(d x)$, and we rewrite (1) with a density:

$$
\mathbb{P}(X \in C)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) d x
$$

Probability density function (pdf)

Definition 3

- Consider an rv $X \sim \mathbb{P}_{X}$ on \mathbb{R}^{d}.

■ If there exists a mapping $\pi: \mathbb{R}^{d} \rightarrow[0, \infty)$ such that

$$
\mathbb{P}_{X}(C)=\int_{C} \pi(x) d x \quad \forall C \in \mathcal{B}^{d}
$$

then π is called the pdf of X.
■ X has a pdf whenever \mathbb{P}_{X} is absolutely continuous wrt the Lebesgue measure, meaning that for all $C \in \mathcal{B}^{d}$,

$$
\text { if } \quad d C=\operatorname{Leb}(C)=0, \quad \text { then also } \quad \mathbb{P}_{x}(C)=0
$$

- And then

$$
\pi(x)=\frac{\mathbb{P}_{X}(d x)}{d x}, \quad d x "=" \text { tiny set surrounding } x \in \mathbb{R}^{d}
$$

- An rv with a pdf is called a continuous rv.

Example 4 (Uniform rv)

For $X \sim U[0,1]^{d}$, we have

$$
\mathbb{P}_{X}(C)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) d x
$$

pdf derived from the Radon-Nikodym derivative:

$$
\pi(x)=\frac{\mathbb{P}_{x}(d x)}{d x}=\frac{\mathbb{1}_{[0,1]^{d}}(x) d x}{d x}= \begin{cases}0 & x \in(-\infty, 0) \cup(1, \infty) \\ ? & x \in\{0,1\} \\ 1 & \in(0,1)\end{cases}
$$

Value of $\left.\pi\right|_{\{0,1\}}$ does not matter, whatever value we assign on this measure 0 set, π will be the very same pdf:

$$
\mathbb{P}(X \in C)=\int_{C} \pi(y) d y \quad \forall C \in \mathcal{B}^{d}
$$

So let us write $\pi(x)=\mathbb{1}_{[0,1]^{d}}(x)$.

Example 5 (Real-valued normal distribution)

■ Let $X \sim N\left(\mu, \sigma^{2}\right)$ denote the normal disribution on \mathbb{R} with

$$
\mathbb{P}(X \in C)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{C} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

where $\mu \in \mathbb{R}$ and $\sigma>0$.
pdf:

$$
\pi(x)=\frac{\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma}\right)}{\sqrt{2 \pi \sigma^{2}}}
$$

Example 6 (Multivariate normal distribution)

■ Let $X \sim N(\mu, \Sigma)$ denote the rv on \mathbb{R}^{d} with

$$
\mathbb{P}(X \in C)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \int_{C} \exp \left(-\frac{(x-\mu) \cdot \Sigma^{-1}(x-\mu)}{2}\right) d x
$$

- With the pdf:

$$
\pi(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} e^{-|x-\mu|_{\Sigma}^{2} / 2}
$$

Consider $X \sim N((0,0), \Sigma)$ on \mathbb{R}^{2} with

$$
\Sigma=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]^{T}
$$

u_{1}, u_{2} orthonormal basis.

Contour plot:

Cumulative distribution function (cdf)

Definition 7

The cdf of a d-dimensional $\mathrm{rv} X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is defined by
$F_{X}(x)=F_{X}\left(x_{1}, \ldots, x_{d}\right)=\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right) \quad$ for $x \in \mathbb{R}^{d}$.

Whenever X is continuous F_{X} is a primitive of π :

$$
F_{X}(x)=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{d}} \pi\left(y_{1}, \ldots, y_{d}\right) d y_{1} \ldots d y_{d}
$$

And in general, the cdf has the following properties:
■ F_{X} is non-decreasing and right continuous in each of its variables

$$
\lim _{x_{1}, x_{2}, \ldots, x_{d} \rightarrow-\infty} F_{X}(x)=0 \quad \text { and } \quad \lim _{x_{1}, x_{2}, \ldots, x_{d} \rightarrow \infty} F_{X}(x)=1
$$

Example 8 (Discrete rv)

$X \sim$ Bernoulli(1/2) yields

$$
F(x)= \begin{cases}0, & x<0 \\ 1 / 2, & x \in[0,1) \\ 1, & x>1\end{cases}
$$

and formally

$$
\pi(x)=F^{\prime}(x)=0.5 \delta_{0}(x)+0.5 \delta_{1}(x)
$$

Example 9 (Sum of discrete and continuous rv that becomes ...)
Let $X=Y+2 Z$ where $Y \sim U[0,1]$ and $Z \sim \operatorname{Bernoulli}(1 / 2)$ are independent. Then

$$
F(x)=\mathbb{P}(Y+2 Z \leq x)= \begin{cases}0 & \text { if } x<0 \\ x / 2 & \text { if } x \in[0,1] \\ 1 / 2 & \text { if } x \in[1,2) \\ (x-1) / 2 & \text { if } x \in[2,3) \\ 1 & \text { if } x \geq 3\end{cases}
$$

and

$$
\pi(x)=F^{\prime}(x)=\frac{1}{2} \mathbb{1}_{[0,1] \cup[2,3]}(x) .
$$

(Formally,

$$
\pi(x)=\pi_{Y} * \pi_{2 Z}(x)
$$

where $\left.\pi_{2 Z}=0.5 \delta_{0}(x)+0.5 \delta_{2}(x).\right)$

Joint pdfs and cdfs

For rv $X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$,

- the mapping $(X, Y):(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d+k}, \mathcal{B}^{d+k}\right)$ is also an $r v$
- with joint cdf

$$
F_{X Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

where $X \leq x$ etc. should be read component-wise for vectors

- and, whenever (X, Y) is continuous, the joint pdf

$$
\pi_{X Y}(x, y)=\frac{\mathbb{P}(X \in d x, Y \in d y)}{d x d y}
$$

■ To avoid clutter, one often suppresses $X Y$ subscripts.

Joint pdfs and cdfs

The notation extends naturally to the joint distribution of a sequence of $r v$ $\left\{X_{k}\right\}$,

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & :=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \\
& =\int_{y_{1} \leq x_{1}, \ldots, y_{n} \leq x_{n}} \pi\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}
\end{aligned}
$$

where the last equality with the pdf π is valid when $\left(X_{1}, \ldots, X_{n}\right)$ is continuous.

Independence of rv

A finite sequence of $r v X_{k}:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ for $k=1, \ldots, n$ is independent if

$$
\mathbb{P}\left(X_{1} \in C_{1}, \ldots, X_{n} \in C_{n}\right)=\prod_{k=1}^{n} \mathbb{P}\left(X_{k} \in C_{k}\right)
$$

for all $C_{1}, \ldots, C_{n} \in \mathcal{B}^{d}$.

- or equivalently, if

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n} F_{X_{k}}\left(x_{k}\right) \quad \forall x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}
$$

■ or, if all X_{k} are continuous, equivalently if

$$
\pi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n} \pi_{x_{k}}\left(x_{k}\right) \quad \text { for almost all } \quad x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}
$$

■ A countable sequence of $\mathrm{rv}\left\{X_{k}\right\}$ is independent if any of the above conditions hold for any finite subsequence.

Expectations of rv

The expectation of $X: \Omega \rightarrow \mathbb{R}^{d}$ is defined by

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)
$$

where for non-negative $X=\left(X_{1}, \ldots, X_{d}\right)$, each component of the right side is defined by

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\sup _{Y \leq X_{j}, Y \text { simple }} \int_{\Omega} Y d \mathbb{P}
$$

where "simple" $=\{Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}) \mid Y$ is simple $\}$.

Expectations of rv

The expectation of $X: \Omega \rightarrow \mathbb{R}^{d}$ is defined by

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)
$$

where for non-negative $X=\left(X_{1}, \ldots, X_{d}\right)$, each component of the right side is defined by

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\sup _{Y \leq X_{j}, Y \text { simple }} \int_{\Omega} Y d \mathbb{P}
$$

where "simple" $=\{Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}) \mid Y$ is simple $\}$.
And in general,

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\underbrace{\int_{\Omega} X_{j}^{+} d \mathbb{P}}_{l_{j}^{+}}-\underbrace{\int_{\Omega} X_{j}^{-} d \mathbb{P}}_{l_{j}^{-}}
$$

where

$$
X_{j}^{+}=\max \left\{X_{j}, 0\right\} \quad \text { and } \quad X_{j}^{-}=\max \left\{-X_{j}, 0\right\}
$$

Observation: $\mathbb{E}\left[X_{j}\right]$ exists whenever at least one of I_{j}^{+}and I_{j}^{-}are finite ${ }_{20}$

Covariance function

- The definition extends straightforwardly to functions of rv:

$$
\mathbb{E}[g(X)]=\int_{\Omega} g(X(\omega)) \mathbb{P}(d \omega)
$$

■ Whenever $\mathbb{E}[g(X)]$ exists, the change of variables formula yields the equivalent representations (Durrett, Theorem 1.6.9)

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}^{d}} g(x) d F_{x}(x)=\int_{\mathbb{R}^{d}} g(x) \pi_{x}(x) d x
$$

(last equality valid when π_{X} exists).

Main idea of proof:

1 In the $1 D$ setting with $g(X)=\sum_{a \in A} g(a) \mathbb{1}_{X=a}$, then
$\mathbb{E}[g(X)]=$

2 For non-discrete rv, approximate by sequence of simple functions.

Covariance function

■ In what remains, we will assume that the rvs are continuous so that we can employ pdfs in the expectations of rv.

- The covariance of the d-dimensional rv X with mean μ is the $d \times d$ matrix defined by

$$
\operatorname{Cov}(X)=\mathbb{E}\left[(X-\mu)(X-\mu)^{T}\right]=\int_{\mathbb{R}^{d}}(x-\mu)(x-\mu)^{T} \pi_{X}(x) d x
$$

- In the special case of 1-dimensional rv, $\operatorname{Cov}(X)=\operatorname{Var}(X)$

Example 10

$X \sim U[0,1]$, yields

$$
\mathbb{E}[X]=\int_{\mathbb{R}} x \mathbb{1}_{[0,1]}(x) d x=1 / 2
$$

and

$$
\operatorname{Var}(X)=\int_{\mathbb{R}}(x-1 / 2)^{2} \mathbb{1}_{[0,1]}(x) d x=1 / 12
$$

Example 11 (Multivariate normal distribution)

For $X \sim N(\mu, \Sigma)$ with

$$
\pi_{X}(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} e^{-(x-\mu) \cdot \Sigma^{-1}(x-\mu) / 2},
$$

one can show that

$$
\mathbb{E}[X]=\mu
$$

and

$$
\operatorname{Cov}(X)=\Sigma
$$

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions

3 Mixed rv

Marginal and conditional densities

For a continuous $\mathrm{rv}(X, Y): \Omega \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{k}$, we define
■ the marginal pdf for X by

$$
\pi_{X}(x):=\int_{\mathbb{R}^{k}} \pi_{X Y}(x, y) d y
$$

■ and the conditional density of X given $Y=y$ by

$$
\pi_{X \mid Y}(x \mid y):=\frac{\pi_{X Y}(x, y)}{\pi_{Y}(y)} \quad \text { (using division-by-zero convention). }
$$

Properties:

- $\pi_{X \mid Y}(\cdot \mid y)$ is a density whenever $\pi_{Y}(y)>0$

■ the disintegration property holds

$$
\pi_{X Y}(x, y)=\pi_{X \mid Y}(x \mid y) \pi_{Y}(y)
$$

- and it extends to multiple $\mathrm{rv}(X, Y, Z)$:

$$
\pi(x, y, z)=\pi(x \mid y, z) \pi(y \mid z) \pi(z) \quad \text { etc }
$$

Formal motivation for scalar-valued Y : For any $C \in \mathcal{B}^{d}$,

$$
\begin{gathered}
\mathbb{P}(X \in C \mid Y \in[y, y+\Delta y])=\frac{\int_{y}^{y+\Delta y} \int_{C} \pi_{X Y}(x, y) d x d y}{\int_{\Delta y} \pi_{Y}(y) d y} \\
\approx
\end{gathered}
$$

So when $\pi_{X Y}$ is continuous, we have the relation

$$
\lim _{\Delta y \rightarrow 0} \mathbb{P}(X \in C \mid Y \in \Delta y)=\int_{C} \pi_{X \mid Y}(x \mid y) d x
$$

for neighborhoods Δy of y.

Expectation of X given Y

Definition 12 (Conditional expectation)

For continuous $\mathrm{rv}(X, Y): \Omega \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{k}$ and mapping $g(X)$ such that $\mathbb{E}[|g(X)|]<\infty$, we define

$$
\mathbb{E}[g(X) \mid Y=y]:=\int_{\mathbb{R}^{d}} g(x) \pi_{X \mid Y}(x \mid y) d x,
$$

and the related continuous rv

$$
\mathbb{E}[g(X) \mid Y](\omega):=\mathbb{E}[g(X) \mid Y=Y(\omega)] .
$$

Properties

For integrable $g(X, Y)$, the tower property holds:

$$
\mathbb{E}[\mathbb{E}[g(X, Y) \mid Y]]:=\mathbb{E}[g(X, Y)]
$$

and if $g(X, Y)=f(X) h(Y)$, then

$$
\mathbb{E}[\mathbb{E}[g(X, Y) \mid Y]]:=\mathbb{E}[h(Y) \mathbb{E}[f(X) \mid Y]]
$$

Verification:

Example 13

Let $Y, Z \sim U[0,1]$ and independent, and $X=Y+Z$.
Then for $y \in[0,1]$,

$$
\text { shortcut: } X \mid\{Y=y\}=Z+y \sim U[y, 1+y]
$$

giving

$$
\pi_{X \mid Y}(x \mid y)=\mathbb{1}_{[y, y+1]}(x)
$$

and

$$
\mathbb{E}[X \mid Y=y]=\int_{\mathbb{R}} x \mathbb{1}_{[y, y+1]} d x=\frac{y+1}{2}
$$

Proper argument:

$$
\pi_{X Y}(x, y)=\pi_{Z Y}(x-y, y)=\mathbb{1}_{[0,1]}(x-y) \mathbb{1}_{[0,1]}(y) \quad \text { etc. }
$$

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions

3 Mixed rv

General definition for conditional expectation

- Random variables may also be mixed, meaning neither discrete nor continuous.

Example 14

$X=Y Z$ where $Y \sim \operatorname{Bernoulli}(1 / 2)$ and $Z \sim U[0,1]$ with $Y \perp Z$.
Then formally,

$$
\pi_{X}(x)=\frac{\delta_{0}(x)+\mathbb{1}_{[0,1]}(x)}{2}
$$

■ Mixed rv do not have a pdf, so Definition 12 does not apply to conditional expectations of mixed rv.

■ Objective for next lecture: obtain a unifying definition for conditional probability.

What describes an rv fully?

- An rv can be discrete, mixed or continuous.

■ Regardless of that, X is uniquely described by its distribution \mathbb{P}_{X}, and also by its cdf

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

and, if it exists, also by its pdf

$$
\pi_{X}(x)=\frac{\mathbb{P}(X \in d x)}{d x}
$$

Next time

- Conditional expectations in general (also for mixed rv)
- Orthogonal projections on closed subspaces of $L^{2}(\Omega)$

■ Bayesian inverse problems and well-posedness.

