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Summary of lecture 6

Recurrence and construction of invariant distributions for finite
discrete-time Markov chains.

Prediction, filtering and smoothing of Markov Chains
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Extending definitions from discrete to continuous
state-space rv

Given (Ω,F ,P), recall that a discrete rv X : Ω→ A was defined by
measurability constraint

X−1(a) ∈ F ∀a ∈ A.

And PX (a) := P(X = a) is a probability measure on the measurable
space (A,A) where

A = σ({ak}) := smallest σ-algebra containing the sets {a1}, {a2}, . . .

Example elements of C ∈ A : {a1, a2}, . . .
An equivalent definition of discrete rv that extends to the continuous
state-space setting: X is a measurable mapping between measurable
spaces X : (Ω,F)→ (A,A), meaning that

X−1(C ) ∈ F ∀C ∈ A.
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Random values/vectors (rv) on Rd

For a mapping X : Ω→ Rd what sets C ⊂ Rd are relevant, in the
sense that we seek the probability of events

{X ∈ C} = {ω ∈ Ω | X (ω) ∈ C}?

If all open sets in Rd are relevant, then we should be able to evaluate

PX (C ) = P(X ∈ C ) for all open C ⊂ Rd ,

and PX should be a probability measure on
(Rd , σ(all open sets in Rd)).

the above is called the Borel σ-algebra:

Bd := smallest σ-algebra containing all open sets in Rd .
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Random variables/vectors on Rd

Definition 1

An rv on Rd is a measurable mapping X : (Ω,F)→ (Rd ,Bd) satisfying,

{X ∈ C} = X−1(C ) ∈ F ∀C ∈ Bd .

Comments:

The definition extends to measurable mappings X : (Ω,F)→ (S,S)
for any measurable space (S,S).

We will only consider rv on (Rd ,Bd), and often just write

X : Ω→ Rd .
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Example 2 (Uniform distribution)

Let X ∼ U[0, 1]d denote the rv on Rd with

P(X ∈ C ) = Leb(C ∩ [0, 1]d) =

∫
C
1[0,1]d (x) Leb(dx) (1)

for any C ∈ Bd and with Leb(·) being the Lebesgue measure on Rd .

This measure associates to volumes of sets: for instance, for any
C = (a1, b1)× (a2, b2)× . . .× (ad , bd),

Leb(C ) =
d∏

k=1

(bk − ak).

From now on dx := Leb(dx), and we rewrite (1) with a density:

P(X ∈ C ) =

∫
C
1[0,1]d (x) dx
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Probability density function (pdf)

Definition 3

Consider an rv X ∼ PX on Rd .

If there exists a mapping π : Rd → [0,∞) such that

PX (C ) =

∫
C
π(x) dx ∀C ∈ Bd ,

then π is called the pdf of X .

X has a pdf whenever PX is absolutely continuous wrt the Lebesgue
measure, meaning that for all C ∈ Bd ,

if dC = Leb(C ) = 0, then also Px(C ) = 0.

And then

π(x) =
PX (dx)

dx
, dx” = ”tiny set surrounding x ∈ Rd .

An rv with a pdf is called a continuous rv. 9 / 33



Example 4 (Uniform rv)

For X ∼ U[0, 1]d , we have

PX (C ) =

∫
C
1[0,1]d (x) dx

pdf derived from the Radon-Nikodym derivative:

π(x) =
PX (dx)

dx
=
1[0,1]d (x)dx

dx
=


0 x ∈ (−∞, 0) ∪ (1,∞)

? x ∈ {0, 1}
1 ∈ (0, 1)

Value of π|{0,1} does not matter, whatever value we assign on this
measure 0 set, π will be the very same pdf:

P(X ∈ C ) =

∫
C
π(y) dy ∀C ∈ Bd .

So let us write π(x) = 1[0,1]d (x).
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Example 5 (Real-valued normal distribution)

Let X ∼ N(µ, σ2) denote the normal disribution on R with

P(X ∈ C ) =
1√

2πσ2

∫
C

exp
(
− (x − µ)2

2σ2

)
dx

where µ ∈ R and σ > 0.

pdf:

π(x) =
exp

(
− (x−µ)2

2σ

)
√

2πσ2

x

π
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Example 6 (Multivariate normal distribution)

Let X ∼ N(µ,Σ) denote the rv on Rd with

P(X ∈ C ) =
1

(2π)d/2
√

det(Σ)

∫
C

exp
(
− (x − µ) · Σ−1(x − µ)

2

)
dx

With the pdf:

π(x) =
1

(2π)d/2
√

det(Σ)
e−|x−µ|

2
Σ/2
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Consider X ∼ N((0, 0),Σ) on R2 with

Σ = [u1 u2]

[
σ2

1 0
0 σ2

2

]
[u1 u2]T

u1, u2 orthonormal basis.

Contour plot:
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Cumulative distribution function (cdf)

Definition 7

The cdf of a d-dimensional rv X = (X1,X2, . . . ,Xd) is defined by

FX (x) = FX (x1, . . . , xd) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd) for x ∈ Rd .

Whenever X is continuous FX is a primitive of π:

FX (x) =

∫ x1

−∞
. . .

∫ xd

−∞
π(y1, . . . , yd) dy1 . . . dyd

And in general, the cdf has the following properties:

FX is non-decreasing and right continuous in each of its variables

lim
x1,x2,...,xd→−∞

FX (x) = 0 and lim
x1,x2,...,xd→∞

FX (x) = 1.
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Example 8 (Discrete rv)

X ∼ Bernoulli(1/2) yields

F (x) =


0, x < 0

1/2, x ∈ [0, 1)

1, x > 1

and formally
π(x) = F ′(x) = 0.5δ0(x) + 0.5δ1(x).
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Example 9 (Sum of discrete and continuous rv that becomes . . . )

Let X = Y + 2Z where Y ∼ U[0, 1] and Z ∼ Bernoulli(1/2) are
independent. Then

F (x) = P(Y + 2Z ≤ x) =



0 if x < 0

x/2 if x ∈ [0, 1]

1/2 if x ∈ [1, 2)

(x − 1)/2 if x ∈ [2, 3)

1 if x ≥ 3

and

π(x) = F ′(x) =
1

2
1[0,1]∪[2,3](x).

(Formally,
π(x) = πY ∗ π2Z (x)

where π2Z = 0.5δ0(x) + 0.5δ2(x).)
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Joint pdfs and cdfs

For rv X : Ω→ Rd and Y : Ω→ Rk ,

the mapping (X ,Y ) : (Ω,F)→ (Rd+k ,Bd+k) is also an rv

with joint cdf
FXY (x , y) = P(X ≤ x ,Y ≤ y)

where X ≤ x etc. should be read component-wise for vectors

and, whenever (X ,Y ) is continuous, the joint pdf

πXY (x , y) =
P(X ∈ dx ,Y ∈ dy)

dx dy
.

To avoid clutter, one often suppresses XY subscripts.
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Joint pdfs and cdfs

The notation extends naturally to the joint distribution of a sequence of rv
{Xk},

F (x1, . . . , xn) := P(X1 ≤ x1, . . . ,Xn ≤ xn)

=

∫
y1≤x1,...,yn≤xn

π(y1, . . . , yn)dy1 . . . dyn,

where the last equality with the pdf π is valid when (X1, . . . ,Xn) is
continuous.
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Independence of rv
A finite sequence of rv Xk : (Ω,F)→ (Rd ,Bd) for k = 1, . . . , n is
independent if

P (X1 ∈ C1, . . . ,Xn ∈ Cn) =
n∏

k=1

P (Xk ∈ Ck)

for all C1, . . . ,Cn ∈ Bd .

or equivalently, if

F (x1, x2, . . . , xn) =
n∏

k=1

FXk
(xk) ∀x1, x2, . . . , xn ∈ Rd ,

or, if all Xk are continuous, equivalently if

π(x1, x2, . . . , xn) =
n∏

k=1

πXk
(xk) for almost all x1, x2, . . . , xn ∈ Rd

A countable sequence of rv {Xk} is independent if any of the above
conditions hold for any finite subsequence.
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Expectations of rv
The expectation of X : Ω→ Rd is defined by

E [X ] =

∫
Ω
X (ω)P(dω)

where for non-negative X = (X1, . . . ,Xd), each component of the right
side is defined by ∫

Ω
Xj dP := sup

Y≤Xj ,Y simple

∫
Ω
Y dP

where ”simple” = {Y : (Ω,F)→ (R,B) | Y is simple }.
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Expectations of rv
The expectation of X : Ω→ Rd is defined by

E [X ] =

∫
Ω
X (ω)P(dω)

where for non-negative X = (X1, . . . ,Xd), each component of the right
side is defined by ∫

Ω
Xj dP := sup

Y≤Xj ,Y simple

∫
Ω
Y dP

where ”simple” = {Y : (Ω,F)→ (R,B) | Y is simple }.
And in general, ∫

Ω
Xj dP :=

∫
Ω
X+
j dP︸ ︷︷ ︸
I+
j

−
∫

Ω
X−j dP︸ ︷︷ ︸
I−j

where
X+
j = max{Xj , 0} and X−j = max{−Xj , 0}.

Observation: E [Xj ] exists whenever at least one of I+
j and I−j are finite.
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Covariance function
The definition extends straightforwardly to functions of rv:

E [ g(X )] =

∫
Ω
g(X (ω))P(dω)

Whenever E [ g(X )] exists, the change of variables formula yields the
equivalent representations (Durrett, Theorem 1.6.9)

E [ g(X )] =

∫
Rd

g(x)dFx(x) =

∫
Rd

g(x)πX (x) dx

(last equality valid when πX exists).

Main idea of proof:

1 In the 1D setting with g(X ) =
∑

a∈A g(a)1X=a, then

E [ g(X )] =

2 For non-discrete rv, approximate by sequence of simple functions.
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Covariance function
In what remains, we will assume that the rvs are continuous so that
we can employ pdfs in the expectations of rv.

The covariance of the d-dimensional rv X with mean µ is the d × d
matrix defined by

Cov(X ) = E
[

(X − µ)(X − µ)T
]

=

∫
Rd

(x − µ)(x − µ)TπX (x)dx

In the special case of 1-dimensional rv, Cov(X ) = Var(X )

Example 10

X ∼ U[0, 1], yields

E [X ] =

∫
R
x1[0,1](x)dx = 1/2

and

Var(X ) =

∫
R

(x − 1/2)2
1[0,1](x)dx = 1/12.
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Example 11 (Multivariate normal distribution)

For X ∼ N(µ,Σ) with

πX (x) =
1

(2π)d/2
√

det(Σ)
e−(x−µ)·Σ−1(x−µ)/2,

one can show that
E [X ] = µ

and
Cov(X ) = Σ.
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Marginal and conditional densities
For a continuous rv (X ,Y ) : Ω→ Rd × Rk , we define

the marginal pdf for X by

πX (x) :=

∫
Rk

πXY (x , y)dy

and the conditional density of X given Y = y by

πX |Y (x |y) :=
πXY (x , y)

πY (y)
(using division-by-zero convention).

Properties:

πX |Y (·|y) is a density whenever πY (y) > 0

the disintegration property holds

πXY (x , y) = πX |Y (x |y)πY (y)

and it extends to multiple rv (X ,Y ,Z ):

π(x , y , z) = π(x |y , z)π(y |z)π(z) etc
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Formal motivation for scalar-valued Y : For any C ∈ Bd ,

P(X ∈ C | Y ∈ [y , y + ∆y ]) =

∫ y+∆y
y

∫
C πXY (x , y) dx dy∫

∆y πY (y) dy

≈

So when πXY is continuous, we have the relation

lim
∆y→0

P(X ∈ C | Y ∈ ∆y) =

∫
C
πX |Y (x | y)dx ,

for neighborhoods ∆y of y .

26 / 33



Expectation of X given Y

Definition 12 (Conditional expectation)

For continuous rv (X ,Y ) : Ω→ Rd × Rk and mapping g(X ) such that
E [ |g(X )|] <∞, we define

E [ g(X ) | Y = y ] :=

∫
Rd

g(x)πX |Y (x |y) dx ,

and the related continuous rv

E [ g(X ) | Y ] (ω) := E [ g(X ) | Y = Y (ω)] .
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Properties

For integrable g(X ,Y ), the tower property holds:

E [E [ g(X ,Y ) | Y ] ] := E [ g(X ,Y )]

and if g(X ,Y ) = f (X )h(Y ), then

E [E [ g(X ,Y ) | Y ] ] := E [ h(Y )E [ f (X ) | Y ] ] .

Verification:
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Example 13

Let Y ,Z ∼ U[0, 1] and independent, and X = Y + Z .

Then for y ∈ [0, 1],

shortcut: X |{Y = y} = Z + y ∼ U[y , 1 + y ]

giving
πX |Y (x |y) = 1[y ,y+1](x)

and

E [X | Y = y ] =

∫
R
x1[y ,y+1] dx =

y + 1

2
.

Proper argument:

πXY (x , y) = πZY (x − y , y) = 1[0,1](x − y)1[0,1](y) etc.
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General definition for conditional expectation

Random variables may also be mixed, meaning neither discrete nor
continuous.

Example 14

X = YZ where Y ∼ Bernoulli(1/2) and Z ∼ U[0, 1] with Y ⊥ Z .
Then formally,

πX (x) =
δ0(x) + 1[0,1](x)

2

Mixed rv do not have a pdf, so Definition 12 does not apply to
conditional expectations of mixed rv.

Objective for next lecture: obtain a unifying definition for
conditional probability.
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What describes an rv fully?

An rv can be discrete, mixed or continuous.

Regardless of that, X is uniquely described by its distribution PX , and
also by its cdf

FX (x) = P(X ≤ x)

and, if it exists, also by its pdf

πX (x) =
P(X ∈ dx)

dx
.
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Next time

Conditional expectations in general (also for mixed rv)

Orthogonal projections on closed subspaces of L2(Ω)

Bayesian inverse problems and well-posedness.
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