
Mathematics and numerics for data assimilation and

state estimation – Lecture 7

Summer semester 2020
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Summary of lecture 6

Recurrence and construction of invariant distributions for finite
discrete-time Markov chains.

Prediction, filtering and smoothing of Markov Chains
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Overview

1 Random variables on Rd

2 Conditional probability density functions

3 L2(⌦), sub-�-algebras and projections
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Extending definitions from discrete to continuous

state-space rv

Given (⌦,F ,P), recall that a discrete rv X : ⌦ ! A was defined by
measurability constraint

X�1(a) 2 F 8a 2 A.

And PX (a) := P(X = a) is a probability measure on the measurable
space (A,A) where

A = �({ak}) := smallest �-algebra containing the sets {a1}, {a2}, . . .

Example elements of C 2 A : {a1, a2}, . . .
An equivalent definition of discrete rv that extends to the continuous
state-space setting: X is a measurable mapping between measurable
spaces X : (⌦,F) ! (A,A), meaning that

X�1(C ) 2 F 8C 2 A.
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Random values/vectors (rv) on Rd

For a mapping X : ⌦ ! Rd what sets C ⇢ Rd are relevant, in the
sense that we seek the probability of events

{X 2 C} = {! 2 ⌦ | X (!) 2 C}?

If all open sets in Rd are relevant, then we should be able to evaluate

PX (C ) = P(X 2 C ) for all open C ⇢ Rd ,

and PX should be a probability measure on
(Rd ,�(all open sets in Rd)).

the above is called the Borel �-algebra:

Bd := smallest �-algebra containing all open sets in Rd .
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Random variables/vectors on Rd

Definition 1

An rv on Rd is a measurable mapping X : (⌦,F) ! (Rd ,Bd) satisfying,

{X 2 C} = X�1(C ) 2 F 8C 2 Bd .

Comments:

The definition extends to measurable mappings X : (⌦,F) ! (S,S)
for any measurable space (S,S).

We will only consider rv on (Rd ,Bd), and often just write

X : ⌦ ! Rd .
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Example 2 (Uniform distribution)

Let X ⇠ U[0, 1]d denote the rv on Rd with

P(X 2 C ) = Leb(C \ [0, 1]d) =

Z

C
[0,1]d (x) Leb(dx) (1)

for any C ⇢ Rd and with Leb(·) being the Lebesgue measure on Rd .

This measure associates to volumes of sets: for instance, for any
C = (a1, b1)⇥ (a2, b2)⇥ . . .⇥ (ad , bd),

Leb(C ) =
dY

k=1

(bk � ak).

From now on dx := Leb(dx), and we rewrite (1) with a density:

P(X 2 C ) =

Z

C
[0,1]d (x) dx
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Probability density function (pdf)

Definition 3

Consider an rv X ⇠ PX on Rn.

If there exists a mapping ⇡ : Rd ! [0,1) such that

PX (C ) =

Z

C
⇡(x) dx 8C 2 Rd ,

then ⇡ is called the pdf of X .

X has a pdf whenever PX is absolutely continuous wrt the Lebesgue
measure, meaning that for all C 2 Bd ,

if dC = Leb(C ) = 0, then also Px(C ) = 0.

And then

⇡(x) =
PX (dx)

dx
, dx” = ”tiny set surrounding x 2 Rd .

An rv with a pdf is called a continuous rv.
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Example 4 (Uniform rv)

For X ⇠ U[0, 1]d , we have

PX (C ) =

Z

C
[0,1]d (x) dx

pdf derived from the Radon-Nikodym derivative:

⇡(x) =
PX (dx)

dx
=

[0,1]d (x)dx

dx
=

8
><

>:

0 x 2 (�1, 0) [ (1,1)

? x 2 {0, 1}
1 2 (0, 1)

Value of ⇡|{0,1} does not matter, whatever value we assign on this
measure 0 set, ⇡ will be the very same pdf:

P(X 2 C ) =

Z

C
⇡(y) dy 8C 2 Bd .

So let us write ⇡(x) = [0,1]d (x).
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Example 5 (Real-valued normal distribution)

Let X ⇠ N(µ,�2) denote the normal disribution on R with

P(X 2 C ) =
1p
2⇡�2

Z

C
exp

⇣
� (x � µ)2

2�2

⌘
dx

where µ 2 R and � > 0.

pdf:

⇡(x) =
exp

⇣
� (x�µ)2

2�

⌘

p
2⇡�2

x

⇡
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Example 6 (Multivariate normal distribution)

Let X ⇠ N(µ,⌃) denote the rv on Rd with

P(X 2 C ) =
1

(2⇡)d/2
p

det(⌃)

Z

C
exp

⇣
� (x � µ) · ⌃�1(x � µ)

2

⌘
dx

With the pdf:

⇡(x) =
1

(2⇡)d/2
p

det(⌃)
e�|x�µ|2⌃/2
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Consider X ⇠ N((0, 0),⌃) on R2 with

⌃ = [u1 u2]


�2
1 0
0 �2

2

�
[u1 u2]

T

u1, u2 orthonormal basis.

Contour plot:
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Cumulative distribution function (cdf)

Definition 7

The cdf of a d-dimensional rv X = (X1,X2, . . . ,Xd) is defined by

FX (x) = FX (x1, . . . , xd) = P(X1  x1,X2  x2, . . . ,Xd  xd) for x 2 Rd .

Whenever X is continuous FX is a primitive of ⇡:

FX (x) =

Z x1

�1
. . .

Z xd

�1
⇡(y1, . . . , yd) dy1 . . . dyd

And in general, the cdf has the following properties:

FX is non-decreasing and right continuous in each of its variables

lim
x1,x2,...,xd!�1

FX (x) = 0 and lim
x1,x2,...,xd!1

FX (x) = 1.
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Example 8 (Discrete rv)

X ⇠ Bernoulli(1/2) yields

F (x) =

8
><

>:

0, x < 0

1/2, x 2 [0, 1)

1, x > 1

and formally
⇡(x) = F 0(x) = 0.5�0(x) + 0.5�2(x).
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Example 9 (Sum of discrete and continuous rv that becomes . . . )

Let X = Y + 2Z where Y ⇠ U[0, 1] and Z ⇠ Bernoulli(1/2) are
independent. Then

F (x) = P(Y + 2Z  x) =

8
>>>>>><

>>>>>>:

0 if x < 0

x/2 if x 2 [0, 1]

1/2 if x 2 [1, 2)

(x � 1)/2 if x 2 [2, 3)

1 if x � 3

and

⇡(x) = F 0(x) =
1

2 [0,1][[2,3](x).

(Formally,
⇡(x) = ⇡Y ⇤ ⇡2Z (x)

where ⇡2Z = 0.5�0(x) + 0.5�2(x).)
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Joint pdfs and cdfs

For rv X : ⌦ ! Rd and Y : ⌦ ! Rk ,

the mapping (X ,Y ) : (⌦,F) ! (Rd+k ,Bd+k) is also an rv

with joint cdf
FXY (x , y) = P(X  x ,Y  y)

where X  x etc. should be read component-wise for vectors

and, whenever (X ,Y ) is continuous, the joint pdf

⇡XY (x , y) =
P(X 2 dx ,Y 2 dy)

dx dy
.

To avoid clutter, one often suppresses XY subscripts.
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Joint pdfs and cdfs

The notation extends naturally to the joint distribution of a sequence of rv
{Xk},

F (x1, . . . , xn) := P(X1  x1, . . . ,Xn  xn)

=

Z

y1x1,...,ynxn

⇡(y1, . . . , yn)dy1 . . . dyn,

where the last equality with the pdf ⇡ is valid when (X1, . . . ,Xn) is
continuous.
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Independence of rv

A finite sequence of rv Xk : (⌦,F) ! (Rd ,Bd) for k = 1, . . . , n is
independent if

P (X1 2 C1, . . . ,Xn 2 Cn) =
nY

k=1

P (Xk 2 Ck)

for all C1, . . . ,Cn 2 Bd .
or equivalently, if

F (x1, x2, . . . , xn) =
nY

k=1

FXk (xk) 8x1, x2, . . . , xn 2 Rd ,

or, if all Xk are continuous, equivalently if

⇡(x1, x2, . . . , xn) =
nY

k=1

⇡Xk (xk) for almost all x1, x2, . . . , xn 2 Rd

A countable sequence of rv {Xk} is independent if any of the above
conditions hold for any finite subsequence.
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Expectations of rv

The expectation of X : ⌦ ! Rd is defined by

E [X ] =

Z

⌦
X (!)P(d!)

where for non-negative X = (X1, . . . ,Xd), each component of the right
side is defined by

Z

⌦
Xj dP := sup

YXj ,Y simple

Z

⌦
Y dP

where ”simple” = {Y : (⌦,F) ! (R,B) | Y is simple }.
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Expectations of rv

The expectation of X : ⌦ ! Rd is defined by

E [X ] =

Z

⌦
X (!)P(d!)

where for non-negative X = (X1, . . . ,Xd), each component of the right
side is defined by

Z

⌦
Xj dP := sup

YXj ,Y simple

Z

⌦
Y dP

where ”simple” = {Y : (⌦,F) ! (R,B) | Y is simple }.
And in general,

Z

⌦
Xj dP :=

Z

⌦
X+
j dP

| {z }
I+j

�
Z

⌦
X�
j dP

| {z }
I�j

where
X+
j = max{Xj , 0} and X�

j = max{�Xj , 0}.

Observation: E [Xj ] exists whenever at least one of I+j and I�j are finite.
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Covariance function

The definition extends straightforwardly to functions of rv:

E [ g(X )] =

Z

⌦
g(X (!))P(d!)

Whenever E [ g(X )] exists, the change of variables formula yields the
equivalent representations (Durrett, Theorem 1.6.9)

E [ g(X )] =

Z

Rd
g(x)dFx(x) =

Z

Rd
g(x)⇡X (x) dx

(last equality valid when ⇡X exists).

Main idea of proof:

1 In the 1D setting with g(X ) =
P

a2A g(a) X=a, then

E [ g(X )] =

2 For non-discrete rv, approximate by sequence of simple functions.
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Covariance function

In what remains, we will assume that the rvs are continuous so that
we can employ pdfs in the expectations of rv.
The covariance of the d-dimensional rv X with mean µ is the d ⇥ d
matrix defined by

Cov(X ) = E
h
(X � µ)(X � µ)T

i
=

Z d

R
(x � µ)(x � µ)T⇡X (x)dx

In the special case of 1-dimensional rv, Cov(X ) = Var(X )

Example 10

X ⇠ U[0, 1], yields

E [X ] =

Z

R
x [0,1](x)dx = 1/2

and

Var(X ) =

Z

R
(x � 1/2)2 [0,1](x)dx = 1/12.
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Example 11 (Multivariate normal distribution)

For X ⇠ N(µ,⌃) with

⇡X (x) =
1

(2⇡)d/2
p
det(⌃)

e�(x�µ)·⌃�1(x�µ)/2,

one can show that
E [X ] = µ

and
Cov(X ) = ⌃.
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Marginal and conditional densities

For a continuous rv (X ,Y ) : ⌦ ! Rd ⇥ Rk , we define

the marginal pdf for X by

⇡X (x) :=

Z

Rk
⇡XY (x , y)dy

and the conditional density of X given Y = y by

⇡X |Y (x |y) :=
⇡XY (x , y)

⇡Y (y)
(using division-by-zero convention).

Properties:

⇡X |Y (·|y) is a density whenever ⇡Y (y) > 0

the disintegration property holds

⇡XY (x , y) = ⇡X |Y (x |y)⇡(y)

and it extends to multiple rv (X ,Y ,Z ):

⇡(x , y , z) = ⇡(x |y , z)⇡(y |z)⇡(z) etc
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Formal motivation for scalar-valued Y : For any C 2 Bd ,

P(X 2 C | Y 2 [y , y +�y ]) =

R y+�y
y

R
C ⇡XY (x , y) dx dyR

�y ⇡Y (y) dy

⇡

So when ⇡XY is continuous, we have the relation

lim
�y!0

P(X 2 C | Y 2 �y) =

Z

C
⇡X |Y (x | y)dx ,

for neighborhoods �y of y .
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Expectation of X given Y

Definition 12 (Conditional expectation)

For continuous rv (X ,Y ) : ⌦ ! Rd ⇥ Rk and mapping g(X ) such that
E [ |g(X )|] < 1, we define

E [ g(X ) | Y = y ] :=

Z

Rd
g(x)⇡X |Y (x |y) dx ,

and the related continuous rv

E [ g(X ) | Y ] (!) := E [ g(X ) | Y = Y (!)] .
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Properties

For integrable g(X ,Y ), the tower property holds:

E [E [ g(X ,Y ) | Y ] ] := E [ g(X ,Y )]

and if g(X ,Y ) = f (X )h(Y ), then

E [E [ g(X ,Y ) | Y ] ] := E [ h(Y )E [ f (X ) | Y ] ] .

Verification:
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Example 13

Let Y ,Z ⇠ U[0, 1] and independent, and X = Y + Z .

Then for y 2 [0, 1],

shortcut: X |{Y = y} = Z + y ⇠ U[y , 1 + y ]

giving
⇡X |Y (x |y) = [y ,y+1](x)

and

E [X | Y = y ] =

Z

R
x [y ,y+1] dx =

y + 1

2
.

Proper argument:

⇡XY (x , y) = ⇡ZY (x � y , y) = [0,1](x � y) [0,1](y) etc.
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General definition for conditional expectation

Random variables may also be mixed, meaning neither discrete nor
continuous.

Example 14

X = YZ where Y ⇠ Bernoulli(1/2) and Z ⇠ U[0, 1] with Y ? Z .
Then formally,

⇡X (x) =
�0(x) + [0,1](x)

2

Mixed rv do not have a pdf, so Definition 12 does not apply to
conditional expectations of mixed rv.

Objective: obtain a unifying definition for conditional probability.
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Conditional expectations

For a discrete rv

Y (!) =
kX

k=1

bk Bk (!)

on (⌦,F ,P), with Bk = {Y = bk} we define

�(Y ) := �({Bk}) = smallest �-algebra containing all events B1,B2, . . .

By construction Y is �(Y )-measurable and �(Y ) ⇢ F .

Then, if X is either continuous or discrete, it holds that

E [X |Y ] (!) =

8
>><

>>:

1
P(B1)

R
B1

XdP if ! 2 B1

1
P(B2)

R
B2

XdP if ! 2 B2

...
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Observations: E [X |Y ] is a �(Y )-measurable discrete rv for which
Z

B
X dP =

Z

B
E [X | Y ] dP 8B 2 �(Y ).

(hint: verify first for sets Bk , and extend to general B 2 �(Y ) by recalling
the properties of a �-algebra).

Seeking to preserve these properties, observe first that for
Y : (⌦,F) ! (Rk ,Bk),

�(Y ) := smallest �-algebra containingY�1(C ) 8C 2 Bk

similarly satisfies �(Y ) ⇢ F and that Y is �(Y )-measurable.

Definition 15 (Conditional expectation for general rv)

For rv X : ⌦ ! Rd and Y : ⌦ ! Rk defined on the same probability
space, the conditional expectation of X given Y is defined as any
�(Y )-measurable rv Z satisfying

Z

B
XdP =

Z

B
Z dP 8B 2 �(Y ).
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Conditioning on a ��algebra

One may relate E [X | Y ] to another kind of conditional expectation:

Definition 16 (Expectation of X given V ⇢ F .)

Let X : ⌦ ! Rd be an integrable rv on a probability space (⌦,F ,P) and
assume V is a �-algebra V ⇢ F . Then we define E [X | V] as any
V-measurable rv Z satisfying

Z

B
XdP =

Z

B
Z dP 8B 2 V.

Observation: Setting V = �(Y ) implies that E [X | Y ] satisfies the
constraints of E [X | �(Y )].

Question: Does E [X | V] exist and is it unique?

Yes, E [X | V] = ProjL2(⌦,V)X is a.s. unique.
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Function space L2(⌦,F)

As an extension of L2(⌦) for discrete rv, we introduce the Hilbert space

L2(⌦,F) =
n
X : (⌦,F) ! (Rd ,Bd)

���
Z

⌦
|X (!)|2 dP < 1

o

with the scalar product

hX ,Y i =
Z

⌦
X · YdP =

Z

Rd⇥Rd
X · YdF (x , y)

and norm
kXkL2(⌦,F) =

p
hX ,Y i.

This is a Hilbert space: it is complete and for any sub-�-algebra V ⇢ F ,
L2(⌦,V) is a closed subspace of L2(⌦,F).
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Orthogonal projections onto subspaces

Definition 17

The orthogonal projection of X 2 L2(⌦,F) onto the closed subspace
L2(⌦,V) is defined as any rv Z 2 L2(⌦,V) satisfying

hX � Z ,W i = 0 8W 2 L2(⌦,V). (2)

We write Z = ProjL2(⌦,V)X .

L2(⌦,V)

0

X

Z
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Orthogonal projections onto subspaces

Definition 17

The orthogonal projection of X 2 L2(⌦,F) onto the closed subspace
L2(⌦,V) is defined as any rv Z 2 L2(⌦,V) satisfying

hX � Z ,W i = 0 8W 2 L2(⌦,V). (2)

We write Z = ProjL2(⌦,V)X .

Exercise: verify that ProjL2(⌦,V)X satisfies the constraints of E [X | V].
Hint: consider W = B for B 2 V

Exercise: verify that Z = ProjL2(⌦,V)X is unique in L2(⌦,V) (and thus
a.s. unique).

Last step: take as a fact that E [X | V] satisfies the constraint (2) of
ProjL2(⌦,V)X , and conclude that E [X | V] is a.s. unique.
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What describes an rv fully?

An rv can be discrete, mixed or continuous.

Regardless of that, X is uniquely described by its distribution PX , and
also by its cdf

FX (x) = P(X  x)

and, if it exists, also by its pdf

⇡X (x) =
P(X 2 dx)

dx
.

every rv generates a sigma algebra �(Y ) ⇢ F which relates to
conditional expectations for rv defined on the same probability space:

E [X | Y ] = E [X | �(Y )]
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Next time

Bayesian inverse problems and well-posedness.
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