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Summary of lecture 6

m Recurrence and construction of invariant distributions for finite
discrete-time Markov chains.

m Prediction, filtering and smoothing of Markov Chains



Overview

Random variables on R¢

Conditional probability density functions

L?(Q), sub-o-algebras and projections



Overview

Random variables on R¢



Extending definitions from discrete to continuous
state-space rv

m Given (Q, F,P), recall that a discrete rv X : Q — A was defined by
measurability constraint

X la)e F VacA

Bt

m And Px(a) := P(X = a) is a probability measure on the measurable
space (A, .A) where

A = o({ak}) := smallest o-algebra containing the sets {a1}, {a2},. ..

] Examplle elements. o.f‘C € .A.: {a1,a2},. L~ f_q}/qzﬁj ‘

m An equivalent definition of discrete rv that extends to the continuous
state-space setting: X is a measurable mapping between measurable
spaces X : (2, F) — (A, A), meaning that

XHC)eF vCe A



Random values/vectors (rv) on RY

m For a mapping X : Q — RY what sets C C R are relevant, in the
sense that we seek the probability of events

{XeC}={we]| X(w)e C}?

m If all open sets in R? are relevant, then we should be able to evaluate

Px(C) =P(X € C) for all open C C R¢,

m and Px should be a probability measure on

(R9, o(all open sets in R9)). X (&/})J}[{?jo@

m the above is called the Borel o-algebra:

B9 := smallest o-algebra containing all open sets in RY.



Random variables/vectors on R?

Definition 1
An rv on RY is a measurable mapping X : (Q, F) — (R9, BY) satisfying,

{(XeC}=X"YC)eF VvCeB

Comments:

m The definition extends to measurable mappings X : (2, F) — (S,S)
for any measurable space (S, S).

= We will only consider rv on (RY, B9), and often just write

X :Q —RY.

£: m£ 2 tZ“ {: (RA/ }5-\)9{@1@



Example 2 (Uniform distribution)

m Let X ~ U[0,1]9 denote the rv on R¥ with
Mx€cy:RMCmmey:/1mwu)muw) (1)
C

for any Cebiand with Leb(-) being the Lebesgue measure on RY.

m This measure associates to volumes of sets: for instance, for any
C = (317 bl) X (32, b2) X ooo X (ad, bd),

d
Leb(C) = ] (bk — ax)-

k=1

m From now on dx := Leb(dx), and we rewrite (1) with a density:

P(X € C) :/ ﬂ[o7l]d(X) dX
C




Probability density function (pdf)

Definition 3
m Consider an rv X ~ Px on R“.
m If there exists a mapping 7 : RY — [0, 00) such that

IP)x(C)Z/CTr(X)dX vC GBd',

then 7 is called the pdf of X.

m X has a pdf whenever Px is absolutely continuous wrt the Lebesgue
: ing that for all C € B¢, .
measure, meaning that for a lPx << Leb()
if dC =Leb(C)=0, thenalso P,(C)=0.

= And then Ja e (4R = J; % dx

Px(d.
m(x) = Xd(xX)’ dx" = "tiny set surrounding x € RY.

m An rv with a pdf is called a continuous rv.




Example 4 (Uniform rv)
For X ~ U[0,1]?, we have

]P)X(C) :/ ]].[0,1]d(X) dx
c
pdf derived from the Radon-Nikodym derivative:

0 xé€(—00,0)U(1,00)
=<7 xe{0,1}
1 €(0,1)

Py (dx ]]_0’1 d(X)dX
m(x) = Xch ): [ ]dx

Value of 71"{0’1} does not matter, whatever value we assign on this
measure 0 set, 7 will be the very same pdf:

P(X € C) = / m(y)dy VC e B9,
C

So let us write 7(x) = 1jg 1j¢(x).




Example 5 (Real-valued normal distribution)

m Let X ~ N(u,0?) denote the normal disribution on R with

(x = p)?
P(X € C) ——) d
(X0~ s fow (=) o

where ¢ € R and o > 0.

pdf:




Example 6 (Multivariate normal distribution)
m Let X ~ N(u,X) denote the rv on RY with

P(X e C) =

1 (x —
(2m)972,/det(x) e (=

m With the pdf:
1

(27)4/2/det(x)

o lx—ul2/2

m(x) =

M)'Z2_ (X—M)> dx

v

T em? sl ?acﬂ—ﬂ/c Jéﬁuf@. Y,

. (avw( s{ymmeéﬁc‘,B,
[X-Az = [TFx-A”



Consider X ~ N((0,0),X) on R? with

2
T = [u1 w)] [Og ;)%] [u1 U2]T
o, >8.20

u1, up orthonormal basis.

Contour plot:




Cumulative distribution function (cdf)

Definition 7
The cdf of a d-dimensional rv X = (X1, Xa, ..., Xy) is defined by

Fx(X) = Fx(Xl,...,Xd) = ]P)(Xl <x, X0 < xp,..., Xy < Xd) for x € RY.

Scalwr it () = PR <) = [ TG dx

Whenever X is continuous Fx is a primitive of m:
X1 Xd
FX(X):/ / (Y1, .-, Yd)dyr ... dyg
—00 —oo

And in general, the cdf has the following properties:
m Fx is non-decreasing and right continuous in each of its variables

lim Fx(x) =0 and lim Fx(x) = 1.

X13,X2 4000y X —>—0OQ X1,X2 4.0y X —>0OQ




Example 8 (Discrete rv)
X ~ Bernoulli(1/2) yields

0, x <0
F(x)=41/2, x€][0,1)
1, x>1

and formally
7(x) = F'(x) = 0.580(x) + 0.551(x).

Yo il P(Z-0)=0(X:1) = 1
FR =RX<&x) =



Example 9 (Sum of discrete and continuous rv that becomes ... )

Let X = Y +2Z where Y ~ U0, 1] and Z ~ Bernoulli(1/2) are
independent. Then

(

0 if x <0
x/2 if x € [0,1]
F(x)=P(Y +2Z <x)=<1/2 if x € [1,2)
=7 <x|z-0)fl2-9) | x=D/2 ifxe23)
HHE L 2 x2-0m, ! fx=3
and ”
m(x) = F'(x) = 51[0,1]u[2,3](x)-
(Formally,

m(x) = 7y * maz(x)

where 7 = 05(50(X) T 05(52(X))




Joint pdfs and cdfs

Forrv X :Q = R9 and Y : Q — Rk,

m the mapping (X, Y) : (Q,F) — (R9Tk, BI+K) is also an rv

:X,_‘.-Kl/ Kzéx&/ .-

m with joint cdf ¥
Fxy(x,y) =P(X <x, Y <)

where X < x etc. should be read component-wise for vectors

m and, whenever (X, Y) is continuous, the joint pdf

P(X € dx, Y € dy)
dx dy ’

7I'XY(Xay) =

m To avoid clutter, one often suppresses XY subscripts.

. e{c_



Joint pdfs and cdfs

The notation extends naturally to the joint distribution of a sequence of rv

{X«},

F(xi,.. =P(X1 < x1,...,Xn < xp)

/ y17~-a}/n)d}/1---d)/n7
Y1<X1,5ee,Yn<Xn

where the last equality with the pdf 7 is valid when (Xi,...,X;) is
continuous.



Independence of rv
A finite sequence of rv Xy : (2, F) — (R, B9) for k =1,...,nis
independent if

]

P(X1€ Gy, Xn € Co) = [[P(Xk € Gi)

forall Gy,....C, € B9, % L?(X_em/gyﬂ-;(b)—{-}(a)

m or equivalently, if
n
F(x1,x2,...,Xxn) = H Fx,(xk) Vx1,x2,...,xp € RY,
k=1
m or, if all X are continuous, equivalently if
n
(X1, X2y .oy Xn) = H 7x, (xk) foralmost all xi,x2,...,xp € R
k=1

m A countable sequence of rv { X} is independent if any of the above
conditions hold for any finite subsequence.



Expectations of rv
The expectation of X : Q@ — RY is defined by

E[X] = /Q X () P(dw)

where for non-negative X = (Xi,..., Xy), each component of the right
side is defined by

/ X;dP .= sup / Y dP
Q Y<X;,Y simple JQ

where "simple” ={Y : (2, F) — (R, B) | Y is simple }.

% (o, 1] Rl oj e W



Expectations of rv
The expectation of X : Q@ — RY is defined by

E[X] = /QX(w)IP’(dw)

where for non-negative X = (Xi,..., Xy), each component of the right

side is defined by
/ X dP := sup / Y dP
Q Y<X;,Y simple JQ

where "simple” ={Y : (2, F) — (R, B) | Y is simple }.

And in general,
/deP::/X%dP/X.dP
Q Q ’ Q ’
%:—/ ~——
) i

where
XJ-Jr =max{X;,0} and X, = max{—X;,0}.

Observation: [E[X]] exists whenever at least one of /j+ and /;” are finite.



Covariance function

m The definition extends straightforwardly to functions of rv:

Emwn—éammmwm

m Whenever E [ g(X)] exists, the change of variables formula yields the
equivalent representations (Durrett, Theorem 1.6.9)

BLe()] = [ g(gh) = | atme(x) o

(last equality valid when 7x exists): ds
Main idea of proof:
In the 1D setting with g(X) = >, 4 &8(a)lx=a, then

stooi=] 5 4@ L., Fldo)=3 g FE==)

QL acl

Cf C><7A <)
Siney (AR = () -K(@ ), a<A

For non-discrete rv, apprOX|mate by sequence of simple functions.



Covariance function
m In what remains, we will assume that the rvs are continuous so that

we can employ pdfs in the expectations of rv.
m The covariance of the d-dimensional rv X with mean p is the d x d

matrix defined by
A

Cov(X) = E[(X ~ (X —)"] = / = ) x = )T ()

m In the special case of 1-dimensional rv, Cov(X) = Var(X)

Example 10
X ~ U[0,1], yields

E[X] = /RXI[[QI](X)dX =1/2

and
Var(X) = /R(x —1/2)*1yg 3y (x)dx = 1/12.




Example 11 (Multivariate normal distribution)
For X ~ N(u, ¥) with

1 e~ T xp)/2
(27)9/2, /det(x)

mx(x) =
one can show that
E[X]=nu

and
Cov(X) =ZX.




Overview

Conditional probability density functions



Marginal and conditional densities
For a continuous rv (X, Y) : Q — RY x R¥, we define

m the marginal pdf for X by
()= [ morley)dy
Rk

m and the conditional density of X given Y =y by

7TXY(Xv.y)

(using division-by-zero convention).
Ty (y)

7TX|Y(X|)/) =

Properties:
m 7x|y(-ly) is a density whenever Ty (y) >

0
m the disintegration property holds fP{A;/I B) = (?(4 (5) 172/57
mxy(x,y) = 7TX|Y(X|Y)7Tj(Y)
m and it extends to multiple rv (X, Y, Z):

w(x,y,z) = w(x|y, z2)n(y|z)n(z) etc



Formal motivation for scalar-valued Y : For any C € B9,

JIR [emxr (x,y) dx dy
fAy 71'Y(y) dy

~ ‘Jc Trgg(x/y)AX }K

PXeC|Yely,y+Ay]) =

So when mxy is continuous, we have the relation
lim P(Xe C|Y eAy)= / x|y (x| y)dx,
Ay—0 Cc

for neighborhoods Ay of y.



Expectation of X given Y

Definition 12 (Conditional expectation)

For continuous rv (X, Y) : Q — R? x Rk and mapping g(X) such that
E[|g(X)|] < oo, we define

M/U_;g

E[g00| ¥ =)= [ g()mxv(ely) o oxfwktj\%r

l=C
()50

and the related continuous rv or ha'L,

E[g(X) | Y](w) =E[g(X)|Y = Y(w)].

Wy(x chw))ix




Properties
For integrable g(X, Y), the tower property holds:
E[E[g(X,Y) | Y]]:=E[g(X,Y)]
and if g(X, Y) = f(X)h(Y), then
E[E[g(X,Y) | Y]]:=E[h(Y)E[F(X)] Y]].

Verification:

E[el/7)12])- Jﬁ[f[g 59) ly | Ty

=[] 450 gl e T 0y
me <MK

= Jor oo g05Y) Thoy) ket
m“ |



Example 13
Let Y, Z ~ UJ[0,1] and independent, and X = Y + Z.

wa th U050
Then for y € [0,1], /_/,rg (2‘1\1) 2D au 7/
shortcut: X{Y =y} =2Z2+y~ Uly,1+y]
giving
x|y (xly) = 1y y113(x)
and

y+1
E[X|Y =y] :/Rx]l[%ﬂ_l] dX:T.

Proper argument:

mxy(x,y) =mzv(x —y,y) = 11[0,1](X - )/)11[0,1]()/) etc.




Overview

L?(Q), sub-o-algebras and projections



General definition for conditional expectation

m Random variables may also be mixed, meaning neither discrete nor
continuous.

Example 14

X = YZ where Y ~ Bernoulli(1/2) and Z ~ U[0,1] with Y L Z.
Then formally,
do(x) + Lpo,13(x)

2

mx(x) =

m Mixed rv do not have a pdf, so Definition 12 does not apply to
conditional expectations of mixed rv.

m Objective: obtain a unifying definition for conditional probability.



Conditional expectations

m For a discrete rv .
Y(w) =) bilg,(w)
k=1

on (2, F,P), with By = {Y = by} we define

o(Y) := o({Bx}) = smallest o-algebra containing all events By, By, . ..

m By construction Y is o(Y)-measurable and o(Y) C F.

m Then, if X is either continuous or discrete, it holds that

55 Jo, XdP ifw € By
E[X|Y](w) =} 55y Js, XdP ifw e B



Observations: E[X|Y] is a o(Y)-measurable discrete rv for which
/XdP:/IE[X | Y] dP VB € o(Y).
B B

(hint: verify first for sets By, and extend to general B € o(Y') by recalling
the properties of a o-algebra).

Seeking to preserve these properties, observe first that for
Y (Q,F) — (RK, BX),

o(Y) := smallest o-algebra containingY "}(C) VC e B*
similarly satisfies o(Y') C F and that Y is o(Y')-measurable.
Definition 15 (Conditional expectation for general rv)

For rv X : Q — R9 and Y : Q — RX defined on the same probability
space, the conditional expectation of X given Y is defined as any
o(Y)-measurable rv Z satisfying

/XdIP’:/ZdIP’ VB e o(Y).
B B




Conditioning on a oc—algebra

One may relate E[ X | Y] to another kind of conditional expectation:

Definition 16 (Expectation of X given V C F.)

Let X : Q — R? be an integrable rv on a probability space (Q, F,P) and
assume V is a o-algebra V C F. Then we define E[ X | V] as any
V-measurable rv Z satisfying

/XdP:/ZdP VB e V.
B B

Observation: Setting V = o(Y) implies that E[ X | Y] satisfies the
constraints of E[ X | o(Y)].

Question: Does E [ X | V] exist and is it unique?

Yes, E[X | V] = Proj2q )X is a.s. unique.




Function space L?(, F)

As an extension of L%(Q) for discrete rv, we introduce the Hilbert space
2@.F) = {X: @7 > @8] [ 1X(@)?dP < oo}

with the scalar product

(X, Y):/X-YdP:/ X - YdF(x,y)
Q RI xRd

and norm

Xl 20,7 = VX, Y).

This is a Hilbert space: it is complete and for any sub-c-algebra V C F,
L2(,V) is a closed subspace of L?(, F).



Orthogonal projections onto subspaces
Definition 17

The orthogonal projection of X € L?(, F) onto the closed subspace
L?(Q,V) is defined as any rv Z € L%(Q, V) satisfying

(X=Z,W)=0 VYW e L?(QV). (2)

We write  Z = Proj;2q ) X.

N

12(Q,V)




Orthogonal projections onto subspaces

Definition 17

The orthogonal projection of X € L?(Q, F) onto the closed subspace
[2(Q,V) is defined as any rv Z € [2(Q, V) satisfying

(X=Z,W)=0 YW e [}(Q,V). (2)

We write  Z = Proj2(g ) X.

Exercise: verify that Proj;2(q )X satisfies the constraints of E[X | V].
Hint: consider W = 1pg for BV

Exercise: verify that Z = Proj;2(q 1)) X is unique in L2(Q,V) (and thus
a.s. unique).

Last step: take as a fact that E[ X | V] satisfies the constraint (2) of
Proj;2(q)X, and conclude that E[X | V] is a.s. unique.



What describes an rv fully?

m An rv can be discrete, mixed or continuous.

m Regardless of that, X is uniquely described by its distribution Px, and
also by its cdf
Fx(x) =P(X < x)

and, if it exists, also by its pdf

mx(x) = IW

m every rv generates a sigma algebra o(Y) C F which relates to
conditional expectations for rv defined on the same probability space:

E[X[Y]=E[X][a(Y)]



Next time

Bayesian inverse problems and well-posedness.



