Mathematics and numerics for data assimilation and state estimation - Lecture 7

Summer semester 2020

Summary of lecture 6

■ Recurrence and construction of invariant distributions for finite discrete-time Markov chains.

- Prediction, filtering and smoothing of Markov Chains

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions
$3 L^{2}(\Omega)$, sub- σ-algebras and projections

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions
$3 L^{2}(\Omega)$, sub- σ-algebras and projections

Extending definitions from discrete to continuous

state-space rv

- Given $(\Omega, \mathcal{F}, \mathbb{P})$, recall that a discrete rv $X: \Omega \rightarrow A$ was defined by measurability constraint

$$
X^{-1}(a) \in \mathcal{F} \quad \forall a \in A .
$$

- And $\mathbb{P}_{X}(a):=\mathbb{P}(X=a)$ is a probability measure on the measurable space (A, \mathcal{A}) where
$\mathcal{A}=\sigma\left(\left\{a_{k}\right\}\right):=$ smallest σ-algebra containing the sets $\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots$
- Example elements of $C \in \mathcal{A}:\left\{a_{1}, a_{2}\right\}, . \Omega \backslash\left\{a_{3}, a_{7}\right\}$,
- An equivalent definition of discrete rv that extends to the continuous state-space setting: X is a measurable mapping between measurable spaces $X:(\Omega, \mathcal{F}) \rightarrow(A, \mathcal{A})$, meaning that

$$
X^{-1}(C) \in \mathcal{F} \quad \forall C \in \mathcal{A} .
$$

Random values/vectors (rv) on \mathbb{R}^{d}

■ For a mapping $X: \Omega \rightarrow \mathbb{R}^{d}$ what sets $C \subset \mathbb{R}^{d}$ are relevant, in the sense that we seek the probability of events

$$
\{X \in C\}=\{\omega \in \Omega \mid X(\omega) \in C\} ?
$$

- If all open sets in \mathbb{R}^{d} are relevant, then we should be able to evaluate

$$
\mathbb{P}_{X}(C)=\mathbb{P}(X \in C) \quad \text { for all open } C \subset \mathbb{R}^{d}
$$

- and \mathbb{P}_{X} should be a probability measure on $\left(\mathbb{R}^{d}, \sigma\left(\right.\right.$ all open sets in $\left.\left.\mathbb{R}^{d}\right)\right)$.
- the above is called the Borel σ-algebra:

Random variables/vectors on \mathbb{R}^{d}

Definition 1

An $r v$ on \mathbb{R}^{d} is a measurable mapping $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ satisfying,

$$
\{X \in C\}=X^{-1}(C) \in \mathcal{F} \quad \forall C \in \mathcal{B}^{d} .
$$

Comments:

■ The definition extends to measurable mappings $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{S}, \mathcal{S})$ for any measurable space $(\mathbb{S}, \mathcal{S})$.

- We will only consider rv on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$, and often just write

$$
\begin{aligned}
& x: \Omega \rightarrow \mathbb{R}^{d} \\
& f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \quad f:\left(\mathbb{R}^{d}, \beta^{d}\right) s(x, \beta, \beta)
\end{aligned}
$$

Example 2 (Uniform distribution)

- Let $X \sim U[0,1]^{d}$ denote the rv on \mathbb{R}^{d} with

$$
\begin{equation*}
\mathbb{P}(X \in C)=\operatorname{Leb}\left(C \cap[0,1]^{d}\right)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) \operatorname{Leb}(d x) \tag{1}
\end{equation*}
$$

for any $C \in \mathcal{B}^{d}$ and with $\operatorname{Leb}(\cdot)$ being the Lebesgue measure on \mathbb{R}^{d}.

- This measure associates to volumes of sets: for instance, for any $C=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{d}, b_{d}\right)$,

$$
\operatorname{Leb}(C)=\prod_{k=1}^{d}\left(b_{k}-a_{k}\right) .
$$

■ From now on $d x:=\operatorname{Leb}(d x)$, and we rewrite (1) with a density:

$$
\mathbb{P}(X \in C)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) d x
$$

Probability density function (pdf)

Definition 3

- Consider an $\mathrm{rv} X \sim \mathbb{P}_{X}$ on \mathbb{R}^{d}.
- If there exists a mapping $\pi: \mathbb{R}^{d} \rightarrow[0, \infty)$ such that

$$
\mathbb{P}_{x}(C)=\int_{C} \pi(x) d x \quad \forall C \in \mathbb{B}^{d}
$$

then π is called the pdf of X.
■ X has a pdf whenever \mathbb{P}_{X} is absolutely continuous wrt the Lebesgue measure, meaning that for all $C \in \mathcal{B}^{d}$,
if $\quad d C=\operatorname{Leb}(C)=0, \quad$ then also $\quad \mathbb{P}_{x}(C)=0$.

- And then

$$
\int_{c} \mathbb{P}_{\bar{x}}(d x)=\int_{c} \frac{\mathbb{R}_{\varepsilon}(d x)}{d x} d x
$$

$$
\pi(x)=\frac{\mathbb{P}_{x}(d x)}{d x}, \quad d x^{\prime \prime}=\text { "tiny set surrounding } x \in \mathbb{R}^{d} .
$$

- An rv with a pdf is called a continuous rv.

Example 4 (Uniform rv)

For $X \sim U[0,1]^{d}$, we have

$$
\mathbb{P}_{X}(C)=\int_{C} \mathbb{1}_{[0,1]^{d}}(x) d x
$$

pdf derived from the Radon-Nikodym derivative:

$$
\pi(x)=\frac{\mathbb{P}_{x}(d x)}{d x}=\frac{\mathbb{1}_{[0,1]^{d}}(x) d x}{d x}= \begin{cases}0 & x \in(-\infty, 0) \cup(1, \infty) \\ ? & x \in\{0,1\} \\ 1 & \in(0,1)\end{cases}
$$

Value of $\left.\pi\right|_{\{0,1\}}$ does not matter, whatever value we assign on this measure 0 set, π will be the very same pdf:

$$
\mathbb{P}(X \in C)=\int_{C} \pi(y) d y \quad \forall C \in \mathcal{B}^{d}
$$

So let us write $\pi(x)=\mathbb{1}_{[0,1]^{d}}(x)$.

Example 5 (Real-valued normal distribution)

■ Let $X \sim N\left(\mu, \sigma^{2}\right)$ denote the normal disribution on \mathbb{R} with

$$
\mathbb{P}(X \in C)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{C} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

where $\mu \in \mathbb{R}$ and $\sigma>0$.
pdf:

$$
\pi(x)=\frac{\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma}\right)}{\sqrt{2 \pi \sigma^{2}}}
$$

Example 6 (Multivariate normal distribution)

■ Let $X \sim N(\mu, \Sigma)$ denote the rv on \mathbb{R}^{d} with

$$
\mathbb{P}(X \in C)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \int_{C} \exp \left(-\frac{(x-\mu) \cdot \Sigma^{-1}(x-\mu)}{2}\right) d x
$$

- With the pdf:

$$
\pi(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} e^{-|x-\mu|_{\Sigma}^{2} / 2}
$$

$$
\begin{aligned}
& \Sigma \in \mathbb{R}^{d \times d} \text { and positive definite, } \\
& \text { (and symmetric). } \\
& |x-\mu|_{I}^{2}=\left|\Sigma^{-\frac{1}{2}}(x-\mu)\right|^{2}
\end{aligned}
$$

Consider $X \sim N((0,0), \Sigma)$ on \mathbb{R}^{2} with

$$
\Sigma=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]^{T}
$$

u_{1}, u_{2} orthonormal basis.

$$
\sigma_{1}>\sigma_{2}>0
$$

Contour plot:

Cumulative distribution function (cdf)

Definition 7

The cdf of a d-dimensional $r v X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is defined by
$F_{X}(x)=F_{X}\left(x_{1}, \ldots, x_{d}\right)=\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right) \quad$ for $x \in \mathbb{R}^{d}$. Scalar case $F_{x}(x)=\mathbb{P}(\underline{x} \leq x)=\int_{-\infty}^{x} \bar{u}_{8}(x) d x$
Whenever X is continuous F_{X} is a primitive of π :

$$
F_{X}(x)=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{d}} \pi\left(y_{1}, \ldots, y_{d}\right) d y_{1} \ldots d y_{d}
$$

And in general, the cdf has the following properties:
■ F_{X} is non-decreasing and right continuous in each of its variables

$$
\lim _{x_{1}, x_{2}, \ldots, x_{d} \rightarrow-\infty} F_{X}(x)=0 \quad \text { and } \quad \lim _{x_{1}, x_{2}, \ldots, x_{d} \rightarrow \infty} F_{X}(x)=1
$$

Example 8 (Discrete rv)
$X \sim$ Bernoulli (1/2) yields

$$
F(x)= \begin{cases}0, & x<0 \\ 1 / 2, & x \in[0,1) \\ 1, & x>1\end{cases}
$$

and formally

$$
\begin{aligned}
& \pi(x)=F^{\prime}(x)=0.5 \delta_{0}(x)+0.5 \delta_{\mathcal{I}}(x) . \\
& \bar{X}: \Omega \rightarrow \mathbb{R} \quad \mathbb{P}(\underline{X}=0)=\mathbb{P}(\underline{x}=\mathcal{I})=\frac{1}{2} \\
& F(x)=\mathbb{P}(\underline{X} \leq x)=
\end{aligned}
$$

Example 9 (Sum of discrete and continuous rv that becomes ...)
Let $X=Y+2 Z$ where $Y \sim U[0,1]$ and $Z \sim \operatorname{Bernoulli}(1 / 2)$ are independent. Then

$$
\begin{aligned}
& F(x)=\mathbb{P}(Y+2 Z \leq x)= \begin{cases}0 & \text { if } x<0 \\
x / 2 & \text { if } x \in[0,1] \\
1 / 2 & \text { if } x \in[1,2) \\
(x-1) / 2 & \text { if } x \in[2,3) \\
=\mathbb{P}(\mathscr{Q} \leq x \mid Z=0) \mathbb{P}(2=0)=\left\{\begin{array}{l}
\text { if } x \geq 3
\end{array}\right. \\
+\mathbb{P}(Z+2 \leq x \mid 2=1) \mathbb{P}(2=1)\end{cases} \\
& \pi(x)=F^{\prime}(x)=\frac{1}{2} \mathbb{1}_{[0,1] \cup[2,3]}(x) .
\end{aligned}
$$

and
(Formally,

$$
\pi(x)=\pi_{Y} * \pi_{2 Z}(x)
$$

where $\left.\pi_{2 Z}=0.5 \delta_{0}(x)+0.5 \delta_{2}(x).\right)$

Joint pdfs and cdfs

For rv $X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$,

- the mapping $(X, Y):(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d+k}, \mathcal{B}^{d+k}\right)$ is also an $r v$
- with joint cdf

$$
F_{X Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

where $X \leq x$ etc. should be read component-wise for vectors

- and, whenever (X, Y) is continuous, the joint pdf

$$
\pi_{X Y}(x, y)=\frac{\mathbb{P}(X \in d x, Y \in d y)}{d x d y}
$$

- To avoid clutter, one often suppresses $X Y$ subscripts.

Joint pdfs and cdfs

The notation extends naturally to the joint distribution of a sequence of rv $\left\{X_{k}\right\}$,

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & :=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \\
& =\int_{y_{1} \leq x_{1}, \ldots, y_{n} \leq x_{n}} \pi\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}
\end{aligned}
$$

where the last equality with the pdf π is valid when $\left(X_{1}, \ldots, X_{n}\right)$ is continuous.

Independence of rv

A finite sequence of $r v X_{k}:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$ for $k=1, \ldots, n$ is independent if

$$
\mathbb{P}\left(X_{1} \in C_{1}, \ldots, X_{n} \in C_{n}\right)=\prod_{k=1}^{n} \mathbb{P}\left(X_{k} \in C_{k}\right)
$$

$\begin{array}{ll}\begin{array}{l}\text { for all } C_{1}, \ldots, C_{n} \in \mathcal{B}^{d} \\ \text { or equivalently, if }\end{array} & \text { Scalar } \\ \text { case }\end{array} \quad \operatorname{LP}(\bar{X} \in(a, b])=F_{x}(b)-F_{\bar{x}}(a)$

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n} F_{X_{k}}\left(x_{k}\right) \quad \forall x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}
$$

■ or, if all X_{k} are continuous, equivalently if

$$
\pi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n} \pi_{x_{k}}\left(x_{k}\right) \quad \text { for almost all } \quad x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}
$$

■ A countable sequence of $\mathrm{rv}\left\{X_{k}\right\}$ is independent if any of the above conditions hold for any finite subsequence.

Expectations of rv

The expectation of $X: \Omega \rightarrow \mathbb{R}^{d}$ is defined by

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)
$$

where for non-negative $X=\left(X_{1}, \ldots, X_{d}\right)$, each component of the right side is defined by

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\sup _{Y \leq X_{j}, Y \text { simple }} \int_{\Omega} Y d \mathbb{P}
$$

where "simple" $=\{Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}) \mid Y$ is simple $\}$.

Expectations of rv

The expectation of $X: \Omega \rightarrow \mathbb{R}^{d}$ is defined by

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)
$$

where for non-negative $X=\left(X_{1}, \ldots, X_{d}\right)$, each component of the right side is defined by

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\sup _{Y \leq X_{j}, Y \text { simple }} \int_{\Omega} Y d \mathbb{P}
$$

where "simple" $=\{Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}) \mid Y$ is simple $\}$.
And in general,

$$
\int_{\Omega} X_{j} d \mathbb{P}:=\underbrace{\int_{\Omega} X_{j}^{+} d \mathbb{P}}_{l_{j}^{+}}-\underbrace{\int_{\Omega} X_{j}^{-} d \mathbb{P}}_{l_{j}^{-}}
$$

where

$$
X_{j}^{+}=\max \left\{X_{j}, 0\right\} \quad \text { and } \quad X_{j}^{-}=\max \left\{-X_{j}, 0\right\}
$$

Observation: $\mathbb{E}\left[X_{j}\right]$ exists whenever at least one of I_{j}^{+}and I_{j}^{-}are finite.

Covariance function

- The definition extends straightforwardly to functions of rv:

$$
\mathbb{E}[g(X)]=\int_{\Omega} g(X(\omega)) \mathbb{P}(d \omega)
$$

■ Whenever $\mathbb{E}[g(X)]$ exists, the change of variables formula yields the equivalent representations (Durrett, Theorem 1.6.9)

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}^{d}} g(x) \underbrace{d F_{x}(x)}=\int_{\mathbb{R}^{d}} g(x) \pi_{x}(x) d x
$$

Main idea of proof:

1 In the $1 D$ setting with $g(X)=\sum_{a \in A} g(a) \mathbb{1}_{X=a}$, then

$$
\begin{gathered}
\mathbb{E}[g(x)]=\int_{\Omega} \sum_{a \in A} g(a) \mathbb{I}_{\bar{x}=a} \mathbb{P}(d w)=\sum_{a \in A} g(a) \mathbb{P}(x=a) \\
=\int_{\mathbb{R}} g(x) d F_{X}(x) \\
\text { Since } \mathbb{P}(x=a)=F_{X}(a)-F_{X}(a), a \in \mathbb{A}
\end{gathered}
$$

2 For non-discrete rv, approximate by sequence of simple functions.

Covariance function

■ In what remains, we will assume that the rvs are continuous so that we can employ pdfs in the expectations of rv.

- The covariance of the d-dimensional rv X with mean μ is the $d \times d$ matrix defined by

$$
\operatorname{Cov}(X)=\mathbb{E}\left[(X-\mu)(X-\mu)^{T}\right]=\int_{\mathbb{R}^{\boldsymbol{d}}}^{\boldsymbol{\infty}}(x-\mu)(x-\mu)^{T} \pi_{X}(x) d x
$$

- In the special case of 1-dimensional rv, $\operatorname{Cov}(X)=\operatorname{Var}(X)$

Example 10

$X \sim U[0,1]$, yields

$$
\mathbb{E}[X]=\int_{\mathbb{R}} x \mathbb{1}_{[0,1]}(x) d x=1 / 2
$$

and

$$
\operatorname{Var}(X)=\int_{\mathbb{R}}(x-1 / 2)^{2} \mathbb{1}_{[0,1]}(x) d x=1 / 12
$$

Example 11 (Multivariate normal distribution)

For $X \sim N(\mu, \Sigma)$ with

$$
\pi_{X}(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} e^{-(x-\mu) \cdot \Sigma^{-1}(x-\mu) / 2}
$$

one can show that

$$
\mathbb{E}[X]=\mu
$$

and

$$
\operatorname{Cov}(X)=\Sigma .
$$

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions
$3 L^{2}(\Omega)$, sub- σ-algebras and projections

Marginal and conditional densities

For a continuous $r v(X, Y): \Omega \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{k}$, we define

- the marginal pdf for X by

$$
\pi_{X}(x):=\int_{\mathbb{R}^{k}} \pi_{X Y}(x, y) d y
$$

■ and the conditional density of X given $Y=y$ by

$$
\pi_{X \mid Y}(x \mid y):=\frac{\pi_{X Y}(x, y)}{\pi_{Y}(y)} \quad \text { (using division-by-zero convention). }
$$

Properties:

- $\pi_{X \mid Y}(\cdot \mid y)$ is a density whenever $\pi_{Y}(y)>0$
- the disintegration property holds $\quad \mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) / \mathcal{P C} B)$

$$
\pi_{X Y}(x, y)=\pi_{X \mid Y}(x \mid y) \pi_{\frac{1}{2}}(y)
$$

■ and it extends to multiple $\mathrm{rv}(X, Y, Z)$:

$$
\pi(x, y, z)=\pi(x \mid y, z) \pi(y \mid z) \pi(z) \quad \text { etc }
$$

Formal motivation for scalar-valued Y : For any $C \in \mathcal{B}^{d}$,

$$
\begin{aligned}
& \mathbb{P}(X \in C \mid Y \in[y, y+\Delta y])=\frac{\int_{y}^{y+\Delta y} \int_{C} \pi_{X Y}(x, y) d x d y}{\int_{\Delta y} \pi_{Y}(y) d y} \\
& \approx \frac{\int_{C} \pi_{\boxed{\Sigma} \bar{Y}}(x, y) d x \Delta y}{\pi_{\square}(y) d y} \\
&=\int_{C} \frac{\pi_{\Sigma Y Y}(x, y) d x}{\pi_{\Sigma}(y)}
\end{aligned}
$$

So when $\pi_{X Y}$ is continuous, we have the relation

$$
\lim _{\Delta y \rightarrow 0} \mathbb{P}(X \in C \mid Y \in \Delta y)=\int_{C} \pi_{X \mid Y}(x \mid y) d x
$$

for neighborhoods Δy of y.

Expectation of X given Y

Definition 12 (Conditional expectation)

For continuous $\mathrm{rv}(X, Y): \Omega \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{k}$ and mapping $g(X)$ such that $\mathbb{E}[|g(X)|]<\infty$, we define

$$
\begin{aligned}
& \text { (, we detine } \\
& \qquad \mathbb{E}[g(X) \mid Y=y]:=\int_{\mathbb{R}^{d}} g(x) \pi_{X \mid Y}(x \mid y) d x,\left(\begin{array}{l}
\text { regardless } \\
\text { of whether } \\
\pi_{\underline{q}}(y)>0 \\
\text { or not }
\end{array}\right. \\
& \text { d continuous rv }
\end{aligned}
$$

and the related continuous rv

$$
\mathbb{E}[g(X) \mid Y](\omega):=\mathbb{E}[g(X) \mid Y=Y(\omega)] .
$$

$$
\leq \int_{\Omega_{\delta}} g(x) \pi_{\bar{\Sigma} \mid \underline{Y}}(x \mid \underline{\Sigma}(\omega)) d x
$$

Properties
For integrable $g(X, Y)$, the tower property holds:

$$
\mathbb{E}[\mathbb{E}[g(X, Y) \mid Y]]:=\mathbb{E}[g(X, Y)]
$$

and if $g(X, Y)=f(X) h(Y)$, then

$$
\mathbb{E}[\mathbb{E}[g(X, Y) \mid Y]]:=\mathbb{E}[h(Y) \mathbb{E}[f(X) \mid Y]] .
$$

$$
\begin{aligned}
& \text { Verification: } \\
& \begin{array}{l}
\text { E }[E[g(z, Z) \mid \Sigma]]=\int_{\mathbb{R}^{k}}\left[E[g(\bar{z}, \bar{Z}) l y] \pi_{Z}(y) d y\right. \\
=\int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{d}} g(x, y) \pi_{\bar{Z}(\mathbb{Z}}(x, y) d x \pi_{\underline{\Sigma}}(y) d y \\
\quad=\int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{d}} g(x, y) \pi(x, y) d x d y
\end{array}
\end{aligned}
$$

Example 13

Let $Y, Z \sim U[0,1]$ and independent, and $X=Y+Z$.
Then for $y \in[0,1]$,

$$
\begin{aligned}
& \pi_{\mathbb{X} \mid \mathcal{I}}(x, Y) \text { with } \pi_{\mathbb{L}}(y) \text { an } r v \\
& =Z+y \sim U[y, 1+y]
\end{aligned}
$$

giving

$$
\pi_{X \mid Y}(x \mid y)=\mathbb{1}_{[y, y+1]}(x)
$$

and

$$
\mathbb{E}[X \mid Y=y]=\int_{\mathbb{R}} x \mathbb{1}_{[y, y+1]} d x=\frac{y+1}{2}
$$

Proper argument:

$$
\pi_{X Y}(x, y)=\pi_{Z Y}(x-y, y)=\mathbb{1}_{[0,1]}(x-y) \mathbb{1}_{[0,1]}(y) \quad \text { etc. }
$$

Overview

1 Random variables on \mathbb{R}^{d}

2 Conditional probability density functions
$3 L^{2}(\Omega)$, sub- σ-algebras and projections

General definition for conditional expectation

- Random variables may also be mixed, meaning neither discrete nor continuous.

Example 14
$X=Y Z$ where $Y \sim \operatorname{Bernoulli}(1 / 2)$ and $Z \sim U[0,1]$ with $Y \perp Z$.
Then formally,

$$
\pi_{X}(x)=\frac{\delta_{0}(x)+\mathbb{1}_{[0,1]}(x)}{2}
$$

■ Mixed rv do not have a pdf, so Definition 12 does not apply to conditional expectations of mixed rv.

■ Objective: obtain a unifying definition for conditional probability.

Conditional expectations

■ For a discrete rv

$$
Y(\omega)=\sum_{k=1}^{k} b_{k} \mathbb{1}_{B_{k}}(\omega)
$$

on $(\Omega, \mathcal{F}, \mathbb{P})$, with $B_{k}=\left\{Y=b_{k}\right\}$ we define
$\sigma(Y):=\sigma\left(\left\{B_{k}\right\}\right)=$ smallest σ-algebra containing all events B_{1}, B_{2}, \ldots

■ By construction Y is $\sigma(Y)$-measurable and $\sigma(Y) \subset \mathcal{F}$.
■ Then, if X is either continuous or discrete, it holds that

$$
\mathbb{E}[X \mid Y](\omega)= \begin{cases}\frac{1}{\mathbb{P}\left(B_{1}\right)} \int_{B_{1}} X d \mathbb{P} & \text { if } \omega \in B_{1} \\ \frac{1}{\mathbb{P}\left(B_{2}\right)} \int_{B_{2}} X d \mathbb{P} & \text { if } \omega \in B_{2} \\ \vdots & \end{cases}
$$

Observations: $\mathbb{E}[X \mid Y]$ is a $\sigma(Y)$-measurable discrete $r v$ for which

$$
\int_{B} X d \mathbb{P}=\int_{B} \mathbb{E}[X \mid Y] d \mathbb{P} \quad \forall B \in \sigma(Y)
$$

(hint: verify first for sets B_{k}, and extend to general $B \in \sigma(Y)$ by recalling the properties of a σ-algebra).

Seeking to preserve these properties, observe first that for $Y:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$,

$$
\sigma(Y):=\text { smallest } \sigma \text {-algebra containing } Y^{-1}(C) \quad \forall C \in \mathcal{B}^{k}
$$

similarly satisfies $\sigma(Y) \subset \mathcal{F}$ and that Y is $\sigma(Y)$-measurable.

Definition 15 (Conditional expectation for general $r v$)

For $r v X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$ defined on the same probability space, the conditional expectation of X given Y is defined as any $\sigma(Y)$-measurable rv Z satisfying

$$
\int_{B} X d \mathbb{P}=\int_{B} Z d \mathbb{P} \quad \forall B \in \sigma(Y)
$$

Conditioning on a σ-algebra

One may relate $\mathbb{E}[X \mid Y]$ to another kind of conditional expectation:

Definition 16 (Expectation of X given $\mathcal{V} \subset \mathcal{F}$.)

Let $X: \Omega \rightarrow \mathbb{R}^{d}$ be an integrable rv on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and assume \mathcal{V} is a σ-algebra $\mathcal{V} \subset \mathcal{F}$. Then we define $\mathbb{E}[X \mid \mathcal{V}]$ as any
\mathcal{V}-measurable rv Z satisfying

$$
\int_{B} X d P=\int_{B} Z d P \quad \forall B \in \mathcal{V} .
$$

Observation: Setting $\mathcal{V}=\sigma(Y)$ implies that $\mathbb{E}[X \mid Y]$ satisfies the constraints of $\mathbb{E}[X \mid \sigma(Y)]$.

Question: Does $\mathbb{E}[X \mid \mathcal{V}]$ exist and is it unique?
Yes, $\mathbb{E}[X \mid \mathcal{V}]=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ is a.s. unique.

Function space $L^{2}(\Omega, \mathcal{F})$

As an extension of $L^{2}(\Omega)$ for discrete rv, we introduce the Hilbert space

$$
L^{2}(\Omega, \mathcal{F})=\left\{X:\left.(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)\left|\quad \int_{\Omega}\right| X(\omega)\right|^{2} d P<\infty\right\}
$$

with the scalar product

$$
\langle X, Y\rangle=\int_{\Omega} X \cdot Y d P=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} X \cdot Y d F(x, y)
$$

and norm

$$
\|X\|_{L^{2}(\Omega, \mathcal{F})}=\sqrt{\langle X, Y\rangle} .
$$

This is a Hilbert space: it is complete and for any sub- σ-algebra $\mathcal{V} \subset \mathcal{F}$, $L^{2}(\Omega, \mathcal{V})$ is a closed subspace of $L^{2}(\Omega, \mathcal{F})$.

Orthogonal projections onto subspaces

Definition 17

The orthogonal projection of $X \in L^{2}(\Omega, \mathcal{F})$ onto the closed subspace $L^{2}(\Omega, \mathcal{V})$ is defined as any $r v Z \in L^{2}(\Omega, \mathcal{V})$ satisfying

$$
\begin{equation*}
\langle X-Z, W\rangle=0 \quad \forall W \in L^{2}(\Omega, \mathcal{V}) . \tag{2}
\end{equation*}
$$

We write $\quad Z=\operatorname{Proj}_{L^{2}(\Omega, \nu)} X$.

Orthogonal projections onto subspaces

Definition 17

The orthogonal projection of $X \in L^{2}(\Omega, \mathcal{F})$ onto the closed subspace $L^{2}(\Omega, \mathcal{V})$ is defined as any $r v Z \in L^{2}(\Omega, \mathcal{V})$ satisfying

$$
\begin{gather*}
\langle X-Z, W\rangle=0 \quad \forall W \in L^{2}(\Omega, \mathcal{V}) \tag{2}\\
\text { We write } \quad Z=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X
\end{gather*}
$$

Exercise: verify that $\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ satisfies the constraints of $\mathbb{E}[X \mid \mathcal{V}]$. Hint: consider $W=\mathbb{1}_{B}$ for $B \in \mathcal{V}$

Exercise: verify that $Z=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ is unique in $L^{2}(\Omega, \mathcal{V})$ (and thus a.s. unique).

Last step: take as a fact that $\mathbb{E}[X \mid \mathcal{V}]$ satisfies the constraint (2) of $\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$, and conclude that $\mathbb{E}[X \mid \mathcal{V}]$ is a.s. unique.

What describes an rv fully?

- An rv can be discrete, mixed or continuous.

■ Regardless of that, X is uniquely described by its distribution \mathbb{P}_{X}, and also by its cdf

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

and, if it exists, also by its pdf

$$
\pi_{X}(x)=\frac{\mathbb{P}(X \in d x)}{d x}
$$

■ every rv generates a sigma algebra $\sigma(Y) \subset \mathcal{F}$ which relates to conditional expectations for rv defined on the same probability space:

$$
\mathbb{E}[X \mid Y]=\mathbb{E}[X \mid \sigma(Y)]
$$

Next time

Bayesian inverse problems and well-posedness.

