Mathematics and numerics for data assimilation and state estimation - Lecture 8

Summer semester 2020

Summary of lecture 7

- Random variables can be discrete, mixed or continuous.

■ It is uniquely described by its distribution \mathbb{P}_{X}, and also by its cdf

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

and, if it exists, also by its pdf

$$
\pi_{X}(x)=\frac{\mathbb{P}(X \in d x)}{d x}
$$

- expectation of X given Y can be expressed through use of the

1 conditional probability $\mathbb{P}(X \in d x \mid Y)$ when Y is a discrete rv
2 and the conditional density $\pi_{X \mid Y}$ when X and Y are continuous rv.

Overview

$11 L^{2}(\Omega)$, sub- σ-algebras and projections

2 Forward and inverse problems
■ Bayesian vs frequentist

3 Bayesian inversion

- Bayesian methodology

Overview

$1 L^{2}(\Omega)$, sub- σ-algebras and projections

2 Forward and inverse problems

- Bayesian vs frequentist

3 Bayesian inversion

- Bayesian methodology

General definition for conditional expectation

■ Mixed rv are neither discrete nor continuous.

Example 1

$X=Y Z$ where $Y \sim$ Bernoulli(1/2) and $Z \sim U[0,1]$ with $Y \perp Z$.
Then formally,

$$
\pi_{X}(x)=\frac{\delta_{0}(x)+\mathbb{1}_{[0,1]}(x)}{2}
$$

- Conditional expectations cannot always be computed using conditional densities for mixed rv.

■ Objective: obtain a unifying definition for conditional expectations valid for all types of rv.

Sigma algebra generated by Y

- For a discrete rv

$$
Y(\omega)=\sum_{k=1}^{k} b_{k} \mathbb{1}_{B_{k}}(\omega)
$$

on $(\Omega, \mathcal{F}, \mathbb{P})$, with $B_{k}=\left\{Y=b_{k}\right\}$ we define
$\sigma(Y):=\sigma\left(\left\{B_{k}\right\}\right)=$ smallest σ-algebra containing all events B_{1}, B_{2}, \ldots

■ By construction Y is $\sigma(Y)$-measurable and $\sigma(Y) \subset \mathcal{F}$.

- Then, for an integrable rv X, it holds that
$\mathbb{E}[X \mid Y](\omega)= \begin{cases}\frac{1}{\mathbb{P}\left(B_{1}\right)} \int_{B_{1}} X d \mathbb{P} & \text { if } \omega \in B_{1} \\ \frac{1}{\mathbb{P}\left(B_{2}\right)} \int_{B_{2}} X d \mathbb{P} & \text { if } \omega \in B_{2} \\ \vdots & \end{cases}$

Observations: $\mathbb{E}[X \mid Y]$ is a $\sigma(Y)$-measurable discrete rv for which

$$
\int_{B} X d \mathbb{P}=\int_{B} \mathbb{E}[X \mid Y] d \mathbb{P} \quad \forall B \in \sigma(Y)
$$

(hint: verify first for sets B_{k}, and extend to general set $B \in \sigma(Y)$).

Seeking to preserve these properties, observe first that for $Y:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{k}, \mathcal{B}^{k}\right)$,

$$
\sigma(Y):=\text { smallest } \sigma \text {-algebra containing } Y^{-1}(C) \quad \forall C \in \mathcal{B}^{k}
$$

similarly satisfies $\sigma(Y) \subset \mathcal{F}$ and that Y is $\sigma(Y)$-measurable.

Definition 2 (Conditional expectation for general rv)

For rv $X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$ defined on the same probability space, we define $\mathbb{E}[X \mid Y]$ as any $\sigma(Y)$-measurable rv Z satisfying

$$
\int_{B} X d \mathbb{P}=\int_{B} Z d \mathbb{P} \quad \forall B \in \sigma(Y)
$$

Conditioning on a σ-algebra

One may relate $\mathbb{E}[X \mid Y]$ to another kind of conditional expectation:

Definition 3 (Expectation of X given $\mathcal{V} \subset \mathcal{F}$.)

Let $X: \Omega \rightarrow \mathbb{R}^{d}$ be an integrable rv on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and assume \mathcal{V} is a σ-algebra $\mathcal{V} \subset \mathcal{F}$. Then we define $\mathbb{E}[X \mid \mathcal{V}]$ as any
\mathcal{V}-measurable rv Z satisfying

$$
\int_{B} X d P=\int_{B} Z d P \quad \forall B \in \mathcal{V} .
$$

Observation: Setting $\mathcal{V}=\sigma(Y)$ implies that $\mathbb{E}[X \mid Y]$ satisfies the constraints of $\mathbb{E}[X \mid \sigma(Y)]$ and vice versa.

Question: Does $\mathbb{E}[X \mid \mathcal{V}]$ exist and is it unique?
Yes, $\mathbb{E}[X \mid \mathcal{V}]=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ is a.s. unique.

Function space $L^{2}(\Omega, \mathcal{F})$

As an extension of $L^{2}(\Omega)$ for discrete rv, we introduce the Hilbert space

$$
L^{2}(\Omega, \mathcal{F})=\left\{X:\left.(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)\left|\quad \int_{\Omega}\right| X(\omega)\right|^{2} d P<\infty\right\}
$$

with the scalar product

$$
\langle X, Y\rangle=\int_{\Omega} X \cdot Y d P=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} X \cdot Y d F(x, y)
$$

and norm

$$
\|X\|_{L^{2}(\Omega, \mathcal{F})}=\sqrt{\langle X, X\rangle} .
$$

This is a Hilbert space: it is complete and for any sub- σ-algebra $\mathcal{V} \subset \mathcal{F}$, $L^{2}(\Omega, \mathcal{V})$ is a closed subspace of $L^{2}(\Omega, \mathcal{F})$.

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^{2}(\Omega, \mathcal{F})$ onto the closed subspace $L^{2}(\Omega, \mathcal{V})$ is defined as any $\mathrm{rv} Z \in L^{2}(\Omega, \mathcal{V})$ satisfying

$$
\begin{equation*}
\langle X-Z, W\rangle=0 \quad \forall W \in L^{2}(\Omega, \mathcal{V}) . \tag{1}
\end{equation*}
$$

We write $Z=\operatorname{Proj}_{L^{2}(\Omega, \nu)} X$.

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^{2}(\Omega, \mathcal{F})$ onto the closed subspace $L^{2}(\Omega, \mathcal{V})$ is defined as any $r v Z \in L^{2}(\Omega, \mathcal{V})$ satisfying

$$
\begin{gather*}
\langle X-Z, W\rangle=0 \quad \forall W \in L^{2}(\Omega, \mathcal{V}) \tag{1}\\
\text { We write } \quad Z=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X
\end{gather*}
$$

Exercise: verify that $\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ satisfies the constraints of $\mathbb{E}[X \mid \mathcal{V}]$. Hint: consider $W=\mathbb{1}_{B}$ for $B \in \mathcal{V}$

Exercise: verify that $Z=\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$ is unique in $L^{2}(\Omega, \mathcal{V})$ (and thus a.s. unique).

Last step: take as a fact that $\mathbb{E}[X \mid \mathcal{V}]$ satisfies the constraint (1) of $\operatorname{Proj}_{L^{2}(\Omega, \mathcal{V})} X$, and conclude that $\mathbb{E}[X \mid \mathcal{V}]$ is a.s. unique.

Summary conditional expectations

Theorem 5

For $r v X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$ defined on the same probability space and with $X \in L^{2}(\Omega, \mathcal{F})$, it holds that

$$
\mathbb{E}[X \mid Y]=\mathbb{E}[X \mid \sigma(Y)]=\operatorname{Proj}_{L^{2}(\Omega, \sigma(Y))} X
$$

Overview

$1 L^{2}(\Omega)$, sub- σ-algebras and projections

2 Forward and inverse problems
■ Bayesian vs frequentist

3 Bayesian inversion

- Bayesian methodology

What are forward and inverse problems

A simple linear example

Forward problem: Given a matrix A and vector u compute the outcome

$$
y=A u
$$

Inverse problem: Given a matrix A and observation/effect y with either
(i) $y \notin$ columnSpan (A), or
(ii) $y \in \operatorname{columnSpan}(A)$ but $\operatorname{Kernel}(A) \neq \emptyset$,
then for (i), find the best approximate cause u to

$$
A u=y
$$

and for (ii), find the most suitable cause u to the above problem.

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if
1 a solution exists,
2 the solution is unique, and
3 the solution is stable with respect to small perturbations in the input. On the other hand, if any of the above conditions are not satisfied, then the problem is ill-posed.

Example: The linear forward problem

$$
y=A u
$$

with fixed A and u is well-posed.

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if
1 a solution exists,
2 the solution is unique, and
3 the solution is stable with respect to small perturbations in the input. On the other hand, if any of the above conditions are not satisfied, then the problem is ill-posed.

Example: The inverse problem:

$$
A u=y
$$

with fixed A and input y is well-posed if A is invertible and $\left|A^{-1}\right|$ is not too large. Since then for perturbed observations $y_{\delta}=y+\mathcal{O}(\delta)$,

$$
\left|u-u_{\delta}\right|=\left|A^{-1}\left(y-y_{\delta}\right)\right| \leq C\left|A^{-1}\right| \delta
$$

Otherwise, it is not a well-posed problem.

Deterministic methods versus Bayesian inversion

We will consider extensions of the linear problem of the following form

$$
\begin{equation*}
Y=G(U)+\eta \tag{2}
\end{equation*}
$$

where
■ Y is the observation

- G is the possibly nonlinear forward model
- η is a perturbation/observation noise,
- U is the unknown parameter we seek to recover

Typical deterministic approach: View all variables as deterministic also the perturbation. Find unique solution to the initially ill-posed problem (2) by introducing pseudo-inverse G^{+}and solve

$$
U=G^{+}(Y-\eta)
$$

Bayesian approach: View all variables as random. Model your uncertainty through input prior $U \sim \pi_{U}$ and $\eta \sim \pi_{\eta}$. Solution is not a point in \mathbb{R}^{d}, but a posterior distribution: $\pi_{U \mid Y}(\cdot \mid y)$ (given observation $Y=y)$.

Plan for this lecture

■ Bayesian methodology for solving inverse problems.

■ Introduce norms to study convergence of the posterior $\pi_{U \mid Y}$.

- Well-posedness for Bayesian inversion with perturbed input model $G_{\delta} \approx G$.

Bayesian vs frequentist

Definition 7 (Frequentist randomness)

The probability of an event is the long-term frequency of said event occurring when repeating an experiment multiple times:

$$
\mathbb{P}(X \in A)=\lim _{M \rightarrow \infty} \sum_{i=1}^{M} \frac{\mathbb{1}_{A}\left(X_{i}\right)}{M} \quad \text { with } X_{i} \sim \mathbb{P}, \quad \text { and ideally independent. }
$$

■ Is applicable to repeatable experiments (coin flips, card games, ...), and to some degree to lagre data experiments (elections, survey polls, etc.)

- and to some degree in settings where imaginary sampling is deduced from from some form of prior information (e.g., physics argument for a coin flip being Bernoulli(1/2)).
■ Dogmatically interpreted, not applicable to non-repeating experiments (e.g., probability that Barcelona wins a particular soccer match).

Bayesian vs frequentist

Definition 8 (Bayesian uncertainty)

$\mathbb{P}(X \in A \mid I)$ represents my degree of belief/confidence that A occurs given all my prior information I.

■ Constraint in defnition: If you and I have the same prior information I, then your $\mathbb{P}(\cdot \mid I)$ should be the same as mine!

- The Bayesian approach leads to the same probability calculus as in the "usual" frequentist probability theory.
■ More general than frequentist approach, as imaginary sampling really stems from a Bayesian viewpoint.

■ Can assign probabilities/plausibility/belief to events which are either true or not (i.e., not at all random in the frequentist viewpoint):
$\mathbb{P}($ John Doe committed the crime \mid evidence $\mathrm{x}, \mathrm{y}, \mathrm{z})$

Overview

$1 L^{2}(\Omega)$, sub- σ-algebras and projections

2 Forward and inverse problems

- Bayesian vs frequentist

3 Bayesian inversion

- Bayesian methodology

Bayesian inverse problem

We consider the problem

$$
\begin{equation*}
Y=G(U)+\eta \tag{3}
\end{equation*}
$$

where
■ $U \in \mathbb{R}^{d}$ is the unknown parameter we seek to recover

- $Y \in \mathbb{R}^{k}$ is the observation
$■ G: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is the possibly nonlinear forward model
- η is the observation noise

Assumption 1

All parameters with the exception of G are random, described through

- $U \sim \pi_{U}, \eta \sim \pi_{\eta}$ and $Y \sim \pi_{Y}$,
- and $\eta \perp U$.

Objective: Given $Y=y$ use this to improve the estimate of the first component in the joint rv (U, Y) through determining $\pi_{U \mid Y}(\cdot \mid y)$.

Theorem 9 (Bayes theorem [Thm 1.2 Sanz-A.,Stuart, Taeb (SST)])

 Let Assumption 1 hold and assume that $\pi_{Y}(y)>0$. Then$$
U \mid Y=y \sim \pi_{U \mid Y}(\cdot \mid y)
$$

with

$$
\begin{equation*}
\pi_{U \mid Y}(u \mid y)=\frac{\pi_{\eta}(y-G(u)) \pi_{U}(u)}{\pi_{Y}(y)} \tag{4}
\end{equation*}
$$

Verfication: We may assume that also $\pi_{U}(u)>0$, since otherwise (4) trivially holds. By the disintegration formula,

$$
\pi_{U Y}(u, y)=\pi_{U \mid Y}(u \mid y) \pi_{Y}(y) \quad \text { and } \quad \pi_{U Y}(u, y)=\pi_{Y \mid U}(y \mid u) \pi_{U}(u)
$$

And since $\pi_{Y}(y)>0$, combining the above yields Bayes' rule for densities:

$$
\pi_{U \mid Y}(u \mid y)=\quad=\frac{\pi_{Y \mid U}(y \mid u) \pi_{U}(u)}{\pi_{Y}(y)}
$$

Since $Y|(U=u)=G(U)+\eta|(U=u)=G(u)+\eta$

$$
\pi_{Y \mid U}(y \mid u)=\pi_{\eta+G(u)}(y)=\pi_{\eta}(y-G(u))
$$

Remarks

$$
\begin{equation*}
\pi_{U \mid Y}(u \mid y)=\frac{\overbrace{\pi_{\eta}(y-G(u))}^{\text {Likelihood function }} \pi_{U}(u)}{\pi_{Y}(y)} \tag{5}
\end{equation*}
$$

- The denominator $\pi_{Y}(y)$ in (5) acts as normalizing constant is called the evidence or the marginal likelihood:

$$
Z:=\pi_{Y}(y)=\int_{\mathbb{R}^{d}} \pi_{\eta}(y-G(u)) \pi_{U}(u) d u
$$

- $\pi_{U \mid Y}(u \mid y)$ is the posterior density
- To avoid clutter, we will drop density subscripts when reference is clear $\left(\pi(u)=\pi_{U}(u), \pi(u \mid y)=\pi_{U \mid Y}(u \mid y)\right.$ etc. $)$
Question: Given the posterior density, how can we produce a one-value estimate of the most plausible value of $U \mid Y=y$?

Posterior mean and MAP estimators

Definition 10

The posterior mean of U given $Y=y$ is defined by

$$
u_{P M}:=\mathbb{E}[U \mid Y=y]=\int_{\mathbb{R}^{d}} u \pi(u \mid y) d u
$$

and the maximum a posteriori (MAP) estimator is defined by

$$
u_{M A P}:=\arg \max _{u \in \mathbb{R}^{d}} \pi(u \mid y)
$$

Example 11

Let $\eta \sim N\left(0, \gamma^{2}\right)$ and model $G(u)=u$ and prior

$$
\pi(u)=\frac{\mathbb{1}_{(-1,1)}(u)}{2}
$$

Given an observation $Y=y$, Bayes' theorem yields

$$
\pi(u \mid y)=\frac{\pi_{\eta}(y-u) \pi_{u}(u)}{\pi_{Y}(y)}=\frac{\mathbb{1}_{(-1,1)}(u) \exp \left(-(y-u)^{2} / 2 \gamma^{2}\right)}{2 Z}
$$

with normalizing constant Z.
This yields:

$$
u_{M A P}=\arg \max _{u \in \mathbb{R}} \pi(u \mid y)=\left\{\begin{array}{ll}
y & \text { if } y \in(-1,1) \\
-1 & \text { if } y \leq-1 \\
1 & \text { if } y \geq 1
\end{array}, \quad \text { and } \quad u_{P M}=?\right.
$$

Assimilating two observations

Example 12

Consider the ordinary differential equation

$$
\dot{x}(t ; u)=x(t ; u) \quad t>0 \quad \text { and } \quad x(0 ; u)=u
$$

and

$$
G(u)=x(1 ; u)=u e^{1}
$$

and assume we have two different observations

$$
Y_{1}=G(U)+\eta_{1}, \quad \text { and } \quad Y_{2}=G(U)+\eta_{2}
$$

with the prior density $U \sim U[-1,4]$, and $\eta_{1} \sim N(0,1)$ and $\eta_{2} \sim U[-0.5,0.5]$ with $\eta_{1} \perp \eta_{2}$.

Problem: Compute the posterior density for $U \mid\left(Y_{1}=0.2, Y_{2}=-0.4\right)$.

Solution to Example 12

Set $Y=\left(Y_{1}, Y_{2}\right)$ with $\eta=\left(\eta_{1}, \eta_{2}\right)$ and apply Theorem 1 to the joint rv (U, Y), for the observation $y=(0.2,-0.4)$.

$$
\begin{aligned}
\pi(u \mid y) & =\frac{\pi_{\eta}\left(\left(y_{1}-G(u), y_{2}-G(u)\right)\right) \pi_{u}(u)}{Z} \\
& =\frac{\left.\pi_{\eta_{2}}\left(y_{2}-G(u)\right)\right) \pi_{\eta_{1}}\left(\left(y_{1}-G(u)\right) \pi_{u}(u)\right.}{Z}
\end{aligned}
$$

Motivation: For $\pi_{U}(u)>0$,

$$
\begin{aligned}
Y \mid(U=u)=\left(G(u)+\eta_{1}\right. & \left., G(u)+\eta_{2}\right) \\
& \Longrightarrow \pi(y \mid u)=\pi_{\eta_{1} \eta_{2}}\left(y_{1}-G(u), y_{2}-G(u)\right) .
\end{aligned}
$$

and

$$
\pi(u \mid y)=
$$

Observation: The posterior $\pi\left(u \mid y_{1}, y_{2}\right)$ can be obtained in two ways:
■ In one go: $U \mid\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)$ mapping $\pi_{U}(u)$ to $\pi\left(u \mid y_{1}, y_{2}\right)$:

$$
\pi(u \mid y)=\frac{\pi_{\eta}\left(\left(y_{1}-G(u), y_{2}-G(u)\right)\right) \pi_{u}(u)}{Z}
$$

■ Or sequentially: 1. $U \mid\left(Y_{1}=y_{1}\right)$ mapping $\pi_{U}(u)$ to $\pi\left(u \mid y_{1}\right)$:

$$
\pi\left(u \mid y_{1}\right)=\frac{\pi_{\eta_{1}}\left(y_{1}-G(u)\right) \pi_{u}(u)}{Z_{1}}
$$

and 2. $U \mid\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)$ mapping $\pi\left(u \mid y_{1}\right)$ to $\pi\left(u \mid y_{1}, y_{2}\right)$

$$
\pi\left(u \mid y_{1}, y_{2}\right)=\frac{\pi_{\eta_{2}}\left(y_{2}-G(u)\right) \pi\left(u \mid y_{1}\right)}{Z_{3}}
$$

Well-posedness for Bayesian inversion

Relation between observation and underlying parameter

$$
Y=G(U)+\eta
$$

Inverse problem: what is the most likely/plausible U given $Y=y$

Bayesian inversion solution: the posterior density $\pi(u \mid y)$, or a function of the density, e.g., $U_{P M}$ and $u_{M A P}$.

Hadamard's definition of well-posedness requires that a solution (i) exists, (ii) is unique and (iii) is stable with respect to small perturbations of the input.

By construction, $\pi(u \mid y)$ exists and is unique as long as $\pi_{Y}(y)>0$.
Objective: Study condition (iii) under perturbations in the model. We seek a result along the lines of

$$
\left|G_{\delta}-G\right|=\mathcal{O}(\delta) \Longrightarrow d\left(\pi^{\delta}(\cdot \mid y), \pi(\cdot \mid y)\right)=\mathcal{O}(\delta), \quad \text { but what is } d ?
$$

Next time

- Assumptions on the noise η and perturbations G_{δ} that gives stability,

■ Perturbed forward problems G_{δ} to which said assumptions apply,

■ Bayesian inversion in the linear setting with Gaussian distributions.

