
Mathematics and numerics for data assimilation and
state estimation – Lecture 8

Summer semester 2020
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Summary of lecture 7

Random variables can be discrete, mixed or continuous.

It is uniquely described by its distribution PX , and also by its cdf

FX (x) = P(X  x)

and, if it exists, also by its pdf

⇡X (x) =
P(X 2 dx)

dx
.

expectation of X given Y can be expressed through use of the

1 conditional probability P(X 2 dx | Y ) when Y is a discrete rv

2 and the conditional density ⇡X |Y when X and Y are continuous rv.
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General definition for conditional expectation

Mixed rv are neither discrete nor continuous.

Example 1

X = YZ where Y ⇠ Bernoulli(1/2) and Z ⇠ U[0, 1] with Y ? Z .
Then formally,

⇡X (x) =
�0(x) + [0,1](x)

2

Conditional expectations cannot always be computed using
conditional densities for mixed rv.

Objective: obtain a unifying definition for conditional expectations
valid for all types of rv.

5 / 37



Sigma algebra generated by Y

For a discrete rv

Y (!) =
kX

k=1

bk Bk
(!)

on (⌦,F ,P), with Bk = {Y = bk} we define

�(Y ) := �({Bk}) = smallest �-algebra containing all events B1,B2, . . .

By construction Y is �(Y )-measurable and �(Y ) ⇢ F .

Then, for an integrable rv X , it holds that

E [X |Y ] (!) =

8
>><

>>:

1
P(B1)

R
B1

X dP if ! 2 B1

1
P(B2)

R
B2

X dP if ! 2 B2

...
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Observations: E [X |Y ] is a �(Y )-measurable discrete rv for which
Z

B

X dP =

Z

B

E [X | Y ] dP 8B 2 �(Y ).

(hint: verify first for sets Bk , and extend to general set B 2 �(Y )).

Seeking to preserve these properties, observe first that for
Y : (⌦,F) ! (Rk ,Bk),

�(Y ) := smallest �-algebra containing Y�1(C ) 8C 2 B
k

similarly satisfies �(Y ) ⇢ F and that Y is �(Y )-measurable.

Definition 2 (Conditional expectation for general rv)

For rv X : ⌦ ! Rd and Y : ⌦ ! Rk defined on the same probability
space, we define E [X | Y ] as any �(Y )-measurable rv Z satisfying

Z

B

X dP =

Z

B

Z dP 8B 2 �(Y ).

7 / 37

we Bk = ELE IESCw) = pic, JB.EdP ⇒ SBE#1¥14DIP =fBaIdp



Conditioning on a ��algebra

One may relate E [X | Y ] to another kind of conditional expectation:

Definition 3 (Expectation of X given V ⇢ F .)

Let X : ⌦ ! Rd be an integrable rv on a probability space (⌦,F ,P) and
assume V is a �-algebra V ⇢ F . Then we define E [X | V] as any
V-measurable rv Z satisfying

Z

B

XdP =

Z

B

Z dP 8B 2 V.

Observation: Setting V = �(Y ) implies that E [X | Y ] satisfies the
constraints of E [X | �(Y )] and vice versa.

Question: Does E [X | V] exist and is it unique?

Yes, E [X | V] = ProjL2(⌦,V)X is a.s. unique.
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Function space L2(⌦,F)

As an extension of L2(⌦) for discrete rv, we introduce the Hilbert space

L2(⌦,F) =
n
X : (⌦,F) ! (Rd ,Bd)

���
Z

⌦
|X (!)|2 dP < 1

o

with the scalar product

hX ,Y i =

Z

⌦
X · YdP =

Z

Rd⇥Rd

X · YdF (x , y)

and norm
kXkL2(⌦,F) =

p
hX ,Y i.

This is a Hilbert space: it is complete and for any sub-�-algebra V ⇢ F ,
L2(⌦,V) is a closed subspace of L2(⌦,F).
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Orthogonal projections onto subspaces
Definition 4

The orthogonal projection of X 2 L2(⌦,F) onto the closed subspace
L2(⌦,V) is defined as any rv Z 2 L2(⌦,V) satisfying

hX � Z ,W i = 0 8W 2 L2(⌦,V). (1)

We write Z = ProjL2(⌦,V)X .

L2(⌦,V)

0

X

Z
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Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of X 2 L2(⌦,F) onto the closed subspace
L2(⌦,V) is defined as any rv Z 2 L2(⌦,V) satisfying

hX � Z ,W i = 0 8W 2 L2(⌦,V). (1)

We write Z = ProjL2(⌦,V)X .

Exercise: verify that ProjL2(⌦,V)X satisfies the constraints of E [X | V].
Hint: consider W = B for B 2 V

Exercise: verify that Z = ProjL2(⌦,V)X is unique in L2(⌦,V) (and thus
a.s. unique).

Last step: take as a fact that E [X | V] satisfies the constraint (1) of
ProjL2(⌦,V)X , and conclude that E [X | V] is a.s. unique.
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Summary conditional expectations

Theorem 5

For rv X : ⌦ ! Rd and Y : ⌦ ! Rk defined on the same probability space
and with X 2 L2(⌦,F), it holds that

E [X | Y ] = E [X | �(Y )] = ProjL2(⌦,�(Y ))X .
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What are forward and inverse problems
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A simple linear example

Forward problem: Given a matrix A and vector u compute the outcome

y = Au

Inverse problem: Given a matrix A and observation/e↵ect y with either

(i) y 62 columnSpan(A), or

(ii) y 2 columnSpan(A) but Kernel(A) 6= ;,

then for (i), find the best approximate cause u to

Au = y

and for (ii), find the most suitable cause u to the above problem.
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Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

1 a solution exists,

2 the solution is unique, and

3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then
the problem is ill-posed.

Example: The linear forward problem

y = Au

with fixed A and u is well-posed.
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Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

1 a solution exists,

2 the solution is unique, and

3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then
the problem is ill-posed.

Example: The inverse problem:

Au = y

with fixed A and input y is well-posed if A is invertible and |A�1
| is not

too large. Since then for perturbed observations y� = y +O(�),

|u � u�| = |A�1(y � y�)|  C |A�1
|�.

Otherwise, it is not a well-posed problem.
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Deterministic methods versus Bayesian inversion
We will consider extensions of the linear problem of the following form

Y = G (U) + ⌘ (2)

where
Y is the observation
G is the possibly nonlinear forward model
⌘ is a perturbation/observation noise,
U is the unknown parameter we seek to recover

Typical deterministic approach: View all variables as deterministic –
also the perturbation. Find unique solution an initially ill-posed
problem (2) by introducing pseudo-inverse G+ and solve

U = G+(Y � ⌘).

Bayesian approach: View all variables as random. Model your
uncertainty through input prior U ⇠ ⇡U and ⌘ ⇠ ⇡⌘. Solution is not a
point in Rd , but a posterior distribution: ⇡U|Y (·|y) (given observation
Y = y).
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Plan for this lecture

Bayesian methodology for solving inverse problems.

Introduce norms to study convergence of the posterior ⇡U|Y .

Well-posedness for Bayesian inversion with perturbed input model
G� ⇡ G .
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Bayesian vs frequentist

Definition 7 (Frequentist randomness)

The probability of an event is the long-term frequency of said event
occurring when repeating an experiment multiple times:

P(X 2 A) = lim
M!1

MX

i=1

A(Xi )

M
with Xi ⇠ P, and ideally independent.

Is applicable to repeatable experiments (coin flips, card games, . . . ),
and to some degree to lagre data experiments (elections, survey polls,
etc. )

and to some degree in settings where imaginary sampling is deduced
from from some form of prior information (e.g., physics argument for
a coin flip being Bernoulli(1/2)).

Dogmatically interpreted, not applicable to non-repeating experiments
(e.g., probability that Barcelona wins a particular soccer match).
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Bayesian vs frequentist

Definition 8 (Bayesian uncertainty)

P(X 2 A | I ) represents my degree of belief/confidence that A occurs
given all my prior information I .

Constraint in defnition: If you and I have the same prior
information I , then your P(· | I ) should be the same as mine!

The Bayesian approach leads to the same probability calculus as in
the “usual” frequentist probability theory.

More general than frequentist approach, as imaginary sampling really
stems from a Bayesian viewpoint.

Can assign probabilities/plausibility/belief to events which are either
true or not (i.e., not at all random in the frequentist viewpoint):

P(John Doe committed the crime | evidence x, y, z)
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Bayesian inverse problem
We consider the problem

Y = G (U) + ⌘ (3)

where

U 2 Rd is the unknown parameter we seek to recover

Y 2 Rk is the observation

G : Rd
! Rk is the possibly nonlinear forward model

⌘ is the observation noise

Assumption 1

All parameters, possibly with the exception of G are random, described
through

U ⇠ ⇡U , ⌘ ⇠ ⇡⌘ and Y ⇠ ⇡Y ,

and ⌘ ? U.

Objective: Given Y = y use this to improve the estimate of the first
component in the joint rv (U,Y ) through determining ⇡U|Y (·|y).

21 / 37

-



Theorem 9 (Bayes theorem [Thm 1.2 Sanz-A.,Stuart, Taeb (SST)])

Let Assumption 1 hold and assume that ⇡Y (y) > 0. Then

U|Y = y ⇠ ⇡U|Y (·|y)

with

⇡U|Y (u|y) =
⇡⌘(y � G (u))⇡U(u)

⇡Y (y)
. (4)

Verfication: We may assume that also ⇡U(u) > 0, since otherwise (4)
trivially holds. By the disintegration formula,

⇡UY (u, y) = ⇡U|Y (u|y)⇡Y (y) and ⇡UY (u, y) = ⇡Y |U(y |u)⇡U(u).

And since ⇡Y (y) > 0, combining the above yields Bayes’ rule for densities:

⇡U|Y (u|y) = =
⇡Y |U(y |u)⇡U(u)

⇡Y (y)
.

Since Y |(U = u) = G (U) + ⌘|(U = u) = G (u) + ⌘

⇡Y |U(y |u) = ⇡⌘+G(u)(y) = ⇡⌘(y � G (u)).
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Remarks

⇡U|Y (u|y) =
⇡⌘(y � G (u))⇡U(u)

⇡Y (y)
. (5)

The denominator ⇡Y (y) in (5) acts as normalizing constant is called
the evidence or the marginal likelihood:

Z := ⇡Y (y) =

Z

Rd

⇡⌘(y � G (u))⇡U(u) du.

⇡U|Y (u|y) is the posterior density

To avoid clutter, we will drop density subscripts when reference is
clear (⇡(u) = ⇡U(u), ⇡(u|y) = ⇡U|Y (u|y) etc.)

Question: Given the posterior density, how can we produce a one-value
estimate of the most plausible value of U|Y = y?
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Posterior mean and MAP estimators
Definition 10
The posterior mean of U given Y = y is defined by

uPM := E[U|Y = y ] =

Z

Rd

u⇡(u|y)du

and the maximum a posteriori (MAP) estimator is defined by

uMAP := arg max
u2Rd

⇡(u|y).
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Example 11

Let ⌘ ⇠ N(0, �2) and model G (u) = u and prior

⇡(u) =
(�1,1)(u)

2

Given an observation Y = y , Bayes’ theorem yields

⇡(u|y) =
⇡⌘(y � u)⇡U(u)

⇡Y (y)
=

(�1,1)(u) exp(�(y � u)/2�2)

2Z

with normalizing constant Z .
This yields:

uMAP = argmax
u2R

⇡(u|y) =

8
><

>:

y if y 2 (�1, 1)

�1 if y  �1

1 if y � 1

, and uPM =?
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Assimilating two observations

Example 12

Consider the ordinary di↵erential equation

ẋ(t; u) = x(t; u) t > 0 and x(0; u) = u

and
G (u) = x(1; u) = ue1,

and assume we have two di↵erent observations

Y1 = G (U) + ⌘1, and Y2 = G (U) + ⌘2,

with the prior density U ⇠ U[�1, 4], and ⌘1 ⇠ N(0, 1) and
⌘2 ⇠ U[�0.5, 0.5] with ⌘1 ? ⌘2.

Problem: Compute the posterior density for U|(Y1 = 0.2,Y2 = �0.4).
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Solution to Example 12
Set Y = (Y1,Y2) with ⌘ = (⌘1, ⌘2) and apply Theorem 1 to the joint rv
(U,Y ), for the observation y = (0.2,�0.4).

⇡(u|y) =
⇡⌘((y1 � G (u), y2 � G (u)))⇡U(u)

Z

=
⇡⌘2(y2 � G (u)))⇡⌘1((y1 � G (u))⇡U(u)

Z
Motivation: For ⇡U(u) > 0,

Y |(U = u) = (G (u) + ⌘1,G (u) + ⌘2)

=) ⇡(y |u) = ⇡⌘1⌘2(y1 � G (u), y2 � G (u)).

and
⇡(u|y) =
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Observation: The posterior ⇡(u|y1, y2) can be obtained in two ways:
In one go: U|(Y1 = y1,Y2 = y2) mapping ⇡U(u) to ⇡(u|y1, y2):

⇡(u|y) =
⇡⌘((y1 � G (u), y2 � G (u)))⇡U(u)

Z
Or sequentially: 1. U|(Y1 = y1) mapping ⇡U(u) to ⇡(u|y1):

⇡(u|y1) =
⇡⌘1(y1 � G (u))⇡U(u)

Z1

and 2. U|(Y1 = y1,Y2 = y2) mapping ⇡(u|y1) to ⇡(u|y1, y2)

⇡(u|y1, y2) =
⇡⌘2(y2 � G (u))⇡(u|y1)

Z2
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2
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Well-posedness for Bayesian inversion
Relation between observation and underlying parameter

Y = G (U) + ⌘

Inverse problem: what is the most likely/plausible U given Y = y

Bayesian inversion solution: the posterior density ⇡(u|y), or a function
of the density, e.g., uPM and uMAP .

Hadamard’s definition of well-posedness requires that a solution (i) exists,
(ii) is unique and (iii) is stable with respect to small perturbations of
the input.

By construction, ⇡(u|y) exists and is unique as long as ⇡Y (y) > 0.

Objective: Study condition (iii) under perturbations in the model. We
seek a result along the lines of

|G� � G | = O(�) =) d(⇡�(·|y),⇡(·|y)) = O(�), but what is d?
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Metrics on the space of pdfs
Let us introduce the space of probability density functions on Rd

M :=
n
f 2 L1(Rd) | f � 0 and

Z

Rd

f (u) du = 1
o

and recall that
d : M⇥M ! [0,1)

is a metric on M if for all ⇡, ⇡̄, ⇡̂ 2 M

1 d(⇡, ⇡̄) = 0 () ⇡
L
1

= ⇡̄,

2 d(⇡, ⇡̄) = d(⇡̄,⇡),

3 d(⇡, ⇡̄) = d(⇡, ⇡̂) + d(⇡̂, ⇡̄).

Definition 13 (Total variation distance)

For any ⇡, p̄i 2 M,

dTV (⇡, ⇡̄) :=
1

2

Z

Rd

|⇡(u)� ⇡̄(u)| du =
1

2
k⇡ � ⇡̄kL1(Rd )

30 / 37

⑤I



Metrics on the space of pdfs

Definition 14 (Hellinger distance)

For any ⇡, ⇡̄ 2 M,

dH(⇡, ⇡̄) :=
1
p
2
k
p
⇡ �

p
⇡̄kL2(Rd ).

Lemma 15 (SST Lem 1.8)

For any ⇡, ⇡̄ 2 M,

0  dH(⇡, ⇡̄)  1 and 0  dTV (⇡, ⇡̄)  1.

Verification for dTV :

dTV (⇡, ⇡̄) =
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Properties TV and Hellinger distances

Lemma 16
For any ⇡, ⇡̄ 2 M,

1
p
2
dTV (⇡, ⇡̄)  dH(⇡, ⇡̄) 

p
dTV (⇡, ⇡̄)
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Weak errors

The posterior mean

uPM [⇡(·|y)] = E⇡(·|y)[u] =

Z

Rd

u ⇡(u|y) du

is one possible solution to the inverse problem.

For a perturbation in the forward model G� = G +O(�) that leads to a
perturbed in the posterior density ⇡�(u|y), we then need to bound the
following to verify stability

|uPM � u�
PM

| = |E⇡(·|y)[u]� E⇡(·|y)[u]|

More generally, for a mepping f : Rd
! Rk , we may be interested in

bounding
|E⇡(·|y)[f ]� E⇡�(·|y)[f ]|
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Lemma 17 (SST Lem 1.10)

Let f : Rd
! Rk satisfy kf k1 = supu2Rd |f (u)| < 1. Then for any

⇡, ⇡̄ 2 M,
|E⇡[f ]� E⇡̄[f ]|  2kf k1dTV (⇡, ⇡̄)

Verification:

|E⇡[f ]� E⇡̄[f ]| =
���
Z

Rd

f (u)(⇡(u)� ⇡̄(u)) du
���

=
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Lemma 18 (SST Lem 1.11)

Given ⇡, ⇡̄ 2 M, assume that f : Rd
! Rk satisfies

f 22 [⇡, ⇡̄] := E⇡[|f (u)|2] + E⇡̄[|f (u)|2] < 1.

Then
|E⇡[f ]� E⇡̄[f ]|  2f2 dH(⇡, ⇡̄).

Proof:

|E⇡[f ]� E⇡̄[f ]| =
���
Z

Rd

f (u)(⇡(u)� ⇡̄(u)) du
���

=
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Application of Lemma 18 to perturbed posterior means.

|uPM [⇡(·|y)]� uPM [⇡�(·|y)]| = |E⇡(·|y)[u]� E⇡�(·|y)[u]|

 2f2 dH(⇡(·|y),⇡
�(·|y)).

where f (u) = u for the posterior mean, and thus

f 22 =

Z

Rd

|u|2(⇡(u|y) + ⇡�(u|y)) du.
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Next time

Assumptions on the noise ⌘ and perturbations G� that gives stability,

Perturbed forward problems G� to which said assumptions apply,

Bayesian inversion in the linear setting with Gaussian distributions.
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