Mathematics and numerics for data assimilation and state estimation – Lecture 8

Summer semester 2020

Summary of lecture 7

$$P(\mathcal{X} \in \mathcal{A}) = P_{\mathcal{X}}(\mathcal{A}) \cdot \mathcal{A} \in \mathcal{B}$$

- Random variables can be discrete, mixed or continuous.
- It is uniquely described by its distribution \mathbb{P}_X , and also by its cdf

$$F_X(x) = \mathbb{P}(X \le x)$$

and, if it exists, also by its pdf

$$\pi_X(x)=\frac{\mathbb{P}(X\in dx)}{dx}.$$

expectation of X given Y can be expressed through use of the

- **1** conditional probability $\mathbb{P}(X \in dx \mid Y)$ when Y is a discrete rv
- **2** and the conditional density $\pi_{X|Y}$ when X and Y are continuous rv.

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

2 Forward and inverse problems

Bayesian vs frequentist

Bayesian inversionBayesian methodology

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

2 Forward and inverse problems

Bayesian vs frequentist

Bayesian inversionBayesian methodology

General definition for conditional expectation

Mixed rv are neither discrete nor continuous.

Example 1

X = YZ where $Y \sim Bernoulli(1/2)$ and $Z \sim U[0,1]$ with $Y \perp Z$. Then formally,

$$\pi_X(x) = \frac{\delta_0(x) + \mathbb{1}_{[0,1]}(x)}{2}$$

- Conditional expectations cannot always be computed using conditional densities for mixed rv.
- **Objective:** obtain a unifying definition for conditional expectations valid for all types of rv.

Sigma algebra generated by Y

• For a discrete rv

$$Y(\omega) = \sum_{k=1}^{\infty} b_k \mathbb{1}_{B_k}(\omega) \qquad \mathcal{B}_{\mathbf{K}} = \mathcal{F}(\mathbf{h}_{\mathbf{K}}) \in \mathcal{F}$$

on $(\Omega, \mathcal{F}, \mathbb{P})$, with $B_k = \{Y = b_k\}$ we define

 $\sigma(Y) := \sigma(\{B_k\}) =$ smallest σ -algebra containing all events B_1, B_2, \dots

- By construction Y is $\sigma(Y)$ -measurable and $\sigma(Y) \subset \mathcal{F}$.
- Then, for an integrable rv X, it holds that

$$\mathbb{E}[X|Y](\omega) = \begin{cases} \frac{1}{\mathbb{P}(B_1)} \int_{B_1} X \, d\mathbb{P} & \text{if } \omega \in B_1 \\ \frac{1}{\mathbb{P}(B_2)} \int_{B_2} X \, d\mathbb{P} & \text{if } \omega \in B_2 = \underbrace{\left[\underbrace{\mathsf{E}\left[1 \atop \mathsf{E}_{\mathbf{x}}, \mathbf{x}, \mathbf{x} \right]}_{\mathsf{F}(\mathbf{B}_2)} \right]}_{\mathsf{F}(\mathbf{B}_2)} \end{cases}$$

Observations: $\mathbb{E}[X|Y]$ is a $\sigma(Y)$ -measurable discrete rv for which

$$\int_{B} X \, d\mathbb{P} = \int_{B} \mathbb{E} \left[X \mid Y \right] \, d\mathbb{P} \quad \forall B \in \sigma(Y).$$

(hint: verify first for sets B_k , and extend to general set $B \in \sigma(Y)$). $\omega \in \mathcal{B}_{k} = \{\mathcal{L}(\mathcal{D}(\mathcal{D}) = \frac{1}{\mathcal{P}(\mathcal{B}_{k})} \int_{\mathcal{B}_{k}} \mathcal{D}(\mathcal{D}) = \mathcal{D}(\mathcal{D})$ Seeking to preserve these properties, observe first that for $Y : (\Omega, \mathcal{F}) \to (\mathbb{R}^{k}, \mathcal{B}^{k}),$

 $\sigma(Y) := \text{smallest } \sigma \text{-algebra containing } Y^{-1}(C) \quad \forall C \in \mathcal{B}^k$

similarly satisfies $\sigma(Y) \subset \mathcal{F}$ and that Y is $\sigma(Y)$ -measurable.

Definition 2 (Conditional expectation for general rv)

For rv $X : \Omega \to \mathbb{R}^d$ and $Y : \Omega \to \mathbb{R}^k$ defined on the same probability space, we define $\mathbb{E}[X | Y]$ as any $\sigma(Y)$ -measurable rv Z satisfying

$$\int_B X \, d\mathbb{P} = \int_B Z \, d\mathbb{P} \quad \forall B \in \sigma(Y).$$

Conditioning on a $\sigma-{\rm algebra}$

One may relate $\mathbb{E}[X \mid Y]$ to another kind of conditional expectation:

Definition 3 (Expectation of X given $\mathcal{V} \subset \mathcal{F}$.)

Let $X : \Omega \to \mathbb{R}^d$ be an integrable rv on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and assume \mathcal{V} is a σ -algebra $\mathcal{V} \subset \mathcal{F}$. Then we define $\mathbb{E}[X | \mathcal{V}]$ as any \mathcal{V} -measurable rv Z satisfying

$$\int_{B} X dP = \int_{B} Z dP \quad \forall B \in \mathcal{V}.$$

Observation: Setting $\mathcal{V} = \sigma(Y)$ implies that $\mathbb{E}[X | Y]$ satisfies the constraints of $\mathbb{E}[X | \sigma(Y)]$ and vice versa.

Question: Does $\mathbb{E}[X | V]$ exist and is it unique?

Yes, $\mathbb{E}[X | \mathcal{V}] = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$ is a.s. unique.

Function space $L^2(\Omega, \mathcal{F})$

As an extension of $L^2(\Omega)$ for discrete rv, we introduce the Hilbert space

$$L^{2}(\Omega, \mathcal{F}) = \left\{ X : (\Omega, \mathcal{F}) \to (\mathbb{R}^{d}, \mathcal{B}^{d}) \right| \quad \int_{\Omega} |X(\omega)|^{2} dP < \infty \right\}$$

the scalar product

with the scalar product

$$\langle X, Y \rangle = \int_{\Omega} X \cdot Y dP = \int_{\mathbb{R}^d \times \mathbb{R}^d} X \cdot Y dF(x, y)$$

and norm

$$\|X\|_{L^2(\Omega,\mathcal{F})}=\sqrt{\langle X,\mathbf{X}\rangle}.$$

This is a Hilbert space: it is complete and for any sub- σ -algebra $\mathcal{V} \subset \mathcal{F}$, $L^2(\Omega, \mathcal{V})$ is a closed subspace of $L^2(\Omega, \mathcal{F})$. $\mathcal{L}^2(\mathfrak{SL}, \mathcal{V}, \mathbb{P})$

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^2(\Omega, \mathcal{F})$ onto the closed subspace $L^2(\Omega, \mathcal{V})$ is defined as any rv $Z \in L^2(\Omega, \mathcal{V})$ satisfying

$$\langle X - Z, W \rangle = 0 \quad \forall W \in L^2(\Omega, \mathcal{V}).$$
 (1)

We write $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$.

Orthogonal projections onto subspaces

Definition 4

The orthogonal projection of $X \in L^2(\Omega, \mathcal{F})$ onto the closed subspace $L^2(\Omega, \mathcal{V})$ is defined as any rv $Z \in L^2(\Omega, \mathcal{V})$ satisfying

$$\langle X - Z, W \rangle = 0 \quad \forall W \in L^2(\Omega, \mathcal{V}).$$
 (1)

We write $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$.

Exercise: verify that $\operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$ satisfies the constraints of $\mathbb{E}[X | \mathcal{V}]$. **Hint:** consider $W = \mathbb{1}_B$ for $B \in \mathcal{V}$

Exercise: verify that $Z = \operatorname{Proj}_{L^2(\Omega, \mathcal{V})} X$ is unique in $L^2(\Omega, \mathcal{V})$ (and thus a.s. unique).

Last step: take as a fact that $\mathbb{E}[X | V]$ satisfies the constraint (1) of $\operatorname{Proj}_{L^{2}(\Omega, V)}X$, and conclude that $\mathbb{E}[X | V]$ is a.s. unique.

Summary conditional expectations

Theorem 5

For $rv X : \Omega \to \mathbb{R}^d$ and $Y : \Omega \to \mathbb{R}^k$ defined on the same probability space and with $X \in L^2(\Omega, \mathcal{F})$, it holds that

$$\mathbb{E}\left[X \mid Y\right] = \mathbb{E}\left[X \mid \sigma(Y)\right] = \operatorname{Proj}_{L^{2}(\Omega, \sigma(Y))}X.$$

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

2 Forward and inverse problems

Bayesian vs frequentist

Bayesian inversionBayesian methodology

What are forward and inverse problems

Forward problem Possible Cause > outcomes Possible outcomes ære deduced from cause Deductive: Veductive: General Property -> Special

I werse problem Effects doser Vation Possible causes are induced from observations Inductive set of observation > general rule

A simple linear example

Forward problem: Given a matrix A and vector u compute the outcome

$$y = Au$$

Inverse problem: Given a matrix A and observation/effect y with either

- (i) $y \notin \text{columnSpan}(A)$, or
- (ii) $y \in \text{columnSpan}(A)$ but $Kernel(A) \neq \emptyset$,

then for (i), find the best approximate cause u to

$$Au = y$$

and for (ii), find the most suitable cause u to the above problem. $\| A \ddot{u} - \gamma \, \mathcal{U} + \lambda \, \mathcal{U} \, \mathcal{U} \|$

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

- 1 a solution exists,
- 2 the solution is unique, and
- 3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then the problem is **ill-posed**.

v = Au

Example: The linear forward problem

with fixed A and u is well-posed.
$$\gamma_{u} = A u_{d}$$

$$|Y-Y_{\mathcal{J}}| \leq |\mathcal{A}| |u-u_{\mathcal{J}}| \leq c |u-u_{\mathcal{J}}|$$

Well-posedness

Definition 6 (J. Hadamard 1902)

A problem is called well-posed if

- 1 a solution exists,
- 2 the solution is unique, and

3 the solution is stable with respect to small perturbations in the input.

On the other hand, if any of the above conditions are not satisfied, then the problem is **ill-posed**.

Example: The inverse problem:

$$Au = y$$

with fixed A and input y is well-posed if A is invertible and $|A^{-1}|$ is not too large. Since then for perturbed observations $y_{\delta} = y + O(\delta)$,

$$|u - u_{\delta}| = |A^{-1}(y - y_{\delta})| \le C|A^{-1}|\delta.$$

Otherwise, it is not a well-posed problem.

Deterministic methods versus Bayesian inversion

We will consider extensions of the linear problem of the following form

$$Y = G(U) + \eta \tag{2}$$

where

- Y is the observation
- G is the possibly nonlinear forward model
- η is a perturbation/observation noise,
- U is the unknown parameter we seek to recover

Typical deterministic approach: View all variables as deterministic – also the perturbation. Find unique solution $\mathbf{a}_{\mathbf{n}}^{\mathsf{r}}$ initially ill-posed problem (2) by introducing pseudo-inverse G^+ and solve

$$U=G^+(Y-\eta).$$

Bayesian approach: View all variables as random. Model your uncertainty through input prior $U \sim \pi_U$ and $\eta \sim \pi_\eta$. Solution is not a point in \mathbb{R}^d , but a posterior distribution: $\pi_{U|Y}(\cdot|y)$ (given observation Y = y).

Bayesian methodology for solving inverse problems.

Introduce norms to study convergence of the posterior $\pi_{U|Y}$.

• Well-posedness for Bayesian inversion with perturbed input model $G_{\delta} \approx G$.

Bayesian vs frequentist

Definition 7 (Frequentist randomness)

The probability of an event is the long-term frequency of said event occurring when repeating an experiment multiple times:

$$\mathbb{P}(X \in A) = \lim_{M \to \infty} \sum_{i=1}^{M} \frac{\mathbb{1}_{A}(X_{i})}{M} \quad \text{with } X_{i} \sim \mathbb{P}, \quad \text{and ideally independent.}$$

- Is applicable to repeatable experiments (coin flips, card games, ...), and to some degree to lagre data experiments (elections, survey polls, etc.)
- and to some degree in settings where imaginary sampling is deduced from from some form of prior information (e.g., physics argument for a coin flip being *Bernoulli*(1/2)).
- Dogmatically interpreted, not applicable to non-repeating experiments (e.g., probability that Barcelona wins a particular soccer match).

Bayesian vs frequentist

Definition 8 (Bayesian uncertainty)

 $\mathbb{P}(X \in A \mid I)$ represents my degree of belief/confidence that A occurs given all my prior information I.

- Constraint in definition: If you and I have the same prior information *I*, then your P(· | *I*) should be the same as mine!
- The Bayesian approach leads to the same probability calculus as in the "usual" frequentist probability theory.
- More general than frequentist approach, as imaginary sampling really stems from a Bayesian viewpoint.
- Can assign probabilities/plausibility/belief to events which are either true or not (i.e., not at all random in the frequentist viewpoint):

 $\mathbb{P}(\mathsf{John}\ \mathsf{Doe}\ \mathsf{committed}\ \mathsf{the}\ \mathsf{crime}\ |\ \mathsf{evidence}\ \mathsf{x},\ \mathsf{y},\ \mathsf{z})$

Overview

1 $L^2(\Omega)$, sub- σ -algebras and projections

Forward and inverse problems
 Bayesian vs frequentist

Bayesian inversionBayesian methodology

Bayesian inverse problem

We consider the problem

$$\Upsilon = G(U) + \eta \tag{3}$$

where

- $U \in \mathbb{R}^d$ is the unknown parameter we seek to recover
- $Y \in \mathbb{R}^k$ is the observation
- $G: \mathbb{R}^d \to \mathbb{R}^k$ is the possibly nonlinear forward model
- η is the observation noise

Assumption 1

All parameters, possibly with the exception of G are random, described through

•
$$U \sim \pi_U$$
, $\eta \sim \pi_\eta$ and $Y \sim \pi_Y$,
• and $\eta \perp U$.

Objective: Given Y = y use this to improve the estimate of the first component in the joint rv (U, Y) through determining $\pi_{U|Y}(\cdot|y)$.

Theorem 9 (Bayes theorem [Thm 1.2 Sanz-A., Stuart, Taeb (SST)])

Let Assumption 1 hold and assume that $\pi_Y(y) > 0$. Then

$$U|Y = y \sim \pi_{U|Y}(\cdot|y)$$

with

$$\pi_{U|Y}(u|y) = \frac{\pi_{\eta}(y - G(u))\pi_{U}(u)}{\pi_{Y}(y)}.$$
 (4)

Verfication: We may assume that also $\pi_U(u) > 0$, since otherwise (4) trivially holds. By the disintegration formula,

$$\pi_{UY}(u,y)=\pi_{U|Y}(u|y)\pi_Y(y) \quad ext{and} \quad \pi_{UY}(u,y)=\pi_{Y|U}(y|u)\pi_U(u).$$

And since $\pi_Y(y) > 0$, combining the above yields Bayes' rule for densities:

$$\pi_{U|Y}(u|y) = \frac{\mathcal{T}_{UY}(u,Y)}{\mathcal{T}_{Z}(Y)} = \frac{\pi_{Y|U}(y|u)\pi_{U}(u)}{\pi_{Y}(y)}.$$

Since $Y|(U=u) = G(U) + \eta|(U=u) = G(u) + \eta$
 $\pi_{Y|U}(y|u) = \pi_{\eta+G(u)}(y) = \pi_{\eta}(y - G(u)).$

Remarks

$$\pi_{U|Y}(u|y) = \frac{\pi_{\eta}(y - G(u))\pi_{U}(u)}{\pi_{Y}(y)}.$$
(5)

The denominator \(\pi_Y(y)\) in (5) acts as normalizing constant is called the evidence or the marginal likelihood:

$$Z:=\pi_Y(y)=\int_{\mathbb{R}^d}\pi_\eta(y-G(u))\pi_U(u)\,du.$$

• $\pi_{U|Y}(u|y)$ is the **posterior density**

■ To avoid clutter, we will drop density subscripts when reference is clear ($\pi(u) = \pi_U(u)$, $\pi(u|y) = \pi_{U|Y}(u|y)$ etc.)

Question: Given the posterior density, how can we produce a one-value estimate of the most plausible value of U|Y = y?

Posterior mean and MAP estimators

Definition 10

The posterior mean of U given Y = y is defined by

$$u_{PM} := \mathbb{E}[U|Y = y] = \int_{\mathbb{R}^d} u\pi(u|y) du$$

and the maximum a posteriori (MAP) estimator is defined by

 $u_{MAP} := \arg \max_{u \in \mathbb{R}^d} \pi(u|y).$

Example 11

Let $\eta \sim N(0, \gamma^2)$ and model G(u) = u and prior

$$\pi(u) = \frac{\mathbb{1}_{(-1,1)}(u)}{2} \quad / \quad \bigcup \sim \bigcup \left[-(, \bigcup)\right]$$

Given an observation Y = y, Bayes' theorem yields

$$\pi(u|y) = \frac{\pi_{\eta}(y-u)\pi_{U}(u)}{\pi_{Y}(y)} = \frac{\mathbb{1}_{(-1,1)}(u)\exp(-(y-u)/2\gamma^{2})}{2Z}$$

with normalizing constant Z. This yields:

$$u_{MAP} = \arg \max_{u \in \mathbb{R}} \pi(u|y) = \begin{cases} y & \text{if } y \in (-1,1) \\ -1 & \text{if } y \leq -1 \\ 1 & \text{if } y \geq 1 \end{cases}$$

Assimilating two observations

Example 12

Consider the ordinary differential equation

$$\dot{x}(t; u) = x(t; u)$$
 $t > 0$ and $x(0; u) = u$
 $\chi(t; u) = \chi(t; u) = Lu$

and

$$G(u)=x(1;u)=ue^1,$$

and assume we have two different observations

$$Y_1 = G(U) + \eta_1$$
, and $Y_2 = G(U) + \eta_2$,

with the prior density $U \sim U[-1, 4]$, and $\eta_1 \sim N(0, 1)$ and $\eta_2 \sim U[-0.5, 0.5]$ with $\eta_1 \perp \eta_2$.

Problem: Compute the posterior density for $U|(Y_1 = 0.2, Y_2 = -0.4)$.

Solution to Example 12

Set $Y = (Y_1, Y_2)$ with $\eta = (\eta_1, \eta_2)$ and apply Theorem 1 to the joint rv (U, Y), for the observation y = (0.2, -0.4).

$$\pi(u|y) = \frac{\pi_{\eta}((y_1 - G(u), y_2 - G(u)))\pi_U(u)}{Z}$$
$$= \frac{\pi_{\eta_2}(y_2 - G(u)))\pi_{\eta_1}((y_1 - G(u))\pi_U(u))}{Z}$$

Motivation: For $\pi_U(u) > 0$,

$$Y|(U = u) = (G(u) + \eta_1, G(u) + \eta_2)$$

$$\implies \pi(y|u) = \pi_{\eta_1\eta_2}(y_1 - G(u), y_2 - G(u)).$$

and

$$\pi(u|y) = \frac{\pi(y|u)}{2} \pi(u)$$

$$= \pi_{\eta_1 \eta_2}(y_1 - G_1(u), y_2 - G_2(u)) \pi_{\eta_1}(y_1 - G_2(u), y_2 - G_2(u)) \pi_{\eta_1}(y_1 - G_2(u)) \pi_{\eta_2}(y_2 - G_2(u)) \pi_{\eta_1}(y_1 - G_2(u)) \pi_{\eta_2}(y_2 - G_2(u)) \pi_{\eta_2}(y_1 - G_2(u)) \pi_{\eta_2}(y_2 - G_2(u)) \pi_{\eta_2}(y_1 - G_2(u)) \pi_{\eta_2}(y_2 - G_2(u))$$

Observation: The posterior $\pi(u|y_1, y_2)$ can be obtained in two ways: • In one go: $U|(Y_1 = y_1, Y_2 = y_2)$ mapping $\pi_U(u)$ to $\pi(u|y_1, y_2)$: $\pi(u|y) = \frac{\pi_{\eta}((y_1 - G(u), y_2 - G(u)))\pi_U(u)}{7}$ • Or sequentially: 1. $U|(Y_1 = y_1)$ mapping $\pi_U(u)$ to $\pi(u|y_1)$: $\pi(u|y_1) = \frac{\pi_{\eta_1}(y_1 - G(u))\pi_U(u)}{Z_1}$ and 2. $U|(Y_1 = y_1, \frac{Y_2 = y_2}{2})$ mapping $\pi(u|y_1)$ to $\pi(u|y_1, \frac{y_2}{2})$ $\pi(u|y_1, y_2) = \frac{\pi_{\eta_2}(y_2 - G(u))\pi(u|y_1)}{Z_2}$ 3.5 $-\pi(u)$ 3 $-\pi(u|y_1)$ 2.5 $\pi(u|y_1, y_2)$ 2 1.5 1 0.5

2 3

5

-2 -1

Well-posedness for Bayesian inversion

Relation between observation and underlying parameter

 $Y = G(U) + \eta$ $Y \cong G_U + \eta$ Inverse problem: what is the most likely/plausible U given Y = y

Bayesian inversion solution: the posterior density $\pi(u|y)$, or a function of the density, e.g., u_{PM} and u_{MAP} .

Hadamard's definition of well-posedness requires that a solution (i) exists, (ii) is unique and (iii) is stable with respect to small perturbations of the input.

By construction, $\pi(u|y)$ exists and is unique as long as $\pi_Y(y) > 0$.

Objective: Study condition (iii) under perturbations in the model. We seek a result along the lines of

$$|G_{\delta}-G|=\mathcal{O}(\delta)\implies d(\pi^{\delta}(\cdot|y),\pi(\cdot|y))=\mathcal{O}(\delta), \quad \text{but what is } d?$$

Metrics on the space of pdfs

Let us introduce the space of probability density functions on \mathbb{R}^d

$$\mathcal{M} := \left\{ f \in L^1(\mathbb{R}^d) \mid f \geq 0 ext{ and } \int_{\mathbb{R}^d} f(u) \, du = 1
ight\}$$

and recall that

$$d:\mathcal{M} imes\mathcal{M} o [0,\infty)$$

is a metric on ${\mathcal M}$ if for all $\pi, \bar{\pi}, \hat{\pi} \in {\mathcal M}$

1
$$d(\pi, \bar{\pi}) = 0 \iff \pi \stackrel{L^1}{=} \bar{\pi},$$

2 $d(\pi, \bar{\pi}) = d(\bar{\pi}, \pi),$
3 $d(\pi, \bar{\pi}) = d(\pi, \hat{\pi}) + d(\hat{\pi}, \bar{\pi}).$

Definition 13 (Total variation distance)

For any
$$\pi, \bar{p}i \in \mathcal{M}$$
,

$$find d_{TV}(\pi, \bar{\pi}) := \frac{1}{2} \int_{\mathbb{R}^d} |\pi(u) - \bar{\pi}(u)| \, du = \frac{1}{2} ||\pi - \bar{\pi}||_{L^1(\mathbb{R}^d)}$$

Metrics on the space of pdfs

Definition 14 (Hellinger distance)

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$d_H(\pi, \bar{\pi}) := rac{1}{\sqrt{2}} \|\sqrt{\pi} - \sqrt{\bar{\pi}}\|_{L^2(\mathbb{R}^d)}.$$

Lemma 15 (SST Lem 1.8)

For any $\pi, \bar{\pi} \in \mathcal{M}$,

 $0 \leq d_H(\pi, ar{\pi}) \leq 1$ and $0 \leq d_{TV}(\pi, ar{\pi}) \leq 1.$

Verification for d_{TV} :

$$d_{TV}(\pi, \bar{\pi}) =$$

Properties TV and Hellinger distances

Lemma 16 For any $\pi, \bar{\pi} \in \mathcal{M},$ $\frac{1}{\sqrt{2}} d_{TV}(\pi, \bar{\pi}) \leq d_{H}(\pi, \bar{\pi}) \leq \sqrt{d_{TV}(\pi, \bar{\pi})}$

Weak errors

The posterior mean

$$u_{PM}[\pi(\cdot|y)] = \mathbb{E}^{\pi(\cdot|y)}[u] = \int_{\mathbb{R}^d} u \,\pi(u|y) \,du$$

is one possible solution to the inverse problem.

For a perturbation in the forward model $G_{\delta} = G + O(\delta)$ that leads to a perturbed in the posterior density $\pi^{\delta}(u|y)$, we then need to bound the following to verify stability

$$|u_{PM} - u_{PM}^{\delta}| = |\mathbb{E}^{\pi(\cdot|y)}[u] - \mathbb{E}^{\pi(\cdot|y)}[u]|$$

More generally, for a mepping $f : \mathbb{R}^d \to \mathbb{R}^k$, we may be interested in bounding

$$|\mathbb{E}^{\pi(\cdot|y)}[f] - \mathbb{E}^{\pi^{\delta}(\cdot|y)}[f]|$$

Lemma 17 (SST Lem 1.10)

Let $f : \mathbb{R}^d \to \mathbb{R}^k$ satisfy $||f||_{\infty} = \sup_{u \in \mathbb{R}^d} |f(u)| < \infty$. Then for any $\pi, \overline{\pi} \in \mathcal{M}$,

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{ar{\pi}}[f]| \leq 2 \|f\|_{\infty} d_{TV}(\pi,ar{\pi})$$

Verification:

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{\overline{\pi}}[f]| = \left| \int_{\mathbb{R}^d} f(u)(\pi(u) - \overline{\pi}(u)) du \right|$$

=

Lemma 18 (SST Lem 1.11)

Given $\pi, \bar{\pi} \in \mathcal{M}$, assume that $f : \mathbb{R}^d \to \mathbb{R}^k$ satisfies

$$f_2^2[\pi, ar{\pi}] := \mathbb{E}^{\pi}[|f(u)|^2] + \mathbb{E}^{ar{\pi}}[|f(u)|^2] < \infty.$$

Then

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{\bar{\pi}}[f]| \leq 2f_2 d_H(\pi, \bar{\pi}).$$

Proof:

$$|\mathbb{E}^{\pi}[f] - \mathbb{E}^{\overline{\pi}}[f]| = \left| \int_{\mathbb{R}^d} f(u)(\pi(u) - \overline{\pi}(u)) \, du \right|$$

Application of Lemma 18 to perturbed posterior means.

$$\begin{aligned} |u_{PM}[\pi(\cdot|y)] - u_{PM}[\pi^{\delta}(\cdot|y)]| &= |\mathbb{E}^{\pi(\cdot|y)}[u] - \mathbb{E}^{\pi^{\delta}(\cdot|y)}[u]| \\ &\leq 2f_2 d_H(\pi(\cdot|y), \pi^{\delta}(\cdot|y)). \end{aligned}$$

where f(u) = u for the posterior mean, and thus

$$f_2^2 = \int_{\mathbb{R}^d} |u|^2 (\pi(u|y) + \pi^{\delta}(u|y)) \, du.$$

Assumptions on the noise η and perturbations G_{δ} that gives stability,

• Perturbed forward problems G_{δ} to which said assumptions apply,

Bayesian inversion in the linear setting with Gaussian distributions.