Mathematics and numerics for data assimilation and state estimation - Lecture 9

Mathematics
for Uncertainty Quantification

Summer semester 2020

Overview

1 Metrics on spaces of probability density functions

2 Approximation result in $Y=G(U)+\eta$ setting

Summary of lecture 8

Conditional expectations on projections:

For $r v X: \Omega \rightarrow \mathbb{R}^{d}$ and $Y: \Omega \rightarrow \mathbb{R}^{k}$ defined on the same probability space and with $X \in L^{2}(\Omega, \mathcal{F})$, it holds that

$$
\mathbb{E}[X \mid Y]=\mathbb{E}[X \mid \sigma(Y)]=\operatorname{Proj}_{L^{2}(\Omega, \sigma(Y))} X
$$

Bayesian inversion

Inverse problem

$$
\begin{equation*}
Y=G(U)+\eta \tag{1}
\end{equation*}
$$

- observation Y is the observation
- forward model G
- observation noise η
- U is the unknown parameter

Problem assumptions: $\quad \eta \sim \pi_{\eta}, U \sim \pi_{U}$ and $\eta \perp U$.
Solution:

$$
\pi_{U \mid Y}(u \mid y)=\frac{\pi_{\eta}(y-G(u)) \pi_{U}(u)}{\pi_{Y}(y)}
$$

with $\pi_{Y}(y)$ often replace by equivalent normalizing constant

$$
Z=Z(y)=\int \pi_{\eta}(y-G(u)) \pi_{u}(u) d u
$$

Definition 1 (J. Hadamard 1902)

A problem is called well-posed if
1 a solution exists,
2 the solution is unique, and
3 the solution is stable with respect to small perturbations in the input.
Objective: For the inverse problem

$$
Y=G(U)+\eta
$$

study settings under which condition [3] holds for perturbations in G:

$$
\underbrace{\left|G_{\delta}-G\right|}_{(i)}=\mathcal{O}(\delta) \Longrightarrow \underbrace{d\left(\pi^{\delta}(\cdot \mid y), \pi(\cdot \mid y)\right)}_{(i i)}=\mathcal{O}(\delta)
$$

Namely, give examples where (i) holds and relate this to (ii) for different metrics.

Overview

1 Metrics on spaces of probability density functions

2 Approximation result in $Y=G(U)+\eta$ setting

Metrics on the space of pdfs

Let us introduce the space of probability density functions on \mathbb{R}^{d}

$$
\mathcal{M}:=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \mid f \geq 0 \text { and } \int_{\mathbb{R}^{d}} f(u) d u=1\right\}
$$

and recall that

$$
d: \mathcal{M} \times \mathcal{M} \rightarrow[0, \infty)
$$

is a metric on \mathcal{M} if for all $\pi, \bar{\pi}, \hat{\pi} \in \mathcal{M}$
$1 d(\pi, \bar{\pi})=0 \Longleftrightarrow \pi \stackrel{L^{1}}{=} \bar{\pi}$,
$2 d(\pi, \bar{\pi})=d(\bar{\pi}, \pi)$,
3 $d(\pi, \bar{\pi}) \leq d(\pi, \hat{\pi})+d(\hat{\pi}, \bar{\pi})$.

Definition 2 (Total variation distance)

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$
d_{T V}(\pi, \bar{\pi}):=\frac{1}{2} \int_{\mathbb{R}^{d}}|\pi(u)-\bar{\pi}(u)| d u=\frac{1}{2}\|\pi-\bar{\pi}\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Metrics on the space of pdfs
Definition 3 (Hellinger distance)
For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$
d_{H}(\pi, \bar{\pi}):=\frac{1}{\sqrt{2}}\|\sqrt{\pi}-\sqrt{\bar{\pi}}\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

Lemma 4 (SST Lem 1.8)
For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$
0 \leq d_{H}(\pi, \bar{\pi}) \leq 1 \quad \text { and } \quad 0 \leq d_{T V}(\pi, \bar{\pi}) \leq 1
$$

Verification for $d_{T V}$:

$$
d_{T V}(\pi, \bar{\pi})=
$$

Properties TV and Hellinger distances

Lemma 5

For any $\pi, \bar{\pi} \in \mathcal{M}$,

$$
\frac{1}{\sqrt{2}} d_{T V}(\pi, \bar{\pi}) \leq d_{H}(\pi, \bar{\pi}) \leq \sqrt{d_{T V}(\pi, \bar{\pi})}
$$

Weak errors

The posterior mean

$$
u_{P M}[\pi(\cdot \mid y)]=\mathbb{E}^{\pi(\cdot \mid y)}[u]=\int_{\mathbb{R}^{d}} u \pi(u \mid y) d u
$$

is one possible solution to the inverse problem.
For a perturbation in the forward model $G_{\delta}=G+\mathcal{O}(\delta)$ that leads to a perturbed posterior density $\pi^{\delta}(u \mid y)$, we need to bound the following to verify stability

$$
\left|u_{P M}-u_{P M}^{\delta}\right|=\left|\mathbb{E}^{\pi(\cdot \mid y)}[u]-\mathbb{E}^{\pi^{\delta}(\cdot \mid y)}[u]\right|
$$

More generally, for a mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, we may be interested in bounding

$$
\left|\mathbb{E}^{\pi(\cdot \mid y)}[f]-\mathbb{E}^{\pi^{\delta}(\cdot \mid y)}[f]\right|
$$

Lemma 6 (SST Lem 1.10)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ satisfy $\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}=$ ess $\sup _{u \in \mathbb{R}^{d}}|f(u)|<\infty$. Then for any $\pi, \bar{\pi} \in \mathcal{M}$,

$$
\left|\mathbb{E}^{\pi}[f]-\mathbb{E}^{\bar{\pi}}[f]\right| \leq 2\|f\|_{\infty} d_{T V}(\pi, \bar{\pi})
$$

Verification:

$$
\left|\mathbb{E}^{\pi}[f]-\mathbb{E}^{\bar{\pi}}[f]\right|=\left|\int_{\mathbb{R}^{d}} f(u)(\pi(u)-\bar{\pi}(u)) d u\right|
$$

Lemma 7 (SST Lem 1.11)

Given $\pi, \bar{\pi} \in \mathcal{M}$, assume that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ satisfies

$$
f_{2}^{2}[\pi, \bar{\pi}]:=\mathbb{E}^{\pi}\left[|f(u)|^{2}\right]+\mathbb{E}^{\bar{\pi}}\left[|f(u)|^{2}\right]<\infty .
$$

Then

$$
\left|\mathbb{E}^{\pi}[f]-\mathbb{E}^{\bar{\pi}}[f]\right| \leq 2 f_{2} d_{H}(\pi, \bar{\pi})
$$

Proof:

$$
\left|\mathbb{E}^{\pi}[f]-\mathbb{E}^{\bar{\pi}}[f]\right|=\left|\int_{\mathbb{R}^{d}} f(u)(\pi(u)-\bar{\pi}(u)) d u\right|
$$

$$
=
$$

Application of Lemma 7 to perturbed posterior means.

$$
\begin{aligned}
\left|u_{P M}[\pi(\cdot \mid y)]-u_{P M}\left[\pi^{\delta}(\cdot \mid y)\right]\right| & =\left|\mathbb{E}^{\pi(\cdot \mid y)}[u]-\mathbb{E}^{\pi^{\delta}(\cdot \mid y)}[u]\right| \\
& \leq 2 f_{2} d_{H}\left(\pi(\cdot \mid y), \pi^{\delta}(\cdot \mid y)\right) .
\end{aligned}
$$

where $f(u)=u$ for the posterior mean, and thus

$$
f_{2}^{2}=\int_{\mathbb{R}^{d}}|u|^{2}\left(\pi(u \mid y)+\pi^{\delta}(u \mid y)\right) d u
$$

Example 8 (Extension of MAP estimator example, Lecture 8)

Consider the problem (1) with $\eta \sim N\left(0, \gamma^{2}\right), U \sim U[-1,1], G(u)=u$ and $G_{\delta}(u)=u+\delta$ for some fixed gamma >0 and $\delta>0$.
Solutions:

$$
\pi(u \mid y)=
$$

$$
=\frac{e^{-(y-u)^{2} / 2 \gamma^{2} \mathbb{1}_{(-1,1)}(u)}}{2 Z(y)}
$$

and

$$
\pi^{\delta}(u \mid y)=\frac{e^{-(y-(u+\delta))^{2} / 2 \gamma^{2}} \mathbb{1}_{(-1,1)}(u)}{2 Z(y-\delta)}=\pi(u \mid y-\delta)
$$

Recalling that

$$
u_{M A P}[\pi(\cdot \mid y)]=\arg \max _{u \in \mathbb{R}} \pi(u \mid y)= \begin{cases}y & \text { if } y \in(-1,1) \\ -1 & \text { if } y \leq-1 \\ 1 & \text { if } y \geq 1\end{cases}
$$

implies that $\left|u_{M A P}[\pi(\cdot \mid y)]-u_{M A P}\left[\pi^{\delta}(\cdot \mid y)\right]\right| \leq \delta$.

Distance between $u_{M A P}$ and $u_{M A P}^{\delta}$ when $\gamma=1, y=0.1$ and $\delta=0.2$.

Exercise

Prove that also

$$
\left|u_{P M}[\pi(\cdot \mid y)]-u_{P M}\left[\pi^{\delta}(\cdot \mid y)\right]\right|=\mathcal{O}(\delta)
$$

Overview

1 Metrics on spaces of probability density functions

2 Approximation result in $Y=G(U)+\eta$ setting

Approximation assumptions

By introducing the notation

$$
g(u):=\pi_{\eta}(y-G(u)) \quad \text { and } \quad g_{\delta}(u):=\pi_{\eta}\left(y-G_{\delta}(u)\right),
$$

we have

$$
\pi(u \mid y)=\frac{g(u) \pi_{u}(u)}{Z} \quad \text { and } \quad \pi^{\delta}(u \mid y)=\frac{g_{\delta}(u) \pi_{u}(u)}{Z^{\delta}}
$$

Assumption 1

Assume there exists constant $K_{1}, K_{2}>0$ such that for sufficiently small $\delta>0$,
(i) $\sqrt{\mathbb{E}^{\pi u}\left[\left|\sqrt{g}-\sqrt{g_{\delta}}\right|^{2}\right]} \leq K_{1} \delta$
(ii) $\|\sqrt{g}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+\left\|\sqrt{g_{\delta}}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq K_{2}$

Approximation results

Theorem 9
If Assumption 1 holds, then there exists $c_{1}, c_{2}, c_{3}>0$ such that for sufficiently small $\delta>0$

$$
\left|Z-Z^{\delta}\right| \leq c_{1} \delta \quad \text { and } \quad Z, Z^{\delta}>c_{2} \quad \text { [SST Lemma 1.15] }
$$

and

$$
d_{H}\left(\pi(\cdot \mid y), \pi^{\delta}(\cdot \mid y)\right) \leq c_{3} \delta \quad[S S T \text { Theorem 1.14] }
$$

where we recall that

$$
d_{H}(\pi, \bar{\pi})=\frac{1}{\sqrt{2}}\|\sqrt{\pi}-\sqrt{\bar{\pi}}\|_{L^{2}} .
$$

Proof idea Lemma 1.15

$$
\left|Z-Z^{\delta}\right|=\left|\int\left(g(u)-g_{\delta}(u)\right) \pi u(u) d u\right|
$$

Positivity: $\quad Z=\pi_{Y}(y)>0$ by assumption, so by \ldots

Proof idea Thm 1.14

$$
\begin{aligned}
d_{H}(\pi(\cdot \mid y) & \left., \pi^{\delta}(\cdot \mid y)\right)=\frac{1}{\sqrt{2}}\left\|\sqrt{\pi}-\sqrt{\pi^{\delta}}\right\|_{2} \\
& =\frac{1}{\sqrt{2}}\left\|\sqrt{\frac{g^{\pi} U}{Z}}-\sqrt{\frac{g_{\delta} \pi_{U}}{Z^{\delta}}}\right\|_{2} \\
& \leq \frac{1}{\sqrt{2}}\left\|\sqrt{\frac{g \pi_{U}}{Z}}-\sqrt{\frac{g_{\delta} \pi_{U}}{Z}}\right\|_{2}+\frac{1}{\sqrt{2}}\left\|\sqrt{\frac{g_{\delta} \pi_{U}}{Z}}-\sqrt{\frac{g_{\delta} \pi_{U}}{Z^{\delta}}}\right\|_{2} \\
& \leq
\end{aligned}
$$

Summary of well-posedness result

Recall that

$$
g(u):=\pi_{Y}(y-G(u)) \quad \text { and } \quad g_{\delta}(u):=\pi_{Y}\left(y-G_{\delta}(u)\right)
$$

which yields

$$
\pi(u \mid y)=\frac{g(u) \pi_{u}(u)}{Z} \quad \text { and } \quad \pi^{\delta}(u \mid y)=\frac{g_{\delta}(u) \pi_{u}(u)}{Z^{\delta}}
$$

Summary results: If for sufficiently small $\delta>0$
(i) $\left\|\sqrt{g}-\sqrt{g_{\delta}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\mathcal{O}(\delta)$
(ii) $\|\sqrt{g}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+\left\|\sqrt{g_{\delta}}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}<\infty$

Then the well-posedness condition [3] holds in the following sense:

$$
d_{H}\left(\pi(\cdot \mid y), \pi^{\delta}(\cdot \mid y)\right)=\mathcal{O}(\delta)
$$

Example with unspecified model where (i) and (ii) hold

Consider setting where $\left\|G_{\delta}-G\right\|_{\infty}=\mathcal{O}(\delta)$

$$
\|G\|_{\infty}+\left\|G_{\delta}\right\|_{\infty}<\infty \quad \text { and } \quad \eta \sim N(0,1) .
$$

Then

$$
\begin{aligned}
\sqrt{g(u)}-\sqrt{g_{\delta}(u)} & =\sqrt{\pi_{\eta}(y-G(u))}-\sqrt{\pi_{\eta}\left(y-G_{\delta}(u)\right)} \\
& =\frac{1}{(2 \pi)^{1 / 4}}\left(\exp \left(\frac{-(y-G(u))^{2}}{4}\right)-\exp \left(\frac{-\left(y-G_{\delta}(u)\right)^{2}}{4}\right)\right)
\end{aligned}
$$

$$
\leq
$$

$$
=\mathcal{O}(\delta)
$$

$$
\text { and }\|\sqrt{g}\|_{\infty}=\left\|\sqrt{g_{\delta}}\right\|_{\infty}=\frac{1}{(2 \pi)^{1 / 4}} .
$$

And a specified model which may lead to stability

Consider the ordinary differential equation

$$
\dot{x}(t ; u)=x(t ; u) \quad t>0 \quad \text { and } \quad x(0 ; u)=u \quad \text { for } u \in[-1,1],
$$

and the associated explicit-Euler numerical solution

$$
X_{n+1}^{\delta}=X_{n}^{\delta}(1+\delta), \quad X_{0}^{\delta}=u
$$

The forward model is the solution flow map from $t=0$ to $t=1$:

$$
G(u)=x(1 ; u)=u e^{1} \quad \text { and } \quad G_{\delta}(u)=X_{\left\lfloor\delta^{-1}\right\rfloor}^{\delta}\left(1+\left(1-\delta\left\lfloor\delta^{-1}\right\rfloor\right)\right)
$$

For simplicity, we assume that $\delta^{-1}=N \in \mathbb{N}$. Then $G_{\delta}(u)=X_{N}^{\delta}$.

For $t_{k}=k \delta$, and note that

$$
X\left(t_{k+1}\right)=e^{\delta} X\left(t_{k}\right)
$$

For $E_{k}:=\left|X\left(t_{k}\right)-X_{k}^{\delta}\right|$ it then holds that

$$
E_{k+1} \leq\left(e^{\delta}-(1+\delta)\right)\left|X\left(t_{k}\right)\right|+(1+\delta) E_{k}
$$

Verification:

Consequently,

$$
\begin{aligned}
E_{N} & =\left|G(u)-G_{\delta}(u)\right| \leq \underbrace{\left(e^{\delta}-(1+\delta)\right)}_{\leq c \delta^{2}}\left|X\left(t_{N-1}\right)\right|+(1+\delta) E_{N-1} \\
& \leq \\
& \leq c \delta^{2} \sum_{k=0}^{N-1}(1+\delta)^{N-1-k}\left|X\left(t_{k}\right)\right|+(1+\delta)^{N} E_{0} \leq c \delta e^{1}|u| \leq c \delta .
\end{aligned}
$$

For the relevant $u \in[-1,1]$, we have shown that

$$
\left\|G-G_{\delta}\right\|_{L^{\infty}([-1,1])} \leq c \delta
$$

where $c>0$ satisfies

$$
\begin{equation*}
\left|e^{\delta}-(1+\delta)\right| \leq c \delta^{2} \quad \forall \delta \in\left(0, \delta^{+}\right) \tag{2}
\end{equation*}
$$

Note also that

$$
\|G\|_{L^{\infty}([-1,1])}+\left\|G_{\delta}\right\|_{L^{\infty}([-1,1])} \leq e^{1}+(1+\delta)^{1 / \delta} \leq 2 e^{1}
$$

Exercise: For any $\delta \in\left(0, \delta^{+}=1\right)$, show that $c=e^{1} / 2$ satisfies (2).

Comments:

- Relevant u values not being the whole of \mathbb{R}^{d} may be motivated for instance by π_{U} having compact support.
- See also [SST 1.1.3] for a more general example of forward models stable under perturbations.

Next time

■ Bayesian inversion in the linear-Gaussian setting,

■ For the linear-Gaussian setting, study the posterior density in the small noise limit $\eta \sim N(0, \Gamma)$ when $|\Gamma| \rightarrow 0$.

■ How informative is the MAP estimator?

