
Mathematics and numerics for data assimilation and
state estimation – Lecture 9

Summer semester 2020
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Overview

1 Metrics on spaces of probability density functions

2 Approximation result in Y = G (U) + η setting
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Summary of lecture 8

Conditional expectations on projections:

For rv X : Ω→ Rd and Y : Ω→ Rk defined on the same probability space
and with X ∈ L2(Ω,F), it holds that

E [X | Y ] = E [X | σ(Y )] = ProjL2(Ω,σ(Y ))X .

L2(Ω,V)

0

X

Z
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Bayesian inversion
Inverse problem

Y = G (U) + η (1)

observation Y is the observation

forward model G

observation noise η

U is the unknown parameter

Problem assumptions: η ∼ πη, U ∼ πU and η ⊥ U.

Solution:

πU|Y (u|y) =
πη(y − G (u))πU(u)

πY (y)
.

with πY (y) often replace by equivalent normalizing constant

Z = Z (y) =

∫
πη(y − G (u))πU(u) du.
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Definition 1 (J. Hadamard 1902)

A problem is called well-posed if

1 a solution exists,

2 the solution is unique, and

3 the solution is stable with respect to small perturbations in the input.

Objective: For the inverse problem

Y = G (U) + η,

study settings under which condition [3] holds for perturbations in G :

|Gδ − G |︸ ︷︷ ︸
(i)

= O(δ) =⇒ d(πδ(·|y), π(·|y))︸ ︷︷ ︸
(ii)

= O(δ)

Namely, give examples where (i) holds and relate this to (ii) for different
metrics.
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Metrics on the space of pdfs
Let us introduce the space of probability density functions on Rd

M :=
{
f ∈ L1(Rd) | f ≥ 0 and

∫
Rd

f (u) du = 1
}

and recall that
d :M×M→ [0,∞)

is a metric on M if for all π, π̄, π̂ ∈M

1 d(π, π̄) = 0 ⇐⇒ π
L1

= π̄,

2 d(π, π̄) = d(π̄, π),

3 d(π, π̄) ≤ d(π, π̂) + d(π̂, π̄).

Definition 2 (Total variation distance)

For any π, π̄ ∈M,

dTV (π, π̄) :=
1

2

∫
Rd

|π(u)− π̄(u)| du =
1

2
‖π − π̄‖L1(Rd )
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Metrics on the space of pdfs

Definition 3 (Hellinger distance)

For any π, π̄ ∈M,

dH(π, π̄) :=
1√
2
‖
√
π −
√
π̄‖L2(Rd ).

Lemma 4 (SST Lem 1.8)

For any π, π̄ ∈M,

0 ≤ dH(π, π̄) ≤ 1 and 0 ≤ dTV (π, π̄) ≤ 1.

Verification for dTV :

dTV (π, π̄) =
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Properties TV and Hellinger distances

Lemma 5

For any π, π̄ ∈M,

1√
2
dTV (π, π̄) ≤ dH(π, π̄) ≤

√
dTV (π, π̄)
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Weak errors

The posterior mean

uPM [π(·|y)] = Eπ(·|y)[u] =

∫
Rd

u π(u|y) du

is one possible solution to the inverse problem.

For a perturbation in the forward model Gδ = G +O(δ) that leads to a
perturbed posterior density πδ(u|y), we need to bound the following to
verify stability

|uPM − uδPM | = |Eπ(·|y)[u]− Eπ
δ(·|y)[u]|

More generally, for a mapping f : Rd → Rk , we may be interested in
bounding

|Eπ(·|y)[f ]− Eπ
δ(·|y)[f ]|
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Lemma 6 (SST Lem 1.10)

Let f : Rd → Rk satisfy ‖f ‖L∞(Rd ) = ess supu∈Rd |f (u)| <∞. Then for
any π, π̄ ∈M,

|Eπ[f ]− Eπ̄[f ]| ≤ 2‖f ‖∞dTV (π, π̄)

Verification:

|Eπ[f ]− Eπ̄[f ]| =
∣∣∣ ∫

Rd

f (u)(π(u)− π̄(u)) du
∣∣∣

=
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Lemma 7 (SST Lem 1.11)

Given π, π̄ ∈M, assume that f : Rd → Rk satisfies

f 2
2 [π, π̄] := Eπ[|f (u)|2] + Eπ̄[|f (u)|2] <∞.

Then
|Eπ[f ]− Eπ̄[f ]| ≤ 2f2 dH(π, π̄).

Proof:

|Eπ[f ]− Eπ̄[f ]| =
∣∣∣ ∫

Rd

f (u)(π(u)− π̄(u)) du
∣∣∣

=
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Application of Lemma 7 to perturbed posterior means.

|uPM [π(·|y)]− uPM [πδ(·|y)]| = |Eπ(·|y)[u]− Eπ
δ(·|y)[u]|

≤ 2f2 dH(π(·|y), πδ(·|y)).

where f (u) = u for the posterior mean, and thus

f 2
2 =

∫
Rd

|u|2(π(u|y) + πδ(u|y)) du.
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Example 8 (Extension of MAP estimator example, Lecture 8)

Consider the problem (1) with η ∼ N(0, γ2), U ∼ U[−1, 1], G (u) = u and
Gδ(u) = u + δ for some fixed gamma > 0 and δ > 0.
Solutions:

π(u|y) = =
e−(y−u)2/2γ2

1(−1,1)(u)

2Z (y)

and

πδ(u|y) =
e−(y−(u+δ))2/2γ2

1(−1,1)(u)

2Z (y − δ)
= π(u|y − δ)

Recalling that

uMAP [π(·|y)] = arg max
u∈R

π(u|y) =


y if y ∈ (−1, 1)

−1 if y ≤ −1

1 if y ≥ 1

implies that |uMAP [π(·|y)]− uMAP [πδ(·|y)]| ≤ δ.
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Distance between uMAP and uδMAP when γ = 1, y = 0.1 and δ = 0.2.
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Exercise

Prove that also

|uPM [π(·|y)]− uPM [πδ(·|y)]| = O(δ).
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Approximation assumptions

By introducing the notation

g(u) := πη(y − G (u)) and gδ(u) := πη(y − Gδ(u)),

we have

π(u|y) =
g(u)πU(u)

Z
and πδ(u|y) =

gδ(u)πU(u)

Z δ
.

Assumption 1

Assume there exists constant K1,K2 > 0 such that for sufficiently small
δ > 0,

(i)
√

EπU [|√g −√gδ|2] ≤ K1δ

(ii) ‖√g‖L∞(Rd ) + ‖√gδ‖L∞(Rd ) ≤ K2
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Approximation results

Theorem 9

If Assumption 1 holds, then there exists c1, c2, c3 > 0 such that for
sufficiently small δ > 0

|Z − Z δ| ≤ c1δ and Z ,Z δ > c2 [SST Lemma 1.15]

and
dH(π(·|y), πδ(·|y)) ≤ c3δ [SST Theorem 1.14]

where we recall that

dH(π, π̄) =
1√
2
‖
√
π −
√
π̄‖L2 .
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Proof idea Lemma 1.15

|Z − Z δ| =
∣∣∣ ∫ (g(u)− gδ(u))πU(u)du

∣∣∣

Positivity: Z = πY (y) > 0 by assumption, so by . . .

19 / 26



Proof idea Thm 1.14

dH(π(·|y), πδ(·|y)) =
1√
2
‖
√
π −
√
πδ‖2

=
1√
2

∥∥∥∥√gπU
Z
−
√

gδπU
Z δ

∥∥∥∥
2

≤ 1√
2

∥∥∥∥√gπU
Z
−
√

gδπU
Z

∥∥∥∥
2

+
1√
2

∥∥∥∥√gδπU
Z
−
√

gδπU
Z δ

∥∥∥∥
2

≤
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Summary of well-posedness result

Recall that

g(u) := πY (y − G (u)) and gδ(u) := πY (y − Gδ(u)),

which yields

π(u|y) =
g(u)πU(u)

Z
and πδ(u|y) =

gδ(u)πU(u)

Z δ
.

Summary results: If for sufficiently small δ > 0

(i) ‖√g −√gδ‖L2(Rd ) = O(δ)

(ii) ‖√g‖L∞(Rd ) + ‖√gδ‖L∞(Rd ) <∞
Then the well-posedness condition [3] holds in the following sense:

dH(π(·|y), πδ(·|y)) = O(δ).
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Example with unspecified model where (i) and (ii) hold
Consider setting where ‖Gδ − G‖∞ = O(δ)

‖G‖∞ + ‖Gδ‖∞ <∞ and η ∼ N(0, 1).

Then√
g(u)−

√
gδ(u) =

√
πη(y − G (u))−

√
πη(y − Gδ(u))

=
1

(2π)1/4

(
exp(
−(y − G (u))2

4
)− exp(

−(y − Gδ(u))2

4
)

)

≤

= O(δ).

and ‖√g‖∞ = ‖√gδ‖∞ =
1

(2π)1/4
.
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And a specified model which may lead to stability

Consider the ordinary differential equation

ẋ(t; u) = x(t; u) t > 0 and x(0; u) = u for u ∈ [−1, 1],

and the associated explicit-Euler numerical solution

X δ
n+1 = X δ

n (1 + δ), X δ
0 = u.

The forward model is the solution flow map from t = 0 to t = 1:

G (u) = x(1; u) = ue1 and Gδ(u) = X δ
bδ−1c(1 + (1− δbδ−1c)).

For simplicity, we assume that δ−1 = N ∈ N. Then Gδ(u) = X δ
N .
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For tk = kδ, and note that

X (tk+1) = eδX (tk).

For Ek := |X (tk)− X δ
k | it then holds that

Ek+1 ≤ (eδ − (1 + δ))|X (tk)|+ (1 + δ)Ek

Verification:

Consequently,

EN = |G (u)− Gδ(u)| ≤ (eδ − (1 + δ))︸ ︷︷ ︸
≤cδ2

|X (tN−1)|+ (1 + δ)EN−1

≤

≤ cδ2
N−1∑
k=0

(1 + δ)N−1−k |X (tk)|+ (1 + δ)NE0 ≤ cδe1|u| ≤ cδ.
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For the relevant u ∈ [−1, 1], we have shown that

‖G − Gδ‖L∞([−1,1]) ≤ cδ,

where c > 0 satisfies

|eδ − (1 + δ)| ≤ cδ2 ∀δ ∈ (0, δ+) (2)

Note also that

‖G‖L∞([−1,1]) + ‖Gδ‖L∞([−1,1]) ≤ e1 + (1 + δ)1/δ ≤ 2e1.

Exercise: For any δ ∈ (0, δ+ = 1), show that c = e1/2 satisfies (2).

Comments:

Relevant u values not being the whole of Rd may be motivated for
instance by πU having compact support.

See also [SST 1.1.3] for a more general example of forward models
stable under perturbations.
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Next time

Bayesian inversion in the linear-Gaussian setting,

For the linear-Gaussian setting, study the posterior density in the
small noise limit η ∼ N(0, Γ) when |Γ| → 0.

How informative is the MAP estimator?
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