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Introduction to machine learning



What is Machine Learning?

Machine-learning algorithms use statistics to find patterns in
massive amounts of data. And data, here, encompasses a lot of

things—numbers, words, images, clicks, what have you.
[K. Hao, MIT Technology Review, 2018]

Data ML algorithm
Relationship
between data

Process of finding the relationship between the data is called
learning.

https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-another-flowchart/
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Learning process is minimization process

Learning process = minimization of a cost over a given set of
mappings for given data:

min
u∈U

∫
X×Y

L(G(x, u), y)dP(x, y)

where

• x ∈ X — independent variables (features)

• y ∈ Y — dependent variables (labels)

• G(x, u) : X × U → Y — model parameterized by u ∈ U
• L(G(x, u), y) — loss function that behaves like a metric

between data y and the model G

This minimization problem is not necessarily well defined and often
requires adding regularizations to be able to find a solution.
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Learning process with finite datasets

Learning process = minimization of a loss over a given set of
mappings for given data:

min
∫
X×Y

L(G(x, u), y)dP(x, y)

In practice, P(x, y) is not given and also we have only finite
dataset:

(x, y) = {(xi, yi)}, i = 1, . . . , N



Examples of ML problems: Boston housing price prediction

Dataset consists of 506 elements and aggregates information about
Boston’s suburbs using 14 features (input variables), such as:

• per capita crime rate by town (real)

• average number of room (integer)

• weighted distance to five Boston employment centers (real)

• ratio of pupils to teachers (real)

and the output value is the median price of occupied houses. The
goal is to find mapping that will predict the price of a given house.

• X ⊂ R14

• Y ⊂ R

• N = 506
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Examples of ML problems: Clothing classification

Fashion MNIST dataset consists of 60 000 entries:

• Each entry as grayscale 28× 28 image

• Each images contains a piece of clothing from 10 classes:
T-shirt, pullover, dress, and so on.

[https://github.com/zalandoresearch/fashion-mnist]

• X ⊂ R28×28=784

• Y ⊂ P10

• N = 60000

https://github.com/zalandoresearch/fashion-mnist


Examples of ML problems: Clothing classification

Fashion MNIST dataset consists of 60 000 entries:

• Each entry as grayscale 28× 28 image

• Each images contains a piece of clothing from 10 classes:
T-shirt, pullover, dress, and so on.

[https://github.com/zalandoresearch/fashion-mnist]

• X ⊂ R28×28=784

• Y ⊂ P10

• N = 60000

https://github.com/zalandoresearch/fashion-mnist


Supervised learning

Learning process = minimization of a cost over a given set of
mappings for given data:

min
∫
X×Y

L(G(x, u), y)dP(x, y)

Suppose that the dataset (x, y) is i.i.d from P(x, y). Then we
replace integral with the Monte Carlo approximation

arg min
u∈U

1
N

N

∑
i=1
L (G(xi; u), yi) + R(u)

and also add regularizer R(u) : U → Y that helps with solving the
minimization problem.

Popular choice is R(u) = λ ‖u‖2
2 for positive λ.



Supervised learning: applications

Supervised learning is the most common type of machine learning.

Uses are:

• image classification

• natural language processing

• object detection



Semi-supervised learning

The dataset is x = (xj), j ∈ Z , while y = (yj), j ∈ Z ′, where
Z ′ ∈ Z with |Z ′| � |Z|.

Then learning is minimization problem

arg min
u∈U

1
|Z ′|

N

∑
i=1
L (G(xi; u), yi) + R(x; u)

Notice that misfit term depends only on labeled data with indices in
Z ′, while regularizer term depends on labeled+unlabeled data.

Applications include problems where it is easy to collect input data
but difficult to obtain output data (for example, in medicine, it is
easier/cheaper to produce MR images then to have correct
diagnosis for them).



Online learning

Elements of the dataset are given sequentially, point by point. With
each element we can improve the estimate of parameter u.

To simplify it even further, assume that the process is markovian
and improvement is based on using new data element and previous
estimate of u:

arg min
u∈U
L
(
G(xj; u), yj

)
+ R(x; uj−1)

This type of learning is just supervised learning with cheaper
computational costs. Also, it should be used when data acquisition
is sequential by nature (distributed in time).



Learning is an inverse problem

Every learning process can be interpreted as an inverse problem of
finding parameter u ∈ U from given finite dataset (xi, yi),
i = 1, . . . , N.

Inverse problem is
y = G(u|x) + η

where G(u|x) = [G(x1, u), . . . ,G(xN , u)]T is the concatenation of
the model evaluated at each data element, and η ∼ π is a YN

random variable that models noise in the data.

Then Bayes’ theorem states that

π(u|x, y) ∝ π(x, y|u)π0(u)

where π0(u) is the prior distribution of u.



Learning is an inverse problem

Assume that all elements in the dataset are independent of each
other.

Then taking minus logarithm of the Bayes’ formula, we arrive at

π(u|x, y) ∝
N

∑
i=1
L(G(u, xi), yi) + R(u)

where

π(x, y|u) ∝
N

∑
i=1
L(G(u, xi), yi)

and
π0(u) ∝ R(u)

Therefore, the learning process can be interpreted as finding
maximum a posteriori (MAP) estimate of u.
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Feed-forward neural networks

Let X = Rn and Y = Rm.

Then feed-forward neural network with L layers is a mapping from
X to Y of the following compositional structure:

G(x; u) = S ◦ A ◦ FL−1 ◦ · · · ◦ F1(x)

where

• S : Rm → V ⊆ Rm, where usually V = Rm for regression and
V = Pm for classification

• A is an affine map, which is also called output layer
• Fj : Rnj−1 → Rnj nonlinear continuous functions, with n0 = n,

which are called hidden layers

This neural networks are also called networks with L− 1 hidden
layers.
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Fully-connected NNs are subtype of feed-forward NNs

If for feed-forward neural network

G(x; u) = S ◦ A ◦ FL−1 ◦ · · · ◦ F1(x)

we specialize hidden layers to pair "nonlinearity + affine map":

Fj(xj−1) = σ(Wj zj−1 + bj)

where

• Wj ∈ Rnj−1 ×Rnj are weights matrices

• bj ∈ Rnj are bias vectors

• nonlinear function σ is applied componentwise

then we obtain fully-connected or dense neural network, which is
also called multi-layer perceptron.



Visualization of multilayer perceptron R4 → R with one hid-
den layer

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

[https://texample.net/tikz/examples/neural-network/, with modifications]

https://texample.net/tikz/examples/neural-network/


Training process and algorithms



There are two most commonly used loss functions

For regression – least squares error

L(y, y′) = ‖y− y′‖2
Y

is used, which comes from additive Gaussian noise model.

For classification – Shannon’s cross-entropy

L(y, y′) = −〈y, log y′〉Y

is used. Notice that cross-entropy is difficult to interpret in a
Bayesian sense as L does not depend on y− y′, hence, cannot be
expressed in terms of the noise probability distribution.
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Gradient descent

Let assume that sought-for parameter vector u is a smooth
function of time: u : [0;+∞)→ U .

Also, let Φ(u; x, y) denote loss function along with regularizer.

Then the search for u that minimizes Φ is governed by gradient
descent equation with initial condition

u̇ = −∇uΦ(u; x, y), u(0) = u0.

In practice, this equation is solved using forward Euler method

un+1 = un − h∇uΦ(un; x, y)

where h ∈ R is a time step, which is called learning rate in ML
parlance. Often h is decreasing function of the iteration.
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In practice, mini-batch stochastic gradient descent is used.

For a large dataset (N � 1), all data is split into mini-batches that
are chosen at random and have sizes β ∈N or N mod β.

Given: u0, n = 0, E, β, K = dN/βe
for e ∈ (1, . . . , E) do

draw (B1, . . . , BK) ∼ Unif(1, N) w/o replacement;
for b ∈ (B1, . . . , BK) do

un + 1 = un − h∇uΦ(u; b, x, y) ;
end

end

Φ(u; b, x, y) =
1
|b|∑i∈b

L(G(xj; u), yj) + R(u)

inner loop
is called
epoch
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Ensemble Kalman Inversion

For a given dataset (x, y), consider general inverse problem

y = G(u) + η

where η ∼ N(0, Γ) and x is absorbed into definition of G.

Let {u(j)}J
j=1 ∈ U be ensemble of estimates of u, with initial

estimates drawn from prior distribution. To simplify notation, let uj

mean u(j).

This ensemble evolve in time according to the EKI dynamic:

u̇j = −Cuw(u) Γ−1
(

G(uj)− y
)

(1)

uj(0) = uj
0 (2)

for j = 1, . . . , J.



Ensemble Kalman inversion

u̇j = −Cuw(u) Γ−1
(

G(uj)− y
)

uj(0) = uj
0

where empirical covariance is

Cuw(u) =
1
J

J

∑
j=1

(
uj − ū

)
⊗
(

G(uj)− Ḡ
)

and the means are

ū =
1
J

J

∑
k=1

uk, Ḡ =
1
J

J

∑
k=1

G(uk)



Derivation of the Ensemble Kalman Inversion

To relate EnKF to the general inverse problem with one observation

y = G(u) + η

consider artificial time dynamics:

un+1 = un

yn+1 = G(un+1) + ηn+1

Now, add auxiliary variable w:

un+1 = un

wn+1 = G(un+1)

yn+1 = wn+1 + ηn+1



Derivation of the Ensemble Kalman Inversion

Let v = (u, w)T and Ψ = (u, G(u))T.

Introduce observation operator H = [0, I] and H⊥ = [I, 0]T such
that Hv = u and H⊥v = w.

Then the problem can be formulated in the standard
data-assimilation setting:

vn+1 = Ψ(vn)

yn+1 = Hvn+1 + ηn+1



Derivation of the Ensemble Kalman Inversion

For the problem

vn+1 = Ψ(vn)

yn+1 = Hvn+1 + ηn+1

Ensemble Kalman filter can be applied for ensemble of size J

v̂ j
n+1 = Ψ(v j

n) v̄n+1 =
1
J

J

∑
j=1

v̂ j
n+1

Ĉn+1 =
1
J

J

∑
j=1

(
v̂ j

n+1 − v̄n+1

)
⊗
(

v̂ j
n+1 − v̄n+1

)
v j

n+1 = v̂ j
n+1 + Kn+1

(
y j

n+1 − Hv̂ j
n+1

)
with Kalman gain

Kn+1 = ĈnHT
(

HĈnHT + Γ
)−1



Formulas can be simplified for this particular problem

Recall that Then

Ĉn =

[
Cuu

n+1 Cuw
n+1

(Cuw
n )T Cww

n+1

]
v̄n+1 =

(
ūn+1

w̄n+1

)
with

ūn+1 =
1
J

J

∑
j=1

u j
n w̄n+1 =

1
J

J

∑
j=1

G
(

u j
n

)
:= Ḡn

C̄uw
n+1 =

1
J

J

∑
j=1

(un − ūn+1)⊗
(

G(u j
n)− Ḡn

)
C̄ww

n+1 =
1
J

J

∑
j=1

(
G(u j

n)− Ḡn

)
⊗
(

G(u j
n)− Ḡn

)



Formulas can be simplified for this particular problem

As H = [0, I], then Kalman gain

Kn+1 = Ĉn+1HT
(

HĈn+1HT + Γ
)−1

simplifies to

Kn+1 =

[
Cuw

n+1

(
Cww

n+1 + Γ
)−1

Cww
n+1

(
Cww

n+1 + Γ
)−1

]
and due to

un+1 = H⊥v = [I, 0]v

update step for u is

un+1 = u j
n + Cuw

n+1 (C
ww
n+1 + Γ)−1

(
y j

n+1 − G(u j
n)
)



Algorithm for Ensemble Kalman Inversion

Given : Prior distribution π0, observations YN, ensemble size J
Init : Draw J particles u j

0 ∼ π0

for n = 0, . . . , N − 1 do
Compute ūn+1 = 1

J ∑J
j=1 u j

n ;

Compute Ḡn = 1
J ∑J

j=1 G(u j
n) ;

Compute C̄uw
n+1 = 1

J ∑J
j=1 (un − ūn+1)⊗

(
G(u j

n)− Ḡn

)
;

Compute C̄ww
n+1 = 1

J ∑J
j=1

(
G(u j

n)− Ḡn

)
⊗
(

G(u j
n)− Ḡn

)
;

for j = 1, . . . , J do

u j
n+1 = u j

n + Cuw
n+1

(
Cww

n+1 + Γ
)−1

(
y j

n+1 − G(u j
n)
)
;

end
end
Output: J particles u 1

N , . . . , u J
N



Ensemble Kalman Inversion is derivative-free optimizer
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Ensemble Kalman Inversion is derivative-free optimizer
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Introduce empirical covariance operator

C(u) =
1
J
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and loss function

Φ(u; y) =
1
2
‖y− Au‖2

Γ

Then
u̇ j = −C(u)∇uΦ(u j; y)
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)T

and loss function

Φ(u; y) =
1
2
‖y− Au‖2

Γ

Then
u̇ j = −C(u)∇uΦ(u j; y)



Ensemble Kalman Inversion is derivative-free optimizer

u̇ j = −1
J

J

∑
k=1

(
u k − ū
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Ensemble Kalman Inversion and Gradient Descent are close
to each other

Gradient Descent

u̇ = −∇uΦ(u; y)

Ensemble Kalman Inversion

u̇ j = −C(u)∇uΦ(u j; y)

Ensemble Kalman Inversion can be viewed as Gradient Descent for
each particle but gradient direction is corrected through the
covariance matrix.
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Thank you!
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