LV 11.4500 - UBUNG 3

Exercises from FJK. 2.2.9, 2.2.10, 2.2.19, 2.2.35, 2.2.36, 2.2.40, 2.3.9, 2.3.11,

Other exercises.

U3.1 For the transition function p depicted below, determine which states that are
a) aperiodic
b) recurrent
and
c) describe the asymptotic behavior of $\pi^{n}=\pi^{n-1} p$ when $\pi^{0}(j)=$ $\mathbb{1}_{\{3\}}(j)$. Will it converge towards an invariant distribution?

U3.2 Consider the following Example 8 from Lecture 6: Let X_{n} be a simple symmetric RW on \mathbb{Z} and $Y_{n}=X_{n}+W_{n}$, where $\left\{W_{n}\right\}$ is iid and independent of $\left\{X_{n}\right\}$ with $\mathbb{P}\left(W_{n}=k\right)=1 / 5$ for all $|k| \leq 2$. Assume $X_{0}=0$. Compute the value of $\mathbb{P}\left(X_{2}=0 \mid Y_{0: 2}=(0,2,1)\right)$ using Algorithm 1 (preferably on a computer, as the alternative is tedious).

Hint: First verify that

$$
q^{r a}(c, d)=\frac{\mathbb{1}_{|a-r|=1} \mathbb{1}_{|d-a| \leq 2}}{10}
$$

U3.3 Programming exercise on filtering: Consider a Markov chain $\left\{\left(X_{n}, Y_{n}\right)\right\}_{n}$ similar to that in U3.2, but with the single exception that that now $\mathbb{P}\left(W_{n}=\right.$ $k)=1 / 11$ for all $|k| \leq 5$. We are given the following sequence of observations $Y_{1: 10}$:
$y=[4,-3,4,-4,-6,3,3,-5,-7,-1]$;
Since Matlab's index counter starts at 1 rather than 0 , we align the convention that $n=1$ denotes the beginning of time in this exercise, and thus with the random walk initial condition $X_{1}=0$. The vector y has been generated using the synthetic data x : first one realization of the simple symmetric random walk $X_{1: 10}$ was generated, taking the values
$\mathrm{x}=[0,1,0,-1,-2,-1,-2,-3,-2,-3]$;

Figure 1. The synthetic data "unobserved process" (red line) and the observations of said process (dashed blue) for U3.3
and thereafter

$$
Y_{1: 10}=X_{1: 10}+W_{1: 10} \text { or, if you like, } y_{1: 10}=x_{1: 10}+w_{1: 10}
$$

The task of this exercise is to compute the vector $\tilde{x}_{n}=\mathbb{E}\left[X_{n} \mid Y_{0: n}\right]$ and to verify by eye measure that \tilde{x}_{n} tends to approximate the underlying signal x_{n} better than y_{n} does. In Matlab, the jump-discontinuous paths x, y and \tilde{x} are conveniently plotted (without under-the-hood linear interpolation) using the stairs function:
stairs(y,'--ob');hold on; stairs(x,'-or'); stairs(tildeX)

The output of the above commands, excluding the solution \tilde{x} of this exercise, is presented in Figure 1.

As a second comparison, compute the following squared path errors over time:

$$
\operatorname{Error}(\tilde{x})=\sum_{k=1}^{10}\left(\tilde{x}_{k}-x_{k}\right)^{2}
$$

and

$$
\operatorname{Error}(y)=\sum_{k=1}^{10}\left(y_{k}-x_{k}\right)^{2}
$$

Hint: First verify that $q^{r a}(c, d)=\frac{\mathbb{1}_{|a-r|=1} \mathbb{1}_{|d-a| \leq 5}}{22}$.
Remark: This kind of study is of course typically not a possible in practice, since you rarely have access to the "unobserved process" X. Nevertheless, usage of synthetic data is a good tool to test the performance of filtering methods.

