LV 11.4500 - UBUNG 5

U5.1 Consider the following of data on relative frequency of number of teeth in unicorns:

 $\pi_T = [0.0001, \ 0.0001, \ 0.0001, \ 0.0015, \ 0.0078, \ 0.0282, \ 0.0844, \ 0.1655, \ 0.2188, \ 0.2371, \ 0.1719, \ 0.0715, \ 0.0130].$

That is, the ratio $\pi_T(0) = 0.0001$ of all unicorns have 0 teeth, the ratio $\pi_T(1) = 0.0001$ of all unicorns have 1 tooth, etc, for k = 0, 1, ..., 12. The purpose of this exercise is to computationally find the distribution in the set

 $\mathcal{A} = \{ \pi = Binom(12, p) \mid p \in (0, 1) \},\$

that best fits π_T in the sense of minimizing the K-L divergence from the said distribution to π_T . That is, to find

 $\pi = \arg\min_{\tilde{\pi}\in\mathcal{A}} d_{KL}(\pi_T || \tilde{\pi}).$

Implement a computer program for computing

 $f(p) = d_{KL}(\pi_T || \pi_p)$

on a mesh of values $p \in (0, 1)$, where $\pi_p = Binom(12, p)$. Plot f to approximately find the best value $p \in (0, 1)$.

Hint: First derive the values of $\pi_p(k)$ for k = 0, 1, ..., 12 for given p.

- U5.2 Compute the Kullback Leibler divergence from $\pi_Y(x) = \mathbb{1}_{[0,\infty)}(x)\beta \exp(-\beta x)$ to $\pi_X(x) = \mathbb{1}_{[0,\infty)}(x)\lambda \exp(-\lambda x)$ for some $\lambda, \beta > 0$, using the convention $\log(0) \cdot 0 = 0$. That is, i.e., compute $d_{KL}(\pi_X || \pi_Y)$.
- U5.3 The accept reject sampling algorithm from lecture 12 is summarized here: **Problem setting:** Target pdf π that we are unable to sample directly from.

Accept reject algorithm: Assume that we a proposal density $\hat{\pi}$ which we can draw samples from, and that for some $N \ge 1$, it holds that $N\hat{\pi} \ge \pi$.

Sample $X \sim \pi$ as follows:

- 1. sample $Y \sim \hat{\pi}$ and $U \sim U[0, 1]$ with $U \perp Y$.
- 2. accept X = Y with acceptance probability $U \le \pi(Y)/(N\hat{\pi}(Y))$; otherwise return to step 1.
- a) verify that $X \sim \pi$.

Hint:

$$\pi_X(x) = \frac{\mathbb{P}(Y \in dx \mid U \le \pi(Y)/(N\hat{\pi}(Y)))}{dx}$$

b) Determine which of the following candidates for proposals that can be used to sample the target

$$\pi(x) = \mathbb{1}_{(-\infty,0]}(x) \frac{\sqrt{2}\exp(-x^2/2)}{\sqrt{\pi}}$$

with the accept reject algorithm:

i $\hat{\pi}_1(x) = \exp(-|x|/2)/4$ ii $\hat{\pi}_2(x) = \frac{\exp(-x^2)}{\sqrt{\pi}}$ iii $\hat{\pi}_3(x) = \mathbb{1}_{(0,1)}(x)$

and provide N.

c) The pdf of a Weibull (λ, k) distribution is defined by

$$\pi(x) = \mathbb{1}_{[0,\infty)} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, \quad k, \lambda > 0.$$

Use the Monte Carlo and the accept reject sampling algorithm to estimate $\mathbb{E}[X^2]$ for $X \sim \text{Weibull}(2, 1.2)$.

U5.4 Consider the Metropolis Hastings algorithm presented in Lecture 12 with target pdf π , conditional proposal q(y|x) and acceptance probability

$$\rho(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}\frac{q(x|y)}{q(y|x)}, 1\right)$$

a) Verify that for any $A \in \mathcal{B}^d$,

$$K(x,A) = \underbrace{\int_{A} \rho(x,y)q(y|x)dy}_{r(x,A)} + \left(1 - r(x,\mathbb{R}^{d})\right)\delta_{x}(A)$$

Hint:

 $\mathbb{P}(X_1 \in A \mid X_0 = x) = \mathbb{P}(Y_0 \in A, X_1 = Y_0 \mid X_0 = x) + \mathbb{P}(x \in A, X_1 = x \mid X_0 = x) = \dots$

b) Assuming $q(\cdot|x)$ dominates π for all $x \in \mathbb{R}^d$, prove that M-H kernel satisfies detailed balance wrt π :

(1)
$$\int_{A} K(x,B)\pi(x)dx = \int_{B} K(x,A)\pi(x)dx \quad \forall A, B \in \mathcal{B}^{d},$$

c) Verify that under the assumption in b), π is an invariant pdf of the M-H Markov chain.

d) **Updated question.** If $\pi \propto \exp(-x^2/2)$ and $q(y|x) = \mathbb{1}_{(0,1)}(y)$ for all $x \in \mathbb{R}$, then it turns out that (1) **still does** hold, even when the constraint that $q(\cdot|x)$ dominates π is not fulfilled (can be verified using the divisionby-zero convention together with 5.4 c)). However, lack of domination may lead to loss of weak convergence of the chain: assuming the initial condition of an MCMC chain is given by $X_0 \sim \mathbb{P}_0$ with

$$\mathbb{P}_0((-\infty, 0]) \neq \int_{-\infty}^0 \pi(x) dx = 1/2.$$

explain why the above proposal q is not will not yield convergence $\mathbb{P}_n \Rightarrow \mathbb{P}$, with \mathbb{P} denoting the measure associated to π .

U5.5 Let $A = \{x \in \mathbb{R}^2 \mid 2x_1^2 + 5x_2^2 \in (1, 1.2)\}$ and let $\pi(x) \propto \mathbb{1}_A(x) \exp(-|x|^{1.9})$. Construct an MCMC method for sampling π and estimate

 $\mathbb{E}^{\pi}[\exp(-2|x_1|-|x_2|)]$

using 10000 samples in your chain.