LV 11.4500 - UBUNG 5

U5.1 Consider the following of data on relative frequency of number of teeth in unicorns:
$\pi_{T}=[0.0001,0.0001,0.0001,0.0015,0.0078,0.0282,0.0844,0.1655,0.2188,0.2371,0.1719,0.0715,0.0130]$.
That is, the ratio $\pi_{T}(0)=0.0001$ of all unicorns have 0 teeth, the ratio $\pi_{T}(1)=0.0001$ of all unicorns have 1 tooth, etc, for $k=0,1, \ldots, 12$. The purpose of this exercise is to computationally find the distribution in the set

$$
\mathcal{A}=\{\pi=\operatorname{Binom}(12, p) \mid p \in(0,1)\}
$$

that best fits π_{T} in the sense of minimizing the K-L divergence from the said distribution to π_{T}. That is, to find

$$
\pi=\arg \min _{\tilde{\pi} \in \mathcal{A}} d_{K L}\left(\pi_{T} \| \tilde{\pi}\right)
$$

Implement a computer program for computing

$$
f(p)=d_{K L}\left(\pi_{T} \| \pi_{p}\right)
$$

on a mesh of values $p \in(0,1)$, where $\pi_{p}=\operatorname{Binom}(12, p)$. Plot f to approximately find the best value $p \in(0,1)$.

Hint: First derive the values of $\pi_{p}(k)$ for $k=0,1, \ldots, 12$ for given p.
U5.2 Compute the Kullback Leibler divergence from $\pi_{Y}(x)=\mathbb{1}_{[0, \infty)}(x) \beta \exp (-\beta x)$ to $\pi_{X}(x)=\mathbb{1}_{[0, \infty)}(x) \lambda \exp (-\lambda x)$ for some $\lambda, \beta>0$, using the convention $\log (0) \cdot 0=0$. That is, i.e., compute $d_{K L}\left(\pi_{X} \| \pi_{Y}\right)$.

U5.3 The accept reject sampling algorithm from lecture 12 is summarized here:
Problem setting: Target pdf π that we are unable to sample directly from.

Accept reject algorithm: Assume that we a proposal density $\hat{\pi}$ which we can draw samples from, and that for some $N \geq 1$, it holds that $N \hat{\pi} \geq \pi$.

Sample $X \sim \pi$ as follows:

1. sample $Y \sim \hat{\pi}$ and $U \sim U[0,1]$ with $U \perp Y$.
2. accept $X=Y$ with acceptance probability $U \leq \pi(Y) /(N \hat{\pi}(Y))$; otherwise return to step 1 .
a) verify that $X \sim \pi$.

Hint:

$$
\pi_{X}(x)=\frac{\mathbb{P}(Y \in d x \mid U \leq \pi(Y) /(N \hat{\pi}(Y)))}{d x}
$$

b) Determine which of the following candidates for proposals that can be used to sample the target

$$
\pi(x)=\mathbb{1}_{(-\infty, 0]}(x) \frac{\sqrt{2} \exp \left(-x^{2} / 2\right)}{\sqrt{\pi}}
$$

with the accept reject algorithm:
i $\hat{\pi}_{1}(x)=\exp (-|x| / 2) / 4$
ii $\hat{\pi}_{2}(x)=\frac{\exp \left(-x^{2}\right)}{\sqrt{\pi}}$
iii $\hat{\pi}_{3}(x)=\mathbb{1}_{(0,1)}(x)$
and provide N.
c) The pdf of a Weibull (λ, k) distribution is defined by

$$
\pi(x)=\mathbb{1}_{[0, \infty)} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, \quad k, \lambda>0
$$

Use the Monte Carlo and the accept reject sampling algorithm to estimate $\mathbb{E}\left[X^{2}\right]$ for $X \sim \operatorname{Weibull}(2,1.2)$.

U5.4 Consider the Metropolis Hastings algorithm presented in Lecture 12 with target pdf π, conditional proposal $q(y \mid x)$ and acceptance probability

$$
\rho(x, y)=\min \left(\frac{\pi(y)}{\pi(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right)
$$

a) Verify that for any $A \in \mathcal{B}^{d}$,

$$
K(x, A)=\underbrace{\int_{A} \rho(x, y) q(y \mid x) d y}_{r(x, A)}+\left(1-r\left(x, \mathbb{R}^{d}\right)\right) \delta_{x}(A)
$$

Hint:

$\mathbb{P}\left(X_{1} \in A \mid X_{0}=x\right)=\mathbb{P}\left(Y_{0} \in A, X_{1}=Y_{0} \mid X_{0}=x\right)+\mathbb{P}\left(x \in A, X_{1}=x \mid X_{0}=x\right)=\ldots$
b) Assuming $q(\cdot \mid x)$ dominates π for all $x \in \mathbb{R}^{d}$, prove that M-H kernel satisfies detailed balance wrt π :

$$
\int_{A} K(x, B) \pi(x) d x=\int_{B} K(x, A) \pi(x) d x \quad \forall A, B \in \mathcal{B}^{d}
$$

c) Verify that under the assumption in b), π is an invariant pdf of the M-H Markov chain.
d) Updated question. If $\pi \propto \exp \left(-x^{2} / 2\right)$ and $q(y \mid x)=\mathbb{1}_{(0,1)}(y)$ for all $x \in \mathbb{R}$, then it turns out that (1) still does hold, even when the constraint that $q(\cdot \mid x)$ dominates π is not fulfilled (can be verified using the division-by-zero convention together with 5.4 c)). However, lack of domination may lead to loss of weak convergence of the chain: assuming the initial condition of an MCMC chain is given by $X_{0} \sim \mathbb{P}_{0}$ with

$$
\mathbb{P}_{0}((-\infty, 0]) \neq \int_{-\infty}^{0} \pi(x) d x=1 / 2
$$

explain why the above proposal q is not will not yield convergence $\mathbb{P}_{n} \Rightarrow \mathbb{P}$, with \mathbb{P} denoting the measure associated to π.

U5.5 Let $A=\left\{x \in \mathbb{R}^{2} \mid 2 x_{1}^{2}+5 x_{2}^{2} \in(1,1.2)\right\}$ and let $\pi(x) \propto \mathbb{1}_{A}(x) \exp \left(-|x|^{1.9}\right)$. Construct an MCMC method for sampling π and estimate

$$
\mathbb{E}^{\pi}\left[\exp \left(-2\left|x_{1}\right|-\left|x_{2}\right|\right)\right]
$$

using 10000 samples in your chain.

