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U5.1 Consider the following of data on relative frequency of number of teeth in
unicorns:

πT = [0.0001, 0.0001, 0.0001, 0.0015, 0.0078, 0.0282, 0.0844, 0.1655, 0.2188, 0.2371, 0.1719, 0.0715, 0.0130].

That is, the ratio πT (0) = 0.0001 of all unicorns have 0 teeth, the ratio
πT (1) = 0.0001 of all unicorns have 1 tooth, etc, for k = 0, 1, . . . , 12. The
purpose of this exercise is to computationally find the distribution in the
set

A = {π = Binom(12, p) | p ∈ (0, 1)},
that best fits πT in the sense of minimizing the K-L divergence from the
said distribution to πT . That is, to find

π = arg min
π̃∈A

dKL(πT ||π̃).

Implement a computer program for computing

f(p) = dKL(πT ||πp)
on a mesh of values p ∈ (0, 1), where πp = Binom(12, p). Plot f to approx-
imately find the best value p ∈ (0, 1).

Hint: First derive the values of πp(k) for k = 0, 1, . . . , 12 for given p.

U5.2 Compute the Kullback Leibler divergence from πY (x) = 1[0,∞)(x)β exp(−βx)
to πX(x) = 1[0,∞)(x)λ exp(−λx) for some λ, β > 0, using the convention
log(0) · 0 = 0. That is, i.e., compute dKL(πX ||πY ).

U5.3 The accept reject sampling algorithm from lecture 12 is summarized here:
Problem setting: Target pdf π that we are unable to sample

directly from.

Accept reject algorithm: Assume that we a proposal density π̂
which we can draw samples from, and that for some N ≥ 1, it holds that
Nπ̂ ≥ π.

Sample X ∼ π as follows:

1. sample Y ∼ π̂ and U ∼ U [0, 1] with U ⊥ Y .

2. accept X = Y with acceptance probability U ≤ π(Y )/(Nπ̂(Y ));
otherwise return to step 1.

a) verify that X ∼ π.

Hint:

πX(x) =
P(Y ∈ dx | U ≤ π(Y )/(Nπ̂(Y )))

dx
1
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b) Determine which of the following candidates for proposals that can
be used to sample the target

π(x) = 1(−∞,0](x)

√
2 exp(−x2/2)√

π

with the accept reject algorithm:
i π̂1(x) = exp(−|x|/2)/4

ii π̂2(x) = exp(−x2)√
π

iii π̂3(x) = 1(0,1)(x)
and provide N .

c) The pdf of a Weibull(λ, k) distribution is defined by

π(x) = 1[0,∞)
k

λ

(x
λ

)k−1
e−(x/λ)

k

, k, λ > 0.

Use the Monte Carlo and the accept reject sampling algorithm to estimate
E
[
X2
]

for X ∼Weibull(2, 1.2).

U5.4 Consider the Metropolis Hastings algorithm presented in Lecture 12 with
target pdf π, conditional proposal q(y|x) and acceptance probability

ρ(x, y) = min

(
π(y)

π(x)

q(x|y)

q(y|x)
, 1

)
a) Verify that for any A ∈ Bd,

K(x,A) =

∫
A

ρ(x, y)q(y|x)dy︸ ︷︷ ︸
r(x,A)

+
(

1− r(x,Rd)
)
δx(A)

Hint:

P(X1 ∈ A | X0 = x) = P(Y0 ∈ A,X1 = Y0 | X0 = x)+P(x ∈ A,X1 = x | X0 = x) = . . .

b) Assuming q(·|x) dominates π for all x ∈ Rd, prove that M-H kernel
satisfies detailed balance wrt π:

(1)

∫
A

K(x,B)π(x)dx =

∫
B

K(x,A)π(x)dx ∀A,B ∈ Bd,

c) Verify that under the assumption in b), π is an invariant pdf of the
M-H Markov chain.

d) Updated question. If π ∝ exp(−x2/2) and q(y|x) = 1(0,1)(y) for all
x ∈ R, then it turns out that (1) still does hold, even when the constraint
that q(·|x) dominates π is not fulfilled (can be verified using the division-
by-zero convention together with 5.4 c) ). However, lack of domination may
lead to loss of weak convergence of the chain: assuming the initial condition
of an MCMC chain is given by X0 ∼ P0 with

P0((−∞, 0]) 6=
∫ 0

−∞
π(x)dx = 1/2,

explain why the above proposal q is not will not yield convergence Pn ⇒ P,
with P denoting the measure associated to π.
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U5.5 Let A = {x ∈ R2 | 2x21 + 5x22 ∈ (1, 1.2)} and let π(x) ∝ 1A(x) exp(−|x|1.9).
Construct an MCMC method for sampling π and estimate

Eπ[exp(−2|x1| − |x2|)]
using 10000 samples in your chain.


