LV 11.4500 - UBUNG 6

U6.1 An rv X on \mathbb{R}^{d} can be uniquely described by its distribution \mathbb{P}_{X}, its cdf F_{X}, or, when it exists, its pdf π_{X}. The characteristic function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ defined by

$$
\varphi(t)=\mathbb{E}[\exp (i\langle t, X\rangle)] \quad \forall t \in \mathbb{R}^{d}
$$

where $i=\sqrt{-1}$ and $\langle x, y\rangle:=\sum_{i=1}^{d} x_{i} y_{i}$, is yet another way to uniquely describe the rv X.

The characteristic function of a Gaussian rv $X \sim N(m, C)$ is given by

$$
\varphi(t)=\exp (i\langle t, m\rangle-\langle t, C t\rangle / 2)
$$

a) Show that if $X \sim N\left(m_{1}, C_{1}\right)$ and $Y \sim N\left(m_{2}, C_{2}\right)$ are independent rv on \mathbb{R}^{d} and $A \in \mathbb{R}^{d \times d}$, then $Z=X+A Y$ is also Gaussian. Determine the mean and covariance of Z.
b) Consider the following dynamics

$$
\begin{aligned}
V_{j+1} & =A V_{j}+\xi_{j} \\
V_{0} & \sim N\left(m_{0}, C_{0}\right)
\end{aligned}
$$

with $A \in \mathbb{R}^{d \times d}$, an iid sequence $\xi_{j} \sim N(0, \Sigma)$ and $V_{0} \perp\left\{\xi_{j}\right\}$. Show that for any $j \in \mathbb{N}, V_{j}$ is Gaussian, and determine its mean and covariance.

Hint: Argue by induction and use a) to verify Gaussianity.
c) Consider the scalar-valued special case of the above dynamics

$$
\begin{aligned}
V_{j+1} & =\lambda V_{j}+\xi_{j} \\
V_{0} & \sim N\left(m_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

with an iid sequence $\xi_{j} \sim N\left(0, \sigma^{2}\right)$ that is independent from V_{0}, and a scalar-valued λ satisfying $|\lambda|<1$.

Verify that

$$
\mathbb{P}_{V_{n}} \Rightarrow N\left(0, \frac{\sigma^{2}}{1-\lambda^{2}}\right)
$$

Hint: First verify that $\left\{\mathbb{E}\left[V_{j}\right]\right\}_{j}$ and $\left\{\mathbb{E}\left[V_{j}^{2}\right]\right\}_{j}$ are Cauchy sequences.

U6.2 In its original form (but still keeping our parameter lettering a, b, r rather than the original σ, β, ρ) the Lorenz ' 63 model is given by

$$
\begin{aligned}
& \dot{v}_{1}=a\left(v_{2}-v_{1}\right) \\
& \dot{v}_{2}=r v_{1}-v_{2}-v_{1} v_{3} \quad t \geq 0, \\
& \dot{v}_{3}=v_{1} v_{2}-b v_{3}
\end{aligned}
$$

with $a, b, r>0$ and $v(0) \in \mathbb{R}^{3}$.
a) Show that by a change of variables the system can be rewritten

$$
\left.\begin{array}{l}
\dot{v}_{1}=a\left(v_{2}-v_{1}\right) \\
\dot{v}_{2}=-a v_{1}-v_{2}-v_{1} v_{3} \\
\dot{v}_{3}=v_{1} v_{2}-b v_{3}-b(r+a)
\end{array}\right\}=: f(v), \quad t \geq 0
$$

with a, b, r as above, and $v(0) \in \mathbb{R}^{3}$.
b) Determine $\alpha, \beta>0$ (as functions of $a, b, r)$ such that

$$
f(v)^{T} v \leq \alpha-\beta|v|^{2}
$$

c) Assuming a solution v exists for all times $t \geq 0$ with $|v(0)|^{2} \leq \alpha / \beta$, show that

$$
|v(t)|^{2} \leq \alpha / \beta \quad \forall t \geq 0
$$

d) Assuming that $|v(0)|^{2} \leq \alpha / \beta$, prove that there exists a locally unique solution up until the first time when $|v(t)|^{2}>\alpha / \beta$. Conclude from c) that a unique solution exists for all times.

Hint: Apply the Picard-Lindelöf theorem.
Let $D=\left\{v \in \mathbb{R}^{3} \|\left. v\right|^{2} \leq \alpha / \beta\right\}$. Then the restriction of the above vector field $f: D \rightarrow \mathbb{R}^{3}$ is uniformly Lipschitz continuous on D.
e) As a very simplified numerical study of how partial observations may improve the stability of ODE, consider the Lorenz '63 dynamics (1) with $(a, b, r)=(10,8 / 3,28)$ with either $v(0)=(1,1,1)$ or perturbed initial data $\tilde{v}(0)=\left(1,1,1+10^{-5}\right)$. To study the stability of the dynamics, we consider $|v(20)-\tilde{v}(20)|$ solved by numerical integration in the following Matlab implementation:

```
options = odeset('RelTol',1e-12,'AbsTol',1e-10);
a = 10;
b = 8/3;
r = 28;
f = @(t,v) [a*(v(2)-v(1));
-a*v(1)-v(2)-v(1)*v(3);
v(1)*v(2)-b*v(3)-b*(r+a)];
[t,v]=ode45(f,[0 20],[\begin{array}{lll}{1}&{1}\end{array}],\mp@code{options);}
[t2,vTilde] = ode45(f,[0 20],[1 1 1+1e-5], options);
finalTimeError = norm(v(end,:) - vTilde(end,:))
This yields }|v(20)-\tilde{v}(20)|\approx15.7
```

As a comparison, try to update the value of the third component of the dynamics \tilde{v} at every integer time $t=1,2, \ldots, 19$ with an exact observation of v_{3}. That is, set $v(0)=(1,1,1)$ and $\tilde{v}(0)=\left(1,1,1+10^{-5}\right)$ and for $t=0,1, \ldots, 19$:

1. compute $v(t+1)=\Psi(v(t) ; 1)$ and $\tilde{v}(t+1)=\Psi(\tilde{v}(t) ; 1)$
2. update/correct third component of the perturbed dynamics with exact observation, $\tilde{v}_{3}(t+1)=v_{3}(t+1)$
3. set $t \mapsto t+1$ and return to step 1 .

Here, $\Psi(\cdot ; \tau)$ is defined as on page 13 of Lecture 13 .
Implement this algorithm in your favorite computer language and compute the resulting final time error $|v(20)-\tilde{v}(20)|=$?.

Rather than updating the value of the third component of \tilde{v}_{3}, try updating any of the other components and see whether that improves the stability to the same degree.

U6.3 Consider the $V_{0} \mid Y_{1: J}=y_{1: J}$ smoothing problem on page 35 of Lecture 13 with $|\lambda|=1$. Verify that $V_{0} \mid Y_{1: J}=y_{1: J} \sim N\left(m(j), \sigma_{\text {post }}^{2}(j)\right)$ and show that

$$
\sigma_{\text {post }}^{2}(J) \rightarrow 0 \quad \text { as } \quad J \rightarrow \infty
$$

Interpret the result.

U6.4 The derivation of smoothing densities treated in the lectures considers dynamics additive Gaussian noise: $V_{j+1}=\Psi\left(V_{j}\right)+\xi_{j}$ with $\xi \sim N(0, \Sigma)$. This may be extended to more general Markov chain dynamics:
a) Assume that $V_{0} \sim \pi_{V_{0}}$ and that V_{j} is a time-homogeneous Markov chain described in terms of the transition kernel density $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow$ $[0, \infty)$, and that we have observations

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots
$$

with iid $\eta_{j} \sim N(0, \Gamma)$ and $\left\{\eta_{j}\right\} \perp\left\{V_{j}\right\}$. Using the kernel density, derive, up to a constant, an expression for the smoothing posterior

$$
\pi\left(v_{0: J} \mid y_{1: J}\right)
$$

b) Consider $d=1$ with the kernel density $k(x, y)=e^{-2|x-y|}, \pi_{V_{0}}(x)=$ $e^{-2|x|}$, and let the observations be given by

$$
Y_{j}=h\left(V_{j}\right)+\eta_{j}, \quad j=1,2, \ldots
$$

with iid η_{j} where $\pi_{\eta}(x)=e^{-2|x|}$ and $\left\{\eta_{j}\right\} \perp\left\{V_{j}\right\}$. Derive up to a constant, an expression for the smoothing posterior

$$
\pi\left(v_{0: J} \mid y_{1: J}\right)
$$

and show that if $\tilde{y}_{1: J}$ is a perturbed observation sequence of $y_{1: J}$, then there exists a $c>0$ depending on $y_{1: J}$ and $\tilde{y}_{1: J}$ such that

$$
d_{H}\left(\pi\left(\cdot \mid y_{1: J}\right), \pi\left(\cdot \mid \tilde{y}_{1: J}\right)\right) \leq c \sum_{j=1}^{J}\left|y_{j}-\tilde{y}_{j}\right| .
$$

U6.5 Consider the dynamics

$$
\begin{aligned}
V_{j+1} & =\sin \left(V_{j}\right) V_{j}+\xi_{j} \quad j=0,1, \ldots \\
V_{0} & \sim N(0,1)
\end{aligned}
$$

with iid $\xi_{j} \sim N(0,1 / 4)$ and observations

$$
Y_{j}=V_{j}+\eta_{j}, \quad j=1,2, \ldots
$$

with iid $\eta_{j} \sim N(0,0.04)$ and $V_{0} \perp\left\{\xi_{j}\right\} \perp\left\{\eta_{j}\right\}$. For any $J>0$, we define the distance (functional) of a path $v_{0: J} \in \mathbb{R}^{J+1}$ by

$$
D\left(v_{0: J}\right)=\sqrt{\sum_{k=0}^{J-1}\left|v_{k+1}-v_{k}\right|^{2}}
$$

Given the observation
$y_{1: 10}=(0.2781,0.8839,1.1496,0.6607,0.1846,-0.5131,0.0733,1.3827,0.8426,0.4538)$
the task of this exercise is to provide a numerical estimate of the average distance of a path $V_{0: 10}$ given $Y_{1: 10}=y_{1: 10}$. In other words, to approximate

$$
\mathbb{E}\left[D\left(V_{0: 10}\right) \mid Y_{1: 10}=y_{1: 10}\right]
$$

Hint: First derive the posterior $\pi\left(v_{0: 10} \mid y_{1: 10}\right)$ up to a constant. Then sample the posterior by e.g. Markov Chain Monte Carlo.

