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An rv X on R? can be uniquely described by its distribution Px, its cdf
Fx, or, when it exists, its pdf mx. The characteristic function ¢ : R¢ — C
defined by

o(t) = E[exp(i(t,X))] VteR?
where ¢ = +/—1 and (x,y) := 2?21 T;Y;, i yet another way to uniquely
describe the rv X.
The characteristic function of a Gaussian rv X ~ N(m, C) is given by

o(t) = exp(i(t,m) — (t,Ct)/2).

a) Show that if X ~ N(my,C;) and Y ~ N(mg, Cs) are independent rv
on R? and A € R¥? then Z = X 4+ AY is also Gaussian. Determine the
mean and covariance of Z.

b) Counsider the following dynamics
Vipn=AV; +§;
VO ~ N(m(), CO)

with A € R™?, an iid sequence ¢; ~ N(0,%) and Vp L {&;}. Show that for
any j € N, V; is Gaussian, and determine its mean and covariance.
Hint: Argue by induction and use a) to verify Gaussianity.

¢) Consider the scalar-valued special case of the above dynamics
Vitr = AVj +¢&;
Vo ~ N(mo, O'g)

with an iid sequence &; ~ N(0,0?) that is independent from Vj, and a
scalar-valued A satisfying |A| < 1.
Verify that

o2

1- )\2)
Hint: First verify that {E[V;]}; and {E [Vf] }+; are Cauchy sequences.

]PVn = N(Oa

In its original form (but still keeping our parameter lettering a, b, r rather
than the original o, 3, p) the Lorenz '63 model is given by

’l-)l = a(v2 —111)
Uy = TU] — Vg — V13 t >0,

’[)3 = V10V — bUg

with a,b,7 > 0 and v(0) € R3.
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a) Show that by a change of variables the system can be rewritten
01 = alvg — v1)
U2 = —auy — Uz — V1U3 =: f(v), t>0,
U3 = v1v2 — bug — b(r + a)

with a, b, r as above, and v(0) € R3.

b) Determine «, 8 > 0 (as functions of a, b, r) such that
f)Tv <a— v

¢) Assuming a solution v exists for all times ¢t > 0 with |v(0)]? < /8,
show that
lw(t)]* < a/B V> 0.

d) Assuming that |v(0)|? < a/3, prove that there exists a locally unique
solution up until the first time when |v(¢)|*> > «/3. Conclude from c) that
a unique solution exists for all times.

Hint: Apply the Picard-Lindel6f theorem.

Let D = {v € R3||v|*> < a/B}. Then the restriction of the above vector
field f : D — R3 is uniformly Lipschitz continuous on D.

e) As a very simplified numerical study of how partial observations may
improve the stability of ODE, consider the Lorenz '63 dynamics (1) with
(a,b,r) = (10,8/3,28) with either v(0) = (1,1,1) or perturbed initial data
9(0) = (1,1,1+1075). To study the stability of the dynamics, we consider
[v(20) — ©(20)| solved by numerical integration in the following Matlab
implementation:
options = odeset(’RelTol’,le-12,’AbsTol’,1e-10);

a = 10;

b = 8/3;
r = 28;
f = 0(t,v) [a*x(v(2)-v(1));

—a*xv (1) -v(2)-v(1)*v(3);

v(1)*v(2) -b*v(3)-b*(r+a)];

[t,v]=0de45(£f,[0 20],[1 1 1], optiomns);

[t2,vTilde] = oded45(f,[0 20],[1 1 1+1le-5], optiomns);
finalTimeError = norm(v(end,:) - vTilde(end,:))

This yields |v(20) — 9(20)| = 15.7.

As a comparison, try to update the value of the third component of the
dynamics v at every integer time ¢t = 1,2,...,19 with an exact observation
of vg. That is, set v(0) = (1,1,1) and ¥(0) = (1,1,1 4+ 107°) and for
t=0,1,...,19:

1. compute v(t + 1) = U(v(t); 1) and o(t + 1) = U(3(¢); 1)

2. update/correct third component of the perturbed dynamics with exact
observation, 03(t + 1) = vs(t + 1)

3. set t — t 4+ 1 and return to step 1.
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Here, ¥(+;7) is defined as on page 13 of Lecture 13.

Implement this algorithm in your favorite computer language and com-
pute the resulting final time error |v(20) — #(20)| =7.

Rather than updating the value of the third component of o3, try up-
dating any of the other components and see whether that improves the
stability to the same degree.

Consider the Vj|Y1.; = y1.; smoothing problem on page 35 of Lecture 13
with [A] = 1. Verify that V5|Y1.s = y1.5 ~ N(m(j), 0505 (7)) and show that
02pst(J) =0 as J = oo.

Interpret the result.

The derivation of smoothing densities treated in the lectures considers dy-
namics additive Gaussian noise: V; 11 = ¥(V;) +§; with € ~ N(0,%). This
may be extended to more general Markov chain dynamics:

a) Assume that Vjy ~ my, and that V; is a time-homogeneous Markov
chain described in terms of the transition kernel density k : R? x R? —
[0,00), and that we have observations

Y, = h(Vy) 4y, =12

with iild n; ~ N(0,T') and {n;} L {V;}. Using the kernel density, derive,
up to a constant, an expression for the smoothing posterior

(Vo7 |Y1:7)-

b) Consider d = 1 with the kernel density k(z,y) = e~ 2*=¥ 7y, (z) =
e 2%l and let the observations be given by

Y, = h(V)) 4y, G=12...

with iid n; where 7, (z) = e~21*l and {n;} L {V;}. Derive up to a constant,
an expression for the smoothing posterior

7T(UO:J|y1:J)-

and show that if g;. is a perturbed observation sequence of y;. s, then there
exists a ¢ > 0 depending on y.7 and g;.; such that

J
Ay (7 (-ly1.s), 7(1i1:0)) < €D lyy — 5
j=1

Consider the dynamics
Vi =sin(V)V; +6  j=0,1,...
Vo ~ N(0,1)
with iid &; ~ N(0,1/4) and observations
Y, =V;+n;, j=12,...
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with iid n; ~ N(0,0.04) and Vo L {&} L {n;}. For any J > 0, we define
the distance (functional) of a path vo.; € R7! by

J—1

D(vo.;) = Z |vk41 — vi|?
k=0

Given the observation

y1:10 = (0.2781,0.8839,1.1496,0.6607,0.1846, —0.5131,0.0733, 1.3827, 0.8426, 0.4538)

the task of this exercise is to provide a numerical estimate of the average
distance of a path V.19 given Yi.19 = y1.10- In other words, to approximate

E [ D(Vo.10)|Y1:10 = y1:10] -

Hint: First derive the posterior m(vg.10|y1:10) up to a constant. Then
sample the posterior by e.g. Markov Chain Monte Carlo.



