
LV 11.4500 – UBUNG 6

U6.1 An rv X on Rd can be uniquely described by its distribution PX , its cdf
FX , or, when it exists, its pdf πX . The characteristic function ϕ : Rd → C
defined by

ϕ(t) = E [ exp(i〈t,X〉)] ∀t ∈ Rd

where i =
√
−1 and 〈x, y〉 :=

∑d
i=1 xiyi, is yet another way to uniquely

describe the rv X.
The characteristic function of a Gaussian rv X ∼ N(m,C) is given by

ϕ(t) = exp(i〈t,m〉 − 〈t, Ct〉/2).

a) Show that if X ∼ N(m1, C1) and Y ∼ N(m2, C2) are independent rv
on Rd and A ∈ Rd×d, then Z = X + AY is also Gaussian. Determine the
mean and covariance of Z.

b) Consider the following dynamics

Vj+1 = AVj + ξj

V0 ∼ N(m0, C0)

with A ∈ Rd×d, an iid sequence ξj ∼ N(0,Σ) and V0 ⊥ {ξj}. Show that for
any j ∈ N, Vj is Gaussian, and determine its mean and covariance.

Hint: Argue by induction and use a) to verify Gaussianity.

c) Consider the scalar-valued special case of the above dynamics

Vj+1 = λVj + ξj

V0 ∼ N(m0, σ
2
0)

with an iid sequence ξj ∼ N(0, σ2) that is independent from V0, and a
scalar-valued λ satisfying |λ| < 1.

Verify that

PVn
⇒ N(0,

σ2

1− λ2
)

Hint: First verify that {E [Vj ]}j and {E
[
V 2
j

]
}j are Cauchy sequences.

U6.2 In its original form (but still keeping our parameter lettering a, b, r rather
than the original σ, β, ρ) the Lorenz ’63 model is given by

v̇1 = a(v2 − v1)

v̇2 = rv1 − v2 − v1v3
v̇3 = v1v2 − bv3

t ≥ 0,

with a, b, r > 0 and v(0) ∈ R3.
1
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a) Show that by a change of variables the system can be rewritten

(1)

v̇1 = a(v2 − v1)

v̇2 = −av1 − v2 − v1v3
v̇3 = v1v2 − bv3 − b(r + a)

 =: f(v), t ≥ 0,

with a, b, r as above, and v(0) ∈ R3.

b) Determine α, β > 0 (as functions of a, b, r) such that

f(v)T v ≤ α− β|v|2.

c) Assuming a solution v exists for all times t ≥ 0 with |v(0)|2 ≤ α/β,
show that

|v(t)|2 ≤ α/β ∀t ≥ 0.

d) Assuming that |v(0)|2 ≤ α/β, prove that there exists a locally unique
solution up until the first time when |v(t)|2 > α/β. Conclude from c) that
a unique solution exists for all times.

Hint: Apply the Picard-Lindelöf theorem.
Let D = {v ∈ R3||v|2 ≤ α/β}. Then the restriction of the above vector

field f : D → R3 is uniformly Lipschitz continuous on D.

e) As a very simplified numerical study of how partial observations may
improve the stability of ODE, consider the Lorenz ’63 dynamics (1) with
(a, b, r) = (10, 8/3, 28) with either v(0) = (1, 1, 1) or perturbed initial data
ṽ(0) = (1, 1, 1 + 10−5). To study the stability of the dynamics, we consider
|v(20) − ṽ(20)| solved by numerical integration in the following Matlab
implementation:

options = odeset(’RelTol’,1e-12,’AbsTol’,1e-10);

a = 10;

b = 8/3;

r = 28;

f = @(t,v) [a*(v(2)-v(1));

-a*v(1)-v(2)-v(1)*v(3);

v(1)*v(2)-b*v(3)-b*(r+a)];

[t,v]=ode45(f,[0 20],[1 1 1], options);

[t2,vTilde] = ode45(f,[0 20],[1 1 1+1e-5], options);

finalTimeError = norm(v(end,:) - vTilde(end,:))

This yields |v(20)− ṽ(20)| ≈ 15.7.
As a comparison, try to update the value of the third component of the

dynamics ṽ at every integer time t = 1, 2, . . . , 19 with an exact observation
of v3. That is, set v(0) = (1, 1, 1) and ṽ(0) = (1, 1, 1 + 10−5) and for
t = 0, 1, . . . , 19:

1. compute v(t+ 1) = Ψ(v(t); 1) and ṽ(t+ 1) = Ψ(ṽ(t); 1)

2. update/correct third component of the perturbed dynamics with exact
observation, ṽ3(t+ 1) = v3(t+ 1)

3. set t 7→ t+ 1 and return to step 1.
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Here, Ψ(·; τ) is defined as on page 13 of Lecture 13.
Implement this algorithm in your favorite computer language and com-

pute the resulting final time error |v(20)− ṽ(20)| =?.
Rather than updating the value of the third component of ṽ3, try up-

dating any of the other components and see whether that improves the
stability to the same degree.

U6.3 Consider the V0|Y1:J = y1:J smoothing problem on page 35 of Lecture 13
with |λ| = 1. Verify that V0|Y1:J = y1:J ∼ N(m(j), σ2

post(j)) and show that

σ2
post(J)→ 0 as J →∞.

Interpret the result.

U6.4 The derivation of smoothing densities treated in the lectures considers dy-
namics additive Gaussian noise: Vj+1 = Ψ(Vj) + ξj with ξ ∼ N(0,Σ). This
may be extended to more general Markov chain dynamics:

a) Assume that V0 ∼ πV0 and that Vj is a time-homogeneous Markov
chain described in terms of the transition kernel density k : Rd × Rd →
[0,∞), and that we have observations

Yj = h(Vj) + ηj , j = 1, 2, . . .

with iid ηj ∼ N(0,Γ) and {ηj} ⊥ {Vj}. Using the kernel density, derive,
up to a constant, an expression for the smoothing posterior

π(v0:J |y1:J).

b) Consider d = 1 with the kernel density k(x, y) = e−2|x−y|, πV0
(x) =

e−2|x|, and let the observations be given by

Yj = h(Vj) + ηj , j = 1, 2, . . .

with iid ηj where πη(x) = e−2|x| and {ηj} ⊥ {Vj}. Derive up to a constant,
an expression for the smoothing posterior

π(v0:J |y1:J).

and show that if ỹ1:J is a perturbed observation sequence of y1:J , then there
exists a c > 0 depending on y1:J and ỹ1:J such that

dH(π(·|y1:J), π(·|ỹ1:J)) ≤ c
J∑
j=1

|yj − ỹj |.

U6.5 Consider the dynamics

Vj+1 = sin(Vj)Vj + ξj j = 0, 1, . . .

V0 ∼ N(0, 1)

with iid ξj ∼ N(0, 1/4) and observations

Yj = Vj + ηj , j = 1, 2, . . .



4 LV 11.4500 – UBUNG 6

with iid ηj ∼ N(0, 0.04) and V0 ⊥ {ξj} ⊥ {ηj}. For any J > 0, we define
the distance (functional) of a path v0:J ∈ RJ+1 by

D(v0:J) =

√√√√J−1∑
k=0

|vk+1 − vk|2

Given the observation

y1:10 = (0.2781, 0.8839, 1.1496, 0.6607, 0.1846,−0.5131, 0.0733, 1.3827, 0.8426, 0.4538)

the task of this exercise is to provide a numerical estimate of the average
distance of a path V0:10 given Y1:10 = y1:10. In other words, to approximate

E [D(V0:10)|Y1:10 = y1:10] .

Hint: First derive the posterior π(v0:10|y1:10) up to a constant. Then
sample the posterior by e.g. Markov Chain Monte Carlo.


