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U7.1 In this exercise we will study the matrix inversion used to derive the Kalman
gain on page 23, Lecture 14:

Cn = (Ĉ−1
n +HT Γ−1H)−1 = Ĉn − ĈnH

T (HĈnH
T + Γ)−1︸ ︷︷ ︸

=:Kn

HĈn
(1)

where Γ ∈ Rk×k, H ∈ Rk×d, Ĉn ∈ Rd×d and Γ, Ĉn > 0.

a) Verify that Ĉ−1
n +HT Γ−1H is positive definite (and thus invertible).

b) Verify that the right-inverse property of (1) holds

(Ĉ−1
n +HT Γ−1H)(Ĉn −KnHĈn) = I

Hint: make use of the obvious identity

(HĈnH
T + Γ)(HĈnH

T + Γ)−1 = I

c)Consider the following matrix equality[
−Γ H

HT Ĉ−1
n

]
=

[
−Γ 0
HT I

] [
I −Γ−1H

0 Ĉ−1
n +HT Γ−1H

]
,

Using properties of determinants of block upper and lower matrices, verify
that the left-hand side matrix is invertible.

Next, considering the inverse

B =

[
B11 B12

B21 B22

]
:=

[
−Γ H

HT Ĉ−1
n

]−1

verify that B22 = (Ĉ−1
n +HT Γ−1H)−1 for for instance by using

B21H +B22Ĉ
−1
n = Id

−B21Γ +B22H
T = 0k.

(2)

Last part of exercise: verify (1).
Hint: First determine B11 and B21 from a system of equations, and

use the alternative form of B21 in (2)

d) Show that

C−1
n mn = Ĉ−1

n m̂n +HT Γ−1yn.

implies that

mn = (I −KnH)m̂n +Knyn.

Hint: HĈnH
T = HĈnH

T + Γ− Γ

1



2 LV 11.4500 – UBUNG 7

U7.2 Consider the linear-Gaussian setting

Vj+1 = AVj + ξj , j = 0, 1, . . .

V0 ∼ N(m0, C0)

with ξj
iid∼ N(0,Σ), and observations

Yj = HVj + ηj , j = 1, 2, . . .

with ηj
iid∼ N(0,Γ) and the usual independence assumptions V0 ⊥ {ξj} ⊥

{ηj}.
In order to derive the Kalman filtering predict-analysis steps, one does

not require generally that both Σ and C0 are positive definite, as we as-
sumed in Lecture 14. When A is a non-singular matrix, for instance, it
suffices that only C0 is positive definite.

With this in mind, derive the Kalman predict-analysis formulas for the
dynamics on R with A = −1, C0 = 10, Σ = 0, H = 1 and Γ = 2.

How many iterations are needed to ensure that E
[

(mj − Vj)2|Y1:j = y1:j

]
<

10−3? Same question when C0 = 108? Motivate the answer.

U7.3 In Lecture 14, extended Kalman filtering was presented for nonlinear map-
pings Ψ and linear observation mappings h(v) = Hv. In this exercise we will
extend ExKF to settings where also h may be nonlinear. Initial condition
V0 ∼ N(m0, C0) and for j = 0, 1, . . .

Vj+1 = Ψ(Vj) + ξj ,

Yj+1 = h(Vj+1) + ηj+1,
(3)

and Gaussian noise with the usual distribution and independence assump-
tions.

a) Given ExKF moments (mj , Cj) we recall that ExKF proceeds by
linearizing

ΨL(v;mj) = Ψ(mj) +DΨ(mj)(v −mj)

and applying the “Kalman-filter-like” prediction step:

m̂j+1 = ΨL(mj) = Ψ(mj)

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T + Σ.

We extend the analysis step of ExKF to settings with nonlinear observations
by also linearing h:

hL(v; m̂j+1) = h(m̂j+1) +Dh(m̂j+1)(v − m̂j+1),

and applying a “Kalman filter-like” analysis step to determine the analy-
sis moments. The updated mean can for instance be determined by the
variational principle

mj+1 = arg min
u∈Rd

1

2
|yj+1 − hL(u; m̂j+1)|2Γ +

1

2
|u− m̂j+1|2Ĉj+1

.

Task: Determine mj+1, Kj+1 and Cj+1 for ExKF.
The calculations need not be done in detail, but motivate the results

convincingly.
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Hint: For Kj+1 and Cj+1 it may be helpful to observe that according
to the KF approach, we are equating the first and second order terms of

1

2
|(yj+1 − h(m̂j+1) +Dh(m̂j+1)m̂j+1)−Dh(m̂j+1)u|2Γ +

1

2
|u− m̂j+1|2Ĉj+1

to an ansatz Gaussian density exponent

1

2
|u−mj+1|2Cj+1

.)

b) Summarize the predict-analysis steps for ExKF and extend the filter-
ing approach with nonlinear observations to 3DVAR as well.

Remark: This extension may work quite well in settings with weak
nonlinearities in h, but it is generally not robust. It turns out to be far easier
to extend EnKF and particle filters to settings with nonlinear observations.
See Jazwinski, “Stochastic processes and filtering theory” for more on ExKF
with nonlinear observations.

U7.4 Consider the filtering problem

Vj+1 = cos(Vj) + ξj

V0 ∼ N(0, 1)
(4)

where ξj ∼ N(0, 0.25) and with nonlinear observations

Yj = Vj + V 2
j /20 + ηj , j = 1, 2, . . . ,

with ηj ∼ N(0, 1).

a) Generate a sequence of J = 10000 observations by synthetic data v†1:J ,
and implement a 3DVAR algorithm for the filtering problem following the
extension to nonlinear observations in U7.3. You may assume that m0 = 0
for 3DVAR, and study the effect of different values of Ĉ in terms of the
time-averaged mean-squared tracking error

1

J + 1

J∑
k=0

|v†k −mk|2

b) Repeat the exercise for the ExKF method. You may then assume
(m0, C0) = (0, 1).


