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U8.1 In this exercise we will study theoretical properties of the EnKF method.
Consider the linear-Gaussian filter problem with V0 ∼ N(m0, C0) and

Vj+1 = AVj + ξj , ξj
iid∼ N(0,Σ),

Yj+1 = HVj+1 + ηj+1, ηj+1
iid∼ N(0,Γ),

with Σ,Γ, C0 > 0 and {V0} ⊥ {ξj} ⊥ {ηj} and H ∈ Rk×d \ {0}.

a) Let M = ∞ and consider the iid MFEnKF prediction ensemble at

time j + 1: {v̂MF,(i)
j+1 }Mi=1. Recall that

m̂j+1 = E
[
v̂
MF,(·)
j+1

]
, and Ĉj+1 = Cov[v̂

MF,(·)
j+1 ]

and assume that

m̂j+1 = m̂KF
j+1, and Ĉj+1 = ĈKF

j+1,

where (m̂KF
j+1, Ĉ

KF
j+1) denotes the reference Kalman filter mean and covari-

ance moments.
Having computed the prediction covariance (we suppress particle nota-

tion as they are all identically distributed)

Ĉj+1 = Cov[v̂MF
j+1 ]

and

Kj+1 = Ĉj+1H
T (HĈj+1H

T + Γ)−1

we consider two different analysis approaches in MFEnKF: 1.perturbed
observations (the one we have presented for EnKF in the lectures):

y
(i)
j+1 = yj+1 + η

(i)
j+1, η

(i)
j+1

iid∼ N(0,Γ)

v
MF,(i)
j+1 = (I −Kj+1H)v̂

MF,(i)
j+1 +Kj+1y

(i)
j+1

and 2. unperturbed observations:

ṽ
MF,(i)
j+1 = (I −Kj+1H)v̂

MF,(i)
j+1 +Kj+1yj+1

Task: Show that

Cov[ṽMF
j+1 ] 6= Cov[vMF

j+1 ] = CKF
j+1

Hint: Use that Kj+1 is deterministic.

Remark: This is a motivation for introducing perturbed observations
for EnKF (i.e., also in the non-mean-field setting of M <∞).

b) Show that for the EnKF ensemble {v̂(i)
j }Mi=1, it holds for any i that

v
(i)
j ∈ Span({v̂(i)

j }Mi=1).
1
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c) Consider the above problem with Σ = 0. Show that for any i and

j > 0, v
(i)
j ∈ Span(A1, A2, . . . , Ad) with Ak denoting the k-th column of A.

U8.2 Verify that for the space random probability measures on Rd denoted by
PΩ,

d(π, π̃) := sup
‖f‖∞≤1

√
E [ (π[f ]− π̃[f ])2]

is a metric.

U8.3 Consider the HMM filtering problem of similar to that in Lecture 17: V0 ∼
π0, a mapping F : Rd × Rd → D ⊂ Rd and for j = 0, 1, . . .

Vj+1 = F (Vj , ξj)

Yj+1 = Vj+1 + ηj+1
(1)

with iid rv {ξj}, iid ηj ∼ N(0,Γ), Γ > 0, and V0 ⊥ {ξj} ⊥ {ηj}. Assume
that D is a compact and that P(V0 ∈ D) = 1. Given y1:J , find an explicit
κ such that assumption (2) of the following changed version of Theorem
1, Lecture 17 holds. Furthermore, provide a short argument on how the
proof of the theorem in the lecture needs to be updated for the here stated
theorem to hold.

Theorem For the dynamics-observation setting (1), with a given se-
quence y1:J , assume there exists a κ ∈ (0, 1) such that

κ ≤ πYj |Vj
(yj |u) ≤ κ−1 for all j ∈ {0, 1, . . . , J} and u ∈ D. (2)

Then, for all j ∈ {0, 1, . . . , J}, it holds for the BPF algorithm that

d(πj , π
M
j ) ≤ c(J, κ)√

M
.

End Theorem.

U8.4 Consider the linear-Gaussian filtering problem

Vj+1 =

[
1 0.1
0 1

]
Vj + ξj ,

V0 ∼ N
([

0
1

]
,

[
1/4 0
0 1/4

])
where ξj

iid∼ N(0,Σ) with Σ =

[
0.01 0

0 0.1

]
.

And observations on R:

Yj =
[
0 1

]︸ ︷︷ ︸
H

Vj + ηj , ηj
iid∼ N(0, 1/4).

a) Generate an observation sequence y1:100 from synthetic data: yj =

v†j +ηj and compute the resulting reference analysis moments (mKF
j , CKF

j )
by Kalman filtering.
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b) Solve the filtering problem by the EnKF method for different values
of the ensemble size M . Measure the performance in terms of

1

J + 1

J∑
j=0

E
[
|EM [v

(·)
j ]−mKF

j |2
]

for the above observation sequence (with J = 100) and study the conver-
gence rate.

c)Solve the filtering problem by the SIS particle filtering for different
values of the ensemble size M . Again, measure the performance in terms
of

1

J + 1

J∑
j=1

E
[
|EM [v

(·)
j ]−mKF

j |2
]

and study the convergence rate. Moreover, estimate and plot the effective
number of particles neff,j for j = 0, 1, . . . , J for different values of M .

d)Repeat part c) but with adaptive resampling (i.e., SI–adaptive–R).


