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US8.1 In this exercise we will study theoretical properties of the EnKF method.
Consider the linear-Gaussian filter problem with Vo ~ N(mg, Cp) and

Vigr = AV, + ¢, &~ N(0,),

itd
Y1 = HVj1 +nj41, Mj+1 ~ N(O F)

with 3,T,C > 0 and {Vp} L {&} L {n;} and H € R¥*4\ {0}.

a) Let M = oo and consider the iid MFEnKF prediction ensemble at

time j + 1: {@A_{_If }fﬁl Recall that

M1 =E [Aﬁf( )} , and Cjy = COV[AA{FI;( )]
and assume that

~ ~ KF A
My =my, and Cjy = CJ+17

where (X5, CK1) denotes the reference Kalman filter mean and covari-

ance moments.
Having computed the prediction covariance (we suppress particle nota-
tion as they are all identically distributed)
Cyi1 = Covfsl
and
Kjp1=CipH (HCj 1 HT +T)7!
we consider two different analysis approaches in MFEnKF: 1.perturbed
observations (the one we have presented for EnKF in the lectures):
, . -
vy = v+, n % N(.T)
MF, P,
Vg1 W= = - KJ+1H) R + KJ+1y]+1

and 2. unperturbed observations:

GME, L MPF(
Vi1 @ = =~ KJ+1H) j+1 Z)JFKJ-H%—H

Task: Show that

~MF MF
Cov[v;471] # Cov[viii] = CJ+1
Hint: Use that K, is deterministic.

Remark: This is a motivation for introducing perturbed observations
for EnKF (i.e., also in the non-mean-field setting of M < o).

) Show that for the EnKF ensemble {v )}z 1, it holds for any ¢ that
) € Span({vj(z MH.
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¢) Consider the above problem with ¥ = 0. Show that for any ¢ and
j>0,0\" € Span(Ay, Ay, ..., Ag) with A, denoting the k-th column of A.

Verify that for the space random probability measures on R? denoted by
Pﬂa

d(m, ) := e VE[(x[f] - 7[f1)?]
is a metric. B

Consider the HMM filtering problem of similar to that in Lecture 17: Vy ~
70, a mapping F : R x RY = D Cc R? and for j =0,1,...
Vin = F(V,.6) "
Yjt1 =Vt +nj+1
with iid rv {§;}, iid n; ~ N(0,T'), T" > 0, and Vo L {&} L {n;}. Assume
that D is a compact and that P(Vy € D) = 1. Given yi.;, find an explicit
k such that assumption (2) of the following changed version of Theorem
1, Lecture 17 holds. Furthermore, provide a short argument on how the

proof of the theorem in the lecture needs to be updated for the here stated
theorem to hold.

Theorem For the dynamics-observation setting (1), with a given se-
quence y;.7, assume there exists a x € (0,1) such that

K < Ty, (yilu) < k™t forallj€{0,1,...,J} and wue€D. (2)
Then, for all j € {0,1,...,J}, it holds for the BPF algorithm that
d(ﬂj,wé\/[) < c(J, k)

- VM
End Theorem.

Consider the linear-Gaussian filtering problem

1 0.1
Vigr = [0 1 ] Vi+¢&;,

Vo ~ N( m : {164 1(/)4} )

where & 4 N(0,3) with & = {0'81 001].
And observations on R:
Yi=[0 1Vi+n, 0 Y N©,1/4).
~———

H

a) Generate an observation sequence y.19p from synthetic data: Y =
v; +n; and compute the resulting reference analysis moments (mf F CJK £y

by Kalman filtering.
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b) Solve the filtering problem by the EnKF method for different values
of the ensemble size M. Measure the performance in terms of

J
1 .
S
3=0
for the above observation sequence (with J = 100) and study the conver-
gence rate.

c¢)Solve the filtering problem by the SIS particle filtering for different
values of the ensemble size M. Again, measure the performance in terms
of

J

1 .

T O E | Bl P
P

and study the convergence rate. Moreover, estimate and plot the effective
number of particles ness; for j =0,1,...,J for different values of M.
d)Repeat part ¢) but with adaptive resampling (i.e., SI-adaptive-R).



