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U9.1 a) In this exercise we will study the total variation of a single Wiener path
over the time interval [0, 1] by computing

TotV ar(`) :=

2`−1∑
k=0

|Wt`k+1
−Wt`k

| for `1, 2, . . . , 20

on a nested sequence of meshes

{t1k}2k=0 ⊂ {t2k}2
2

k=0 ⊂ . . . {t20
k }2

20

k=0

with t`k := k2−`.
Hint: first generate the values of the Wiener path on the fine mesh

{Wt20k
}220

k=1 compute TotV ar(20). Thereafter use the relation

{Wt`−1
k
}2

`−1

k=0 = {Wt`2k
}2

`−1

k=0

as aid to to compute TotV ar(`− 1).
Verify experimentally for one path that TotV ar(`) ≈ c2β` for some

β > 0, and determine approximately the value of β from your numerical
simulation.

b) for the same Wiener path, verify numerically that

QuadraticV ar(`) :=

2`−1∑
k=0

|Wt`k+1
−Wt`k

|2 → 1 as

as `→∞.

U9.2 The Ornstein-Uhlenbeck equation is defined by

dXt = −θXtdt+ σdWt (1)

with constants θ, σ > 0.
a) In order to solve (1), we first need to extend Ito’s forumla from func-

tions treated in Lecture 19 to those on the form f(t,Xt). That is, using
the formal rules

(dW )2 = dt, dWdt = dtdW = 0, (dt)2 = 0,

show that for f ∈ C2(R2,R) and the SDE (1), Ito’s formula leads to

df(t,Xt) =
(
ft(t,Xt)− θXtfx(t,Xt) +

σ2

2
fxx(t,Xt)

)
dt+ σfx(t,Xt)dWt.

b) Show that

Xt = e−θtX0 + σ

∫ t

0

eθ(s−t)dWs

Hint: Use the integrating factor eθt in (1) and apply Ito’s formula to
f(t,Xt) = eθtXt.

1
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c) Show that ∫ t

0

eθ(s−t)dWs ∼ N(0,Σt)

and determine Σt.
Hint: For some ∆t > 0 consider a partition of [0, t] defined by tk+1 =

tk + e2θ(t−tk)∆t. Use the limit definition of Ito integrals in combination
with the central limit theorem to verify gaussianity.

d) Show that for any fixed t, the solution of the SDE can be written

Xt = AtX0 + ξt

and determine At and the distribution of ξt.
e) Derive the Fokker–Planck equation for (1) and show that p̃(x) ∝

exp(−θx2/σ2) is a stationary solution.

U9.3 a) Consider the filtering problem

Vτj+1
= Ψ(Vτj ) := Vτj −

1

4

∫ ∆τ

0

Vτj+tdt+
1

4

∫ ∆τ

0

dW
(j)
t

Yτj+1 = Vτj+1 + ηj+1

with V0 = 1, ∆τ = 1/2 and iid ηj ∼ N(0,Γ) (and the standard additional

independence σ({ηj}j) ⊥ σ({W (1)
s }s≤∆τ ) ⊥ σ({W (2)

s }s≤∆τ ) ⊥ . . .).

To familiarize yourself with EnKF+Euler–Maruyama filtering, repeat
the numerical tests in Lecture 20: generate an observation sequence for
yτ1:J for J = 10 from synthetic data v†τ1:J for Γ = 1 and Γ = 1/1000 and

ΨN as numerical integrator with timestep ∆t = ∆τ/N for different values
of N and M .

b) Consider next the following filtering problem with unknown state and
drift coefficient in the model:

Vτj+1
= Ψθ(Vτj ) = Vτj − θ

∫ ∆τ

0

Vτj+tdt+
1

4

∫ ∆τ

0

dW
(j)
t

Yτj+1 = Vτj+1 + ηj+1.

with V0 = 4, ∆τ = 1/10 and observations over the time frame [0, 10], iid
observation noise ηj ∼ N(0, 0.01) and the prior θ ∼ U(0, 1).

Task: 1. Set N = 10 and generate synthetic data yτ1:J from dynamics
v†τ1:J with parameter θ† = 2/3 for J = 100 and 2. implement a filtering

strategy for recovering the true model value θ† conditional on the observa-
tion sequence yτ1:J and the prior for θ. Study the robustness of the method
when varying the ensemble size M .

U9.4 Consider applying EnKF+Euler–Maruyama method to a filtering problem
with SDE dynamics. Under the assumption of sufficient regularity and a
finite observation sequence J < ∞ over a finite time interval [0, T ], how
should one split the computational budget between the degrees of freedom
M and N? (Where M is the ensemble size and N is the timestep parameter
defined through ∆t = ∆τ/N .)
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U9.5 Describe how to combine particle filtering with Euler–Maruyama to solve
filtering problems with SDE dynamics and discrete-time observations.


