U9.1

U9.2
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a) In this exercise we will study the total variation of a single Wiener path
over the time interval [0, 1] by computing
2¢-1
TotVar(¢ Z |Wtz Wy for £1,2,...,20

on a nested sequence of meshes

{thYimo € {6120 C - {8}
with ti = k27¢.
Hint: first generate the values of the Wiener path on the fine mesh
W20 22:0 compute TotVar(20). Thereafter use the relation
20 S =1

(W, 2 ) =W 27

as aid to to compute TotVar(f — 1).

Verify experimentally for one path that TotVar(f) ~ ¢25¢ for some
B > 0, and determine approximately the value of 8 from your numerical
simulation.

b) for the same Wiener path, verify numerically that

2¢—-1
QuadraticVar(l) := Z |W,e

—Wyel|> =1 as
k+1 k

as ¢ — oo.

The Ornstein-Uhlenbeck equation is defined by
dXt = —9Xtdt + O'th (1)

with constants 6,0 > 0.

a) In order to solve (1), we first need to extend Ito’s forumla from func-
tions treated in Lecture 19 to those on the form f(¢, X;). That is, using
the formal rules

(dW)* =dt, dWdt=dtdW =0, (dt)*=

show that for f € C?(R?,R) and the SDE (1), Ito’s formula leads to

(0.0 = (£i(0X0) = 0L 0. X0) + G oot X))+ 0, (1, X)W,

b) Show that
¢
X, =e X, + a/ = qw,
0
Hint: Use the integrating factor e in (1) and apply Ito’s formula to

f(t, Xt) = eatXt.
1
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¢) Show that
t
/ DA, ~ N (0, 5)
0

and determine X;.

Hint: For some At > 0 consider a partition of [0,¢] defined by tx11 =
tr + 2=t At. Use the limit definition of Ito integrals in combination
with the central limit theorem to verify gaussianity.

d) Show that for any fixed ¢, the solution of the SDE can be written
Xi= A Xo + &

and determine A; and the distribution of &;.
e) Derive the Fokker—Planck equation for (1) and show that p(z)
exp(—0x2/0?) is a stationary solution.

a) Consider the filtering problem

1 AT 1 AT .
Ve =U(V,) =V, — - Vi jedt + — aw D
J J J 4 0 J 4 0
Yo = Vo 01

with V) =1, A7 =1/2 and iid n; ~ N(0,T") (and the standard additional
independence o({n;};) L o({W " }ecnr) L o({WP Y ocnr) L..0).

To familiarize yourself with EnKF+FEuler-Maruyama filtering, repeat
the numerical tests in Lecture 20: generate an observation sequence for
Yr,., for J = 10 from synthetic data v}  for I' =1 and I' = 1/1000 and
U as numerical integrator with timestep At = A7/N for different values
of N and M.

b) Consider next the following filtering problem with unknown state and
drift coefficient in the model:

AT 1 AT )
VTj+1 = \IJO(VTJ') = V-rj - 9/ V‘Ffrtdt + Z/ th(J)
0 0
Y7j+1 = VTJ'+1 +Nj+1-

with Vp = 4, A7 = 1/10 and observations over the time frame [0, 10], iid
observation noise 7; ~ N(0,0.01) and the prior § ~ U(0, 1).

Task: 1. Set N =10 and generate synthetic data y,,,, from dynamics
vih , with parameter 6t = 2/3 for J = 100 and 2. implement a filtering
strategy for recovering the true model value 8 conditional on the observa-
tion sequence y,, , and the prior for . Study the robustness of the method

when varying the ensemble size M.

Consider applying EnKF-+Euler—-Maruyama method to a filtering problem
with SDE dynamics. Under the assumption of sufficient regularity and a
finite observation sequence J < oo over a finite time interval [0,7], how
should one split the computational budget between the degrees of freedom
M and N? (Where M is the ensemble size and N is the timestep parameter
defined through At = Ar/N.)
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U9.5 Describe how to combine particle filtering with Euler-Maruyama to solve
filtering problems with SDE dynamics and discrete-time observations.



